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Abstract: More than a century has passed since arginine was discovered, but the metabolism of the
amino acid never ceases to amaze researchers. Being a conditionally essential amino acid, arginine
performs many important homeostatic functions in the body; it is involved in the regulation of
the cardiovascular system and regeneration processes. In recent years, more and more facts have
been accumulating that demonstrate a close relationship between arginine metabolic pathways and
immune responses. This opens new opportunities for the development of original ways to treat
diseases associated with suppressed or increased activity of the immune system. In this review,
we analyze the literature describing the role of arginine metabolism in the immunopathogenesis
of a wide range of diseases, and discuss arginine-dependent processes as a possible target for
therapeutic approaches.
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1. Introduction

In 1886, the German chemist Ernst Schulze and his assistant Ernst Steiger extracted
arginine from yellow lupine germ buds for the first time. In 1899, Schulze and Winterstein
synthesized arginine (L-Arg) from L-ornithine and cyanamide, and, in 1910, the L-Arg
structure was confirmed by Sorensen [1]. In 1987, nearly 100 years later, arginine-derived
nitric oxide (NO) was shown to be a factor regulating vascular tone. NO was classified
as a physiologically active intermediate product of L-Arg to nitrite/nitrate conversion
in macrophages and endothelial cells. The discovery of the fundamental role of NO-
related compounds in the physiology of the human cardiovascular system resulted in the
1998 Nobel Prize being awarded to Robert F. Furchgott, Luis J. Ignarro and Ferid Murad [2].

L-Arg is a dibasic cationic amino acid involved in various metabolic pathways [3,4].
L-Arg is mainly derived from the three sources in the in vivo–dietary intake, endogenous
de novo production from L-citrulline, or protein catabolism. Endogenous L-Arg is largely
synthesized in the renal proximal tubules from L-citrulline generated from dietary L-Arg,
in intestinal epithelium [5]. Plasma L-Arg concentrations range from 50 to 250 µM [4,6–9],
which is much lower than in subcellular compartments, where its concentration level
reaches 1 mM [10].
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Evidence suggests L-Arg is an mTOR pathway-signaling molecule [11]. There are at
least five arginine sensors (GPRC6A, SLC38A9, CASTOR1, CASTOR2, TM4SF5) reported in
the literature [12–15]. mTOR is considered the key regulator of important cellular processes,
including protein synthesis, proliferation, autophagy, lysosomal function, metabolism and
inflammation. Research into the influence of L-Arg on mTOR regulation opens a new
intriguing chapter in L-Arg investigation history [16].

In mammalian cells, at least eight transporters are involved in L-Arg trafficking
across the plasma membrane [17]. L-Arg is metabolized by those four groups of en-
zymes: arginases, nitric oxide synthases (NOS), arginine decarboxylase (ADC) and argi-
nine:glycinamidinotransferase (AGAT). Among them, arginases and NOS exist in several
different isoforms.

Arginases are manganese-containing enzymes hydrolyzing L-Arg into L-ornithine
and urea in the liver-urea cycle important for ammonia detoxification. L-ornithine is a
substrate for ornithine decarboxylase (ODC) that initiates the synthesis of polyamines.
Alternatively, ornithine aminotransferase (OAT) can metabolize L-ornithine into proline.
These metabolites are involved in regeneration processes. Polyamines (putrescine, spermine
and spermidine) are necessary for cell proliferation, whereas proline enriches collagen. It
was established that arginase is expressed in many cell types, and its two isoforms catalyze
the same biochemical reaction. Human arginase 1 (ARG1) is a cytosolic protein expressed
mainly in hepatocytes, as well as in myeloid lineage cells. Human arginase 2 (ARG2),
localized in mitochondria, widely expresses in extrahepatic tissues. Both enzymes share as
low as 58% amino acid sequence homology, bearing a nearly identical structure within the
catalytic site [18,19].

NOS metabolizes L-Arg to produce L-citrulline and NO. NOS isoforms differ in struc-
ture and mechanisms of activity regulation. Neuronal (nNOS) and endothelial NOS (eNOS)
are constitutively expressed in non-immune cells: neurons, muscle, and endothelial cells.
Their activity is regulated by Ca-dependent calmodulin binding as well as protein phospho-
rylation/dephosphorylation at the serine residue [20,21]. The enzymes usually produce NO
in low concentration, which acts as an intracelullar signaling molecule [22] and regulates
vascular homeostasis [23]. Inducible NOS (iNOS) expression has long been considered
specific to immune cells, but recent studies show that the spectrum of the cells expressing
iNOS is much broader [23] than earlier thought. Immune cells produce NO along with reac-
tive oxygen species (ROS) to eliminate pathogens and tumor cells. NO and its derivatives
(Reactive Nitrogen Species—RNS) act at micromolar concentrations nonspecifically on
various targets, which may result in normal cell damage. Therefore, iNOS activity is highly
regulated. Expression of iNOS induces in response to pro-inflammatory cues: bacterial tox-
ins, as well as cytokines interleukin (IL)-1β, interferon γ (IFNγ), and tumor necrosis factor
α (TNFα). On the contrary, IL-4 and IL-10, transforming growth factor β (TGFβ), down-
modulate iNOS gene expression. Mechanisms regulating the bioavailability of intracellular
L-Arg play an important role in regulating NOS-mediated NO synthesis [20,21].

ADC and AGAT are not involved in regulating immune cell functions. In mam-
mals, ADC is highly expressed in brain tissues [24], whereas AGAT is found in the brain
and heart [25–27]. ADC metabolizes L-Arg into agmatine, which is, in turn, converted
by agmatinase into putrescine and urea [28]. Except for agmatine inhibitory effects on
macrophage iNOS, little is known about the role of these enzymes in immune system [29].

L-Arg plays a crucial role in detoxification of ammonia—a protein breakdown product
acts as a secretagogue and serves as a substrate for the synthesis of NO, an important signal-
ing molecule that regulates vascular tone and cytotoxic functions of macrophages. L-Arg
is also a precursor in the synthesis of L-ornithine and agmatine, creatine and polyamines.
Metabolism of L-Arg is involved in immune cell regulation [30]. It is now clear that L-Arg
metabolism is engaged in the pathogenesis of tumor growth, inflammation, infectious
diseases, and fibrotic processes [31–37], as well as physiological immunodeficiencies in
newborns and pregnant women [38]. In this review, we analyze literature data describing
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the role of L-Arg metabolism in immunopathogenesis in a wide range of diseases and
potential therapeutic approaches aimed at regulating arginine-dependent processes.

2. L-Arginine Metabolism in Pathogenesis of Bronchial Asthma and Allergies

Allergic asthma is associated with increased airway reactivity and inflammation.
Macrophages are the most abundant immune cells in the lungs (approximately 70% of
immune cells) and play an important role in airway inflammation in asthma. It is suggested
that high levels of T helper cell (Th) 2 type cytokines IL-4 and IL-13, typical of asthma,
result in increases of type 2 inflammation and activate mast cells, basophils, eosinophils
and M2 macrophages [39–41]. Macrophage polarization is largely associated with patho-
genesis of allergic asthma. M1 macrophages are believed to be the major effector cell
subset in non-allergic asthma. In addition, the M1 macrophage phenotype is associated
with pathophysiology of severe asthma, especially in patients with a poor response to
systemic corticosteroids. M2 macrophage type predominates in allergic asthma [42]. M2
macrophages bear a high level of ARG1 expression, and the enzyme is considered to be
the main consumer of L-Arg in vivo, because the arginases-coupled reaction rate (Vmax)
is 1000 times greater than the eNOS-coupled one [43]. Accordingly, Matysiak et al. [44]
found that patients with bronchial asthma had decreased their L-Arg level in the peripheral
blood, as confirmed additionally by Cottrill et al. in a study of children suffering from
bronchial asthma [45]. Moreover, the level of L-Arg in children, prone to exacerbations,
was lower than in those with controlled bronchial asthma. The cause is considered to be the
increased expression of ARG1 found in tissue biopsies in lung epithelial cells [46]. Immuno-
histochemical studies showed that ARG1 expression was increased in lung mononuclear
leukocytes [47]. Patients with bronchial asthma were observed to have an increased activity
of peripheral blood ARG1 [48,49] and decreased NOS activity [49]. ARG1 hyperactivation
may result in a deficiency of L-Arg used by NOS, so in the absence of the substrate, the
enzyme dissociation leads to ROS generation [48]. Due to a shortage in NO production and
increased ROS generation, lung tissue cells are exposed to oxidative stress associated with
concomitantly elevated bronchial hyperreactivity [49]. Thus, clinical study data confirm
the negative role of ARG1 in asthma. Diverse ARG1 genotypes are also linked to various
levels of efficacy of beta-2-agonists used in bronchial asthma treatment [50].

Opposite data were obtained regarding mitochondrial ARG2 in the pathogenesis
of bronchial asthma. The phenotype of severe asthma was shown to correlate with low
ARG2 activity [51]. In addition, patients with a clinical picture of bronchial asthma were
also shown to have a high ARG2 expression in the epithelial cells in biopsy specimens.
ARG2 activity suppressed iNOS and airway inflammation. Moreover, a relationship be-
tween the immunoglobulin E (IgE) level and ARG2 expression in this pathology was also
observed [51]. Patients with low ARG2 level were characterized by their peak IgE produc-
tion [51], and immunoglobulin concentration positively correlated with the progression
of respiratory symptoms [52]. The airway epithelial cells in patients with asthma showed
a high mitochondrial content and adenosine triphosphate (ATP) level. Cells with higher
ARG2 expression were found to bear a low level of phospho-STAT6, a downstream target
in the IL-4 signaling cascade [53]. Also, it was shown that respiratory tract epithelial cells
in patients with bronchial asthma had a high iNOS expression that was not detected in
the mononuclear cells in bronchoalveolar lavage fluid. In addition, a high expression of
argininosuccinate synthase (ASS1), responsible for de novo L-Arg synthesis, was found in
the cytosol of airway epithelial cells [53].

The role of the mitochondrial arginase isoform ARG2 remains poorly understood.
Presumably, it supports oxidative phosphorylation in mitochondria and is involved in
IL-10-mediated anti-inflammatory activity. In macrophage studies, ARG2 was shown to
be the IL-10 downstream-signaling mediator, inhibiting production of pro-inflammatory
cytokines [54–56]. The activity of ARG2 downmodulates the hypoxia-induced factor 1α
(HIF-1α) and IL-1β in vitro. HIF-1α and IL-1βwere shown to be highly expressed in the
lipopolysaccharide (LPS) -induced model of acute inflammation in ARG2 mice. ARG2
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deletion brought about both higher HIF-1α and IL-13, eotaxin-1 and IL-5 levels [53]. ARG2
can downregulate the NO level, preventing uncontrolled cellular apoptosis triggered by
the RNS [18]. IL-10-mediated induction of ARG2 is required to regulate mitochondrial
dynamics and maintain macrophage oxidative phosphorylation by enhancing Complex II
of electron transport chain activity. Thus, macrophage ARG2 exerted an anti-inflammatory
effect in an autocrine manner [55]. Based on experimental data and clinical observations,
it can be assumed that upregulated ARG2 suppresses airway inflammation, reduced Th2
response, HIF-1α expression, and improved cellular respiration.

A therapeutic approach aimed at regulating L-Arg metabolism in bronchial asthma
provides controversial data. L-Arg supplementation was shown to be able to reduce the
level of inflammatory mediators, such as TNFα [57], but it does not affect one of the key
clinical parameters—frequency of asthma exacerbation [58]. Recently, it was shown that
L-citrulline, as a precursor of L-Arg, supplemented by basic asthma therapy, [52] was
beneficial. The patients who received L-citrulline showed better disease control and lung
function. While ARG2 in bronchial asthma contributed to a milder disease course, whereas
ARG1 exerted an opposite effect by aggravating symptoms, drugs blocking ARG1 can be
considered as promising for downregulating inflammation and enhancing the efficacy of
main therapy in bronchial asthma.

3. L-Arginine Metabolism in Cancer

Being a proteinogenic amino acid, L-Arg is crucial for protein synthesis in actively
proliferating cells, such as tumor cells [59–61] (Figure 1). L-Arg is also involved in other
metabolic processes related to tumor growth, including production of NO, polyamines,
nucleotides, proline, and glutamate. Moreover, it was shown that several enzymes of
L-Arg metabolism (ODC) and amino acid transporters (CAT and SLC6A14) are actively
involved in developing tumors [62].In contrast, it is known that immune cell activity also
dramatically relies on L-Arg bioavailability [39,63]. Therefore, L-Arg metabolism has an
ambiguous role in oncology.

Tumor cells require arginases for better proliferation and metastasis. For instance,
ARG1 in neuroblastoma cells triggers expression of AKT and ERK signaling cascades lead-
ing to cell proliferation [64]. ARG2 in thyroid tumors elevates expression of proliferative
markers, such as Ki-67, PCNA [65], whereas, in melanoma, it contributes to a promigratory
cell phenotype with a high level of adhesion molecule ICAM-1 [66]. Patients with higher
ARG1 expression showed less aggressiveness, invasiveness, metastasis, and higher differ-
entiation of hepatocellular cancer cells [67]. Some studies report that high ARG2 expression
in squamous cell carcinoma of the head and neck is associated with a poorer outcome [68].

At the same time, L-Arg deprivation during tumor growth becomes one of the mecha-
nisms for reprogramming immune responses with induced immunosuppression. Therefore,
arginase-expressing tumor cells can simultaneously solve two issues, on the one hand,
generating metabolites necessary for growth, and, on the other hand, reprogramming the
tumor microenvironment to suppress the immune reactions.

Some tumors implement these strategies by inducing arginase in their microenviron-
ment [69,70]. That was supported in the study by Lian et al. showing that colorectal cancer
cells co-cultured with monocytic myeloid leukemia cells (THP-1) with upregulated ARG1
expression in the latter, and that colorectal cancer cells contributed to monocyte differ-
entiation towards the anti-inflammatory M2 cells secreting IL-10 [71]. Tumor-infiltrating
arginase-expressing monocyte lineage cells can induce tumor immunoresistance [70]. A
high expression of ARG1 is found in peripheral blood myelocytes of patients with breast
cancer [72].
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Figure 1. L-Arginine metabolism in tumor growth immunopathogenesis and arginine-dependent
processes as a target of therapeutic approaches. Expression of arginases by tumor cells promotes
their proliferation and metastasis. Arginase-mediated depletion of L-Arg in the tumor microenvi-
ronment contributes to the development of immunosuppression. Tumors also induce arginase in
the microenvironment. Tumor-infiltrating arginase-expressing MDSC metabolites stimulate tumor
mutagenesis, reinforce immunosuppression, decrease CD3z, CD25, CD69 expressions in T cells and
IL-2 production. Therapeutic strategies: Arginine-hydrolyzing enzymes result in L-Arg exhaustion
in tumor microenviroment and inhibit tumor cell proliferation. Administration of ARG inhibitors
decreases tumor growth/metastasis. L-Arg supplement restores T cell functions. Reengineering
CAR-T cells increases ASS1 and OTC expression to improve T cell L-arg bioavailability. Elaboration
ARG1-specific CD4+ and CD8+ T cell promotes arginase-positive cell elimination. ADI-PEG20,
pegylated arginine deiminase; ARG1, arginase 1; ARG2, arginase 2; ASS1, argininosuccinate synthase;
CAR-T, chimeric antigen receptor T cells; L-arg, L-arginine; MDSCs, myeloid derived suppressor
cells; OTC, ornithine transcarbamylase; rhARG, recombinant human arginase.

In the late 1990s, myeloid lineage cells in the tumor microenvironment were described.
They differed from macrophages, had immature neutrophil and monocyte morphology, and
exhibited a strong suppressive activity against T cells. These cells were dubbed myeloid-
derived suppressor cells (MDSCs). It is now recognized that MDSCs comprise two main
well-defined subsets: mononuclear (M-MDSC) and polymorphonuclear (PMN-MDSC)
MDSCs. Paulo C. Rodriguez et al. characterized such cells as mature myeloid cells with high
arginase activity [73]. Murine studies demonstrated that inhibition of arginase with Nor-
NOHA exerted antitumor effects in vivo. MDSCs, along with arginase, possess multiple
mechanisms to regulate immune cell function, including production of NO, peroxynitrite,
superoxide and hydroxyl peroxide, prostaglandin E2, TGFβ, and adenosine [74]. The
accumulation of MDSCs is associated with a negative clinical outcome in cancer patients, as
well as a poor response to various immunotherapeutic strategies [74]. Low plasma L-Arg
levels were linked to increased surface expression of the inhibitory costimulatory molecule
PD-L1 on myeloid lineage leukocytes and worse cancer survival [75]. It is suggested that
MDSCs migrating to the lymph nodes may restrain T cell activation and clonal expansion
and thereby terminate immune response during infection [76]. MDSCs are also considered
an essential player in regulating immune response in chronic inflammation, trauma and
autoimmune diseases [74].
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L-Arg is necessary for lymphocyte activation and proliferation, as well as execution of
related effector functions during immune response. Availability of L-Arg ex vivo within
a physiological range modulates CD3z expression levels [39,77,78], using a mechanism
not yet fully elucidated [4]. The regulation of CD3z expression is a crucial mechanism
for modulating T cell activation. L-Arg deprivation affects TCR signaling by reducing
F-actin level and disrupting the immune synapse structure in activated T cells [79]. L-Arg
depletion also prevents nuclear translocation of NF-κB (nuclear factor κB) p65 [80]. L-Arg
deficiency lowers IL-2 production and the expression of early activation markers CD25
and CD69 in cultured human T cells [81]. A sufficient amount of L-Arg is a necessary
condition for T lymphocyte entry into the cell cycle [82]. L-Arg demand markedly elevates
upon T cell activation, and the amino acid supplement promotes CD4+ and CD8+ T cell
survival and antitumor activity [83]. It was shown that, in the absence of L-Arg, NK
cell granule exocytosis and cytotoxicity are completely abrogated, and cytokine secretion
and proliferation are profoundly suppressed [84]. A high expression of arginases in a
tumor microenvironment suppresses T cell response. A tumor microenvironment deficient
in L-Arg contributes to developing cytopenia because this amino acid is required for
proliferation of myeloid and CD34+ hematopoietic cells [70].

Two opposing strategies are used in tumor therapy targeting L-Arg metabolism. One
strategy is to increase L-Arg bioavailability to immune cells for stimulating an antitumor
immune response [85]. L-Arg added at supraphysiological concentration stimulates anti-
tumor activity of CD8+ T cells not only in a cell culture, but also in vivo upon reinfusion
into tumor-bearing mice [83]. Remarkably, T cells encountering L-Arg deficiency deploy
mechanisms to maintain the intracellular amino acid reserves [86] by upregulating ASS1
for resynthesis of L-Arg from L-citrulline [87]. Therefore, reengineering chimeric antigen
receptor T cells (CAR-T) to increase ASS1 and ornithine transcarbamylase (OTC) expression
promotes persistence of CAR-T cells in vivo and their activity against solid and hematolog-
ical tumors [88]. Hence, CAR-T therapy combined with enhanced L-Arg bioavailability
can increase antitumor therapeutic efficacy. Introducing L-Arg supplementation may also
potentiate M1 macrophage antitumor activity, because L-Arg is the sole substrate in the
iNOS-mediated NO generation [89].

Recently, new drugs—arginase inhibitors—have been tested. Arginase inhibitor-
substance CB-1158 has performed well in experiments on mice and cell cultures. The
mechanism of the drug action is aimed at blocking ARG1 in MDSCs, resulting in T lym-
phocyte active proliferation and increased CD8+ T cell tumor infiltration [90]. Another
drug, OAT-1746, a selective inhibitor of ARG1/ARG2, had no effect on viability but sup-
pressed the growth of tumor cells, abrogated tumor metastasis, and enhanced the anti-PD1
antibody-related antitumor effect in mouse models and in vitro [91].

ARG1-specific IFNγ-producing Th1 CD4+ T cells were found in the mononuclear
fraction of peripheral blood in patients with melanoma [92]. CD8+ T cells from melanoma
patients also showed an immune response against ARG1. These ARG1-specific CD4+ and
CD8+ T cells predominantly displayed the memory cell phenotype (CD45R0+) [93]. Based
on these data, the generation of so-called “arginase vaccines” inducing arginase-specific T
cell clones is considered among the promising strategies in antitumor therapy. When ARG1
peptide vaccine was tested in mice, the data indicated enhanced immune response against
tumor cells. It was also shown that, combined with PD-1 inhibitors, such vaccination
induces a more potent antitumor response [94]. In 2022, a human trial with ARG1 peptide
vaccine demonstrated its safety. At the same time, nine (90%) out of ten patients had
measurable peptide-specific reactions in the peripheral blood, and in two (20%) out of ten
patients, the disease was stabilized during treatment [95].

Another therapeutic approach for oncological diseases is aimed at suppressing tumor
cell proliferation, metastasis, and invasion and, paradoxically, proposing L-Arg depriva-
tion. The most common current method of amino acid deprivation is supposed to use
arginine-hydrolyzing enzymes. The best studied drugs are presented by pegylated arginine
deiminase (ADI-PEG20) and recombinant human arginase (rhArg).
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ADI-PEG20, via L-Arg depletion, was shown to induce autophagy and subsequent
cancer cell death [96]. ADI-PEG20 worked well in stage II clinical trials in patients with
hepatocellular carcinoma [97]. Also, ADI-PEG20 was highly effective in ASS1 negative
melanoma patients [98]. The best effect was observed while using ADI-PEG20 with chloro-
quine [99] or cytostatics, as they inhibit autophagy, and more tumor cells undergo apoptosis.
Thus, when using ADI-PEG20 with cisplatin, a more intense apoptosis was observed in
melanoma cells [100]. The use of ADI-PEG20 has its drawbacks and limitations. Since
L-citrulline is one of the metabolites of ADI, ASS1/ASL-positive tumors are resistant to
therapy with this drug [101,102], while some ASS1-negative tumors acquire the ability to
express ASS1 after ADI-PEG20 treatment [99,103].

Arginases, unlike ADIs, metabolize L-Arg into ornithine and uric acid, rhArg, which
affects ASS1-positive tumors [101]. A pegylated counterpart (Peg-rhARG1) showed positive
results in a phase I clinical trial in patients with hepatocellular carcinoma [104].Furthermore,
rhArg coupled to an IgG1 Fc fragment (rhArg-Fc) is currently being assessed in vitro [105].
Autophagy inhibitors, including chloroquine and bafilomycin A1, potentiate rhArg- and
ADI-PEG20-induced cytotoxicity [105].

4. L-Arginine Metabolism in Autoimmune Diseases

In autoimmune diseases, both genetic and environmental factors contribute to im-
paired tolerance to self-antigens [106], resulting in the formation of autoreactive B and T
cells and tissue damage.

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder that pri-
marily affects joints. In RA, immune cell joint infiltration, synovial hyperplasia as well as
excessive secretion of pro-inflammatory cytokines, leads to cartilage degradation and bone
erosion [107]. Lu et al. [108] revealed an increased L-Arg in the synovial fluid of RA patients.
A positive correlation between L-Arg level and increased pro-inflammatory cytokine IL-1β,
IL-6 and IL-8 level was observed (Figure 2). A further study showed that fibroblast-like
synoviocytes in RA vs. osteoarthritis patients highly expressed CAT-1 (cationic amino
acid transporter-1), the main L-Arg transporter. Moreover, CAT-1 knockdown with siRNA
or inhibited L-Arg uptake with D-arginine markedly suppressed L-Arg metabolism, cell
proliferation, migration, and secretion of cytokines in in vitro cultured fibroblast-like syn-
oviocytes in RA [108]. In addition, increased activity and level of expression of ARG1
observed in the peripheral blood of patients with RA were inversely related to the Th17
cell level, playing a leading role in the pathogenesis of this diease [109]. Other studies
showed that RA patients vs. control subjects had a significantly lower plasma level and
L-Arg bioavailability [110]. Similar results were reported by Chandrasekharan et al., show-
ing reduced levels of L-Arg and L-citrulline along with increased arginase activity in RA
patients as compared to control group [111]. It is possible that L-Arg level in peripheral
blood and/or synovial fluid in RA is associated with amino acid consumption by immune
cells, which depends on the disease stage and severity. It may be expected that limiting the
intake of exogenous L-Arg would reduce the inflammatory autoimmune response, as well
as the fibroblast-like synoviocyte proliferation in RA patients.

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized
by the production of autoantibodies against nuclear antigens, immune complex deposition,
and tissue damage found in the kidneys, skin, heart, and lungs [112]. In SLE, there was
a decreased level of peripheral blood L-Arg, which is supposed to be associated with
an elevated level of NO metabolism leading to oxidative stress in SLE patients [113].
Recently described in patients with SLE, MDSCs with increased ARG1 expression could be
responsible for Th17 differentiation, at least in vitro, and inhibition of ARG1 contributed to
alleviated disease activity [114].
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Crohn’s disease is a chronic granulomatous inflammatory disorder able to affect any
part of the gastrointestinal tract, predominantly the terminal ileum and adjacent colon, and
is characterized by a segmental, asymmetric distribution of granulomatous inflammation.
The main clinical symptoms are presented by abdominal pain, diarrhea, fistulas, anal
lesions, and systemic symptoms of varying severity [115]. L-Arg and ADMA were reduced
in patients with active Crohn’s disease compared to control subjects and patients with
active ulcerative colitis [116]. A decreased L-Arg level directly in inflamed tissues during
ulcerative colitis could be associated with high NOS2 activity, decreased ARG1 functions
and expression [117].

In autoimmune pathologies, it is generally reasonable to use therapy aimed at L-
Arg depletion to suppress immune cell activation. However, in terms of the underlying
pathogenesis, autoimmune diseases represent a rather heterogeneous group. For example,
in systemic scleroderma, L-Arg may be used as a substrate for NO synthesis in Raynaud’s
syndrome to enable vasodilation to improve microcirculation [118]. At the same time,
treatment aimed at either arginine depletion or L-Arg supplementation should be used
with caution in any disease where endothelial dysfunction is involved [21].

5. L-Arginine in Neurodegenerative Diseases

Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative autoim-
mune disease that affects the central nervous system. Multiple sclerosis is characterized by
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immune dysregulation resulting in CNS infiltration with immune cells causing demyeli-
nation [119]. Furthermore, there is an increase in NOS activity and free NO level both in
serum and cerebrospinal fluid samples [120]. On the other hand, arginase expression and
activity are profoundly reduced, not only in patients with clinically isolated syndrome, but
also in patients with relapsing-remitting multiple sclerosis [121,122]. Some studies showed
a decline blood serum L-Arg level in MS patients [123,124]. The revealed decrease in the
amino acid level is associated with its role as a precursor of an NO neurotransmitter, of
which the production is markedly increased during lesion-inflammatory processes [125].
The decrease in L-Arg level may also result from elevated ARG1 activity reported in MS
patients [126]. In other studies, no significant differences in the concentration of blood
serum and cerebrospinal fluid free L-Arg was found in patients with various forms of MS
and healthy controls [127,128].

The pathogenesis of Alzheimer’s disease [129] is characterized by a developing neu-
rotoxic inflammatory process [130]. Publications on the role of L-Arg metabolism in
Alzheimer’s have demonstrated, for instance, that ARG1 mRNA level was increased in
the cortex of the frontal lobe in patients with Alzheimer’s disease, without affecting ARG2
level [131]. However, another study obtained diametrically opposite results indicating
that in the frontal cortex of patients, the level of ARG2 mRNA increased whereas ARG1
expression level remained unchanged [132]. In murine models, arginase inhibition was
observed to prevent cognitive decline in Alzheimer’s disease [133].

Recent studies on murine models of Alzheimer’s disease have shown a link between
ARG1 deficiency in microglial cells and amyloid formation [37,134–136]. For example,
Hunt et al. showed that overexpression of ARG1 in the CNS inhibited Tau-associated
kinases (pGSK-3, CDK5p35, p38MAPK), contributing to Tau-protein phosphorylation
and beta-amyloid deposition [134]. Furthermore, ARG1 induced autophagy of cortex
and hippocampus cells by inhibiting mTOR [134]. Other studies have found that ARG1+
microglia cells phagocytized beta-amyloid components and contributed to amyloid plaque
reduction [135]. Ma et al. proved that the repression of ARG1 in microglia cells inhibited
phagocytosis of beta-amyloid and thereby increased amyloid plaques deposition that goes
in line with the data above [136]. The authors suggest that low levels of ARG1 contributed
to the activation of the mTOR-pathway due to L-arginine accumulation [136]. In other
studies, it was shown that the arginase inhibitor prevented Tau-protein phosphorylation
and cognitive decline in Alzheimer’s disease [133].

6. L-Arginine Metabolism in Infectious Diseases
6.1. Sepsis

The systemic immune response to infection is often accompanied not only by pro-
found imbalance in the activity of arginine-metabolizing enzymes, but also by impaired
endogenous L-Arg synthesis and exogenous dietary intake [137]. Patients with sepsis have
a reduced level L-Arg in blood plasma, whereas potentiated protein catabolism is a key
source of amino acids [137]. Patients at an intensive care unit (ICU) recovered after sepsis
were found to have lowered de novo L-Arg synthesis. Moreover, in such critical conditions,
both arginase and iNOS often become activated with increased production of urea and
L-ornithine, as well as NO and L-citrulline [138]. A decrease in L-Arg level in plasma and
cerebrospinal fluid was observed in patients with neonatal sepsis and meningoencephali-
tis [139]. Due to an increased arginase activation and a deficiency of L-Arg, the immune
response to infection in septicemia deteriorates. It was recently shown that a high level
of ARG1 in septic patient neutrophils suppresses the CD8+ T cell response by reducing
the proportion of IFNγ- and granzyme B-expressing CD8+ T cells. The inhibition of ARG1
in vitro resulted in increased granzyme B + IFN-γ + CD8 + T cell and TNFα + IFNγ + CD8
+ T cell levels [140]. It was further uncovered that sepsis patients had an increased number
of MDSCs of varying phenotypes (CD14 + HLA-DR- monocytic (M)-MDSC, CD14-CD15+
low-density granulocytes/granulocytic (G)-MDSCs). G-MDSCs had a high level of ARG1
expression, which contribute to suppressed T cell response in sepsis [141].
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Conversely, L-Arg supplementation maintains immune homeostasis, especially for T
cell and macrophage functions. Patients receiving an arginine-enriched diet were shown
to restore T cell functioning that had been impaired due to trauma or surgery during
cardiovascular diseases [142,143]. An L-Arg-rich diet in patients with sepsis at the ICU
showed alleviated bacteremia and mortality [144].

Although NO is beneficial and critical to normal biological functions, its overpro-
duction in endotoxic shock causes vasodilation and hypotension, resulting in subsequent
death [145,146]. Suppressed NO production by L-Arg-catabolizing enzymes is considered
a new approach in sepsis treatment [147]. ADI is currently being considered as a tool for
suppressing the growth of ASS1\ASL negative tumors [148]. At the same time, a few timid
attempts have been taken to use this enzyme in pathologies associated with hyperactivation
of the immune system. For example, the use of ADI in sepsis has been tested in some
studies [149]. An important feature of ADI is that one of the metabolites of this enzyme
is the L-Arg precursor—L-citrulline [150]. This leaves room for ASS1\ASL-positive cells
(e.g., endothelial cells) to resynthesize L-Arg from L-citrulline. It is believed that eNOS is
the main consumer of L-citrulline-derived L-Arg [151]. Preliminary studies show that ADI
inhibits the activity of iNOS, producing NO in high concentrations [152,153], but enhances
the activity of eNOS, which generates the metabolite in homeostatic concentrations [154].
Theoretically, the ADI can act as a biochemical shunt, redirecting L-Arg from arginases and
iNOS to eNOS. If this suggestion is correct, ADI can be used to treat conditions with NO
overproduction and/or arginase hyperactivity without harming the homeostatic, vasopro-
tective functions of eNOS. This hypothesis is confirmed by recent studies which showed
that ADI-PEG20 resulted in the depletion of L-Arg with the production of isomolar amounts
of L-citrulline. This L-citrulline has the potential to be utilized by the L-citrulline recycling
pathway, regenerating L-Arg and sustaining the amino acid availability in surrounding
tissue [155]. It also seems promising to use the enzyme in allergic and autoimmune diseases.
However, no studies have been conducted so far.

It is believed that in protracted critical conditions, such as sepsis, the use of L-Arg
supplementation is beneficial due to its anabolic and antimicrobial effects [145]. However,
therapeutic approaches aimed at regulating L-Arg metabolism in infectious diseases have
their own characteristics. On the one hand, L-Arg deficiency due to suppressed immune
responses may contribute to a longer circulation of infectious agents in the blood-stream,
resulting in toxic shock. On the other hand, an L-Arg supplement may stimulate the
immune system and provoke the development of vascular collapse due to increased NO
production. This is supported by the data that L-Arg did not improve local perfusion and
organ function [146] and could reduce blood pressure via an NO vasodilatory effect [147].
A decision about applying such supplements should be made individually depending on
the patient’s condition. An amino acid supplement is not recommended at early stages of
sepsis and in septic shock [127].

6.2. Viral Infections

Previously, it was shown that in patients with hepatocellular carcinoma and a hepati-
tis C virus infection, a forced ADI-PEG20-mediated plasma L-arg depletion suppressed
NO production and level of inflammatory responses [156] (Figure 3). The amino acid
supplement was shown to stimulate the replication of some viruses and enhance cell
infection, including that of members of Herpesviridae and Adenoviridae in vivo and
in vitro [157,158]. Apparently, the positive effect of L-Arg depletion in viral infections is
due to the dependence of biosynthesis processes on the amino acid bioavailability. Indeed,
under conditions of L-Arg deficiency, proliferation of different cell types is suppressed
precisely due to GCN-2 kinases activation along with suppressed global protein synthesis,
which also affects the synthesis of viral proteins [156]. Therefore, L-Arg deprivation in
patients with acute COVID-19 has been considered for some time as a promising approach
that could retard SARS-CoV-2 replication in host cells [157,159].
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Figure 3. L-Arginine metabolism in viral infection immunopathogenesis and arginine-dependent
processes as a target of therapeutic approaches. Inflammatory cues such as prostaglandin E2, TNFα,
IL-6, IL-1β and calgranulin B contribute to MDSC expansion. MDSCs, expressing high levels of
ARG1 and iNOS, limit L-Arg availability for proliferating T cells. Decreased blood L-Arg level
results in platelet activation. L-Arg supplement reduces peripheral blood level of IL-2, IL-6, and
IFNγ and increases IL-10. Therapeutic strategies: L-Arg deprivation inhibits viral replication. ADI-
PEG20-mediated L-Arg depletion suppresses NO production and level of inflammatory response.
ADI-PEG20, pegylated arginine deiminase; ARG1, arginase 1; IFNγ—interferon γ; IL, interleukin;
iNOS, inducible nitric oxide synthase; L-Arg, L-arginine; M1, M1 macrophage; MDSCs, myeloid
derived suppressor cells; PGE2, prostaglandin E2; TNFα, tumor necrosis factor α.

Upon infection with SARS-CoV-2 virus, profound alterations were observed in the
metabolism of individual amino acids including L-Arg [160]. Thus, it was shown that
the level of blood serum L-Arg in patients with severe COVID-19 was significantly lower
than that of patients with mild COVID-19 and the control group [161–163]. Moreover, a
decline in L-Arg level was characteristic not only for adult patients, but also for children
withSARS-CoV-2 infection [164,165].

One possible cause for the decreased L-Arg levels in COVID-19 patients could be
MDSC accumulation. The main factors contributing to MDSC expansion in pathological
settings are considered inflammatory cues such as prostaglandin E2, TNFα, IL-6 and IL-
1β, as well as calgranulin B (S100A9). By producing ARG1 in combination with high
levels of iNOS, MDSCs limit L-Arg availability to proliferating T cells. MDSCs delay viral
clearance by inhibiting T cell proliferation and response, using various mechanisms, such
as anti-inflammatory cytokine secretion, the suppression of IFNγ production or L-Arg
depletion [166]. On the one hand, MDSCs, by reducing activation of immune responses
against pathogens, restrain and mitigate potential collateral damage to the host organism.
On the other hand, owing to ability to suppress effector T cells, MDSCs can interfere with
the development of an immune response, thereby contributing to pathogen persistence
and chronic infection [167]. While MDSC-related immunosuppressive properties may
help restore tissue homeostasis and prevent hyperinflammation in an infection, the cells
appear to have a pathogenic effect in severe COVID-19 [166]. Reizine et al. found an
inverse relationship between the level of circulating CD3+ T cells and blood serum L-Arg
in COVID-19 patients [161]. Within the total pool of peripheral blood leukocytes, patients
with COVID-19 showed a decreased T cell count along with disease progression, whereas
an increased proportion of such cells could be considered as a favorable sign [168,169]. The
patient’s T cell level in the circulation was reduced both in comparison with control group
and COVID-19 convalescent patients [170–172]. A dynamic T cell reduction as well as
CD3+ CD4+ and CD3+ CD8+ cells was characteristic of patients with severe vs. moderate
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disease course [173,174], and the subset profile of both CD4+ and CD8+ T-lymphocytes
underwent dramatic changes [175,176]. The detected alterations in T cell differentiation and
“polarization” could, among others, be associated with alteration in relevant proliferative
activity [177]; however, at least in vitro, supplementation with additional L-Arg restored
CD3+ cell proliferative potential [161].

Another important consequence of decreased blood L-Arg level in patients with
acute COVID-19 is platelet activation [178], which is reflected in upregulated surface
PAC-1 expression that peaks typically in severe COVID-19. L-Arg deficiency also leads to
increased platelet adhesion and decreased NO production, resulting in vasoconstriction
and hypercoagulability [179].

Oral administration of exogenous L-Arg vs. placebo in routine therapy in severe
COVID-19 markedly reduced hospital stay and ventilatory support [180]. Moreover, it
was recently shown that exogenous L-Arg substantially reduced peripheral blood level
of pro-inflammatory cytokines IL-2, IL-6 and IFNγ and increased concentration of anti-
inflammatory IL-10 in patients with COVID-19 [181]. The data obtained on the change in
balance of pro- and anti-inflammatory cytokines were confirmed by clinical observations
showing that along with L-Arg supplement, the discharge time from the hospital was
shortened and the need for respiratory support was also decreased [181]. In contrast,
another study showed that applying L-Arg for patients with severe COVID-19 pneumonia
had no marked effect on disease outcome [182]. Currently, special attention is also paid
to long-term disorders—long or post COVID-19 syndrome—in the functioning of various
organs and tissues in acute COVID-19 convalescent patients, not only in severe [183], but
also in mild or even asymptomatic disease [184]. It should also be noted that a combination
of L-Arg and vitamin C vs. a placebo applied for 28 days reduced patient fatigue and
endothelial dysfunction associated with post-COVID-19 [185]. Positive effects of L-Arg
supplementation in COVID-19 convalescent subjects were found as well [186].

T cell dysfunction in COVID-19 can be a result of decreased blood L-Arg level. This
was indirectly confirmed by studies on immune status in patients with an active hepatitis
B infection [187]. Peripheral blood CD8+ T cells of patients with active chronic hepatitis
B reduced proliferative activity in response to TCR stimulation. Despite this, relevant T
lymphocytes actively secreted TNFα and IFNγ and expressed cytotoxicity markers such as
CD107a. Presumably, these effector functions were exerted by CD27-CD45RA + CD8+ T
cells. Moreover, it was shown that intrahepatic CD8+ T lymphocytes produced less IL-2 in
patients with chronic hepatitis vs. control subjects [187] who might not be compensated
even by CD4+ T cells. Patient liver biopsies showed increased arginase activity and
decreased plasma L-Arg than for the control. Intrahepatic CD8+ T lymphocytes selectively
downregulate CD3ζ chain expression. When the cells were cultured with L-Arg in vitro,
CD3ζ chain expression was restored and the proliferative potential of CD8+ T cells was
increased, indicating that L-arg deficiency affected antiviral immune response at the site of
inflammation [187].

Analyzing the level of L-Arg in severe fever with thrombocytopenia syndrome (SFTS)
associated with bunyavirus infection (SFTSV) also reveals a decrease in blood serum L-
Arg level [188]. L-Arg deficiency was associated with decreased intraplatelet NO level,
platelet activation, and thrombocytopenia. Moreover, such patients had an increased level
of G-MDSCs, expressing arginase at a high level. It was hypothesized that the functional
activity of MDSCs was closely associated with suppressed activity of diverse CD3+ T cell
subsets, suggesting an important role of arginase activity and L-Arg deficiency in impaired
viral clearance.

6.3. Bacterial Infections

Tuberculosis brought about by Mycobacterium tuberculosis (MTB) is the leading cause
of death worldwide [189]. However, progress in preventing TB epidemics is still slow,
and it is doubtful that TB infections will be eradicated at this pace in the coming decades.
Patients with tuberculosis were found to have highly expressed enzymes responsible for
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L-Arg catabolism in granulomas [190,191]. In M. tuberculosis infection, there was a de-
crease in peripheral blood L-Arg level [192]. Some studies showed that M1 macrophages
expressing iNOS produce a high level of NO, especially effective against mycobacterial
infection. A study with transgenic mice deficient in Nos2 showed increased vulnerability
to MTB infection [193]. In addition, macrophages that respond to MTB infection do not
fit into the “M1” and “M2” binary macrophage classification. MTB infection uncovered
macrophages co-expressing iNOS and ARG1 [191,194,195]. Although, iNOS has a higher
affinity for L-Arg, ARG1 is featured with a higher maximum substrate utilization rate [9].
Thus, macrophages expressing ARG1 probably play an inhibitory role by limiting NO
production and MTB clearance. ARG1-expressing macrophages were found in granulomas
from MTB-infected patients and non-human primates [190,191]. Interestingly, loss of ARG1
in Nos2−/− mouse hematopoietic cells resulted in increased necrotic granulomas and
increased mycobacterial load [196]. A mouse model lacking ARG1 in hematopoietic cells
showed increased macrophage NO production and increased mycobacterial clearance [194].
In addition, the presence of ARG1 in granulomas correlated with reduced T cell prolifera-
tion [196]. Thus, it is likely that ARG1 acts to reduce lung T cell-mediated inflammation
in MTB infection. Arginase-expressing G-MDSCs were shown to massively infiltrate the
lungs upon infection with hypervirulent mycobacteria, promoting bacterial growth and
development of inflammatory and necrotic lesions [197].

That the synthesis of L-Arg by immune cells is vital for control of mycobacterial load
has been confirmed in experiments aimed at blocking its endogenous synthesis. Chimeric
bone marrow mice with hematopoietic cells from ASS1 hypomorphic animals were unable
to control MTB infection compared to controls [195]. In addition, mice with conditional
hematopoietic or myeloid-targeted deletion of ASL or ASS1 showed an increased bacterial
load after a challenge with Mb BCG or MTB [198]. The lack of L-Arg reduced the efficiency
of the antigen presentation, as well as B cell activity and differentiation [189]. Using
experimental mouse models, it was demonstrated that, in mycobacterial infections, L-Arg
plays an important role in developing T cell immune response because it is necessary for
T cell clonal expansion and differentiation, wherein antigen-presenting cells serve as the
major source of L-Arg in the lymph nodes [199]. On the other hand, L-Arg deficiency leads
to developing oxidative stress and DNA damage, which contributes to MTB death [200,201].

According to the results of clinical trials, orally administered L-Arg in patients with
MTB-infection vs. placebo was accompanied by weight gain, higher sputum conversion
and faster decline in symptoms such as cough [202]. On the other hand, an arginine-
enriched diet in TB patients resulted in no prominent clinical changes [203]. The data
obtained indicate that the method of L-Arg delivery to patients also markedly impacts its
bioavailability. Moreover, similar results were obtained in another placebo-controlled study
when daily L-Arg supplementation to the diet of TB patients had no effect on the clinical
course of the disease [204]. An alternative approach to control mycobacterial infection could
be based on blocking L-Arg pathways, which should also be used in clinical practice [205].

Non-tuberculous mycobacterial pulmonary diseases (NTM-PDs) are the most common
clinical manifestations of NTM infections, often caused by a slow growing Mycobacterium
avium complex (MAC) and a fast-growing Mycobacterium abscessus complex, including M.
abscessus subsp. abscessus (M. abscessus), M. abscessus subsp. massiliense (M. massiliense)
and M. abscessus subsp. bolletii (M. bollettii). Studies show that NTM patients demonstrate
an impaired potential of Th1/Th17 differentiation and dysregulated IFNγ/IL-12B axis, a
crucial immune pathway associated with NTM infection. It was found that the L-Arg level
was reduced in the sera of patients with NTM-PD and mice infected with NTM. The oral
administration of L-Arg profoundly reduced the NTM bacterial load in vivo and enhanced
IFNγ-producing T cell responses, as well as iNOS expression in mice. The comparison of
serum metabolomes from NTM-PD patients and control subjects revealed a markedly lower
level of L-Arg, but not L-citrulline, in patients infected with M. abscessus or M. massiliense. In
contrast, serum urea levels were substantially higher in NTM-PD patients than in controls,
suggesting a shift towards M2 macrophages in the former. Similarly, M. abscessus-infected



Curr. Issues Mol. Biol. 2023, 45 3538

mice showed elevated serum urea levels after 3 weeks of infection. Pre- and post-infection
oral treatment of NTM-infected mice with L-Arg markedly reduced the bacterial load and
pathological inflammation in lung tissues. L-Arg supplement triggered host-protective
immune responses by reshaping intestinal microbiota by enrichment with B. pseudolongum.
Thus, the administration of L-Arg in NTM infection was beneficial and resulted in an
increased activity of M1 macrophages, probably due to IFNγ-producing T cells [206].

A decline in the circulating L-Arg level was observed in infections of children and
adults with malarial plasmodium [207,208] and could be associated both with increased
L-Arg consumption by parasite arginase and increased activity of host arginases [209,210].
It is believed that increased plasma arginase activity in children with severe malaria is
primarily due to the activated mononuclear phagocytes expressing this enzyme [211]. It
was found that the absolute count of circulating G-MDSCs was prominently increased in
severe malaria than in the control group. G-MDSC levels in uncomplicated vs. severe
malaria were comparable [212]. Moreover, low L-Arg level was strongly associated with
high parasitemia and severe malaria. Another study showed that hypoargininaemia in
malaria infections also correlates with reduced NO production and P. falciparum-triggered
erythrocyte deformability in vitro [213]. In addition, L-arg supplementation in malaria
contributed to the recovery of microvascular functions [214].

7. Pathogen Immunoevasion Strategy via Altered Host L-Arginine Metabolism

The key L-Arg role in regulation of immunity is underlined by evidence that pathogenic
microbes also affect its metabolism to reprogram host immune responses [215,216] (Fig-
ure 4). If a pathogen drives a host L-Arg turnover via an arginase pathway, the process
results in substrate depletion for iNOS, thereby reducing NO production. Salmonella ty-
phimurium, [217] Mycobacterium tuberculosis, [194] Leishmania mexicana [218] and Schistosoma
mansoni [219] deploy this strategy to survive in the host. Salmonella enhances ARG2 ex-
pression in macrophages. The inhibition of arginase using NOHA in mouse salmonella
infections increased substrate availability for iNOS, reduced the bacterial load, and curbed
infection in an NO-dependent manner [217]. A reduced MBT load was observed in ARG1-
deficient mice, also showing that liver granulomas in BCG-infected mice produced more
bactericidal nitrotyrosine after host arginase inhibition [194]. Interestingly, some pathogens,
such as Helicobacter pylori, express rocF genes encoding arginase and depleting L-Arg as
well as NO production by synthesizing their own enzyme [220]. H. pylori arginase can also
directly impair T cell function by downregulating CD3z expression during infection [80].
Arginase is also responsible for collagen synthesis and tissue regeneration [221]. It is
believed that cancer-causing pathogens such as H. pylori and the hepatitis C virus (HCV)
may use arginase to modulate the host cell cycle from resulting in a cancerous condition.
Data confirm that anti-arginase siRNA inhibits HCV ability to stimulate hepatocellular
growth [222]. Elevated levels of salivary arginase were also reported in periodontal dis-
eases, which decreased after antibiotic treatment [223]. To avoid macrophage attack after
ingestion, Candida spp. applies the strategy of inducing its own intracellular arginase and
urea amidolyase, able to contribute to pathogen survival by reducing nitrosative stress via
iNOS inhibition [224].

ADI, another microbial arginine-hydrolyzing enzyme, utilizes L-Arg for pathogen sur-
vival at low pH at infection site or inside phagolysosomes being involved in ATP synthesis
under low glucose conditions [225]. The PEGylated recombinant protein modification is
being actively investigated as a drug for antitumor therapy [226,227]. Relatively few works
are aimed at assessing an effect of this enzyme on protective immune responses. A study
by Zachary T. Cusumano et al. demonstrated a new virulence mechanism in S. pyogenes
found to use ADI to suppress NO production by host macrophages via L-Arg depletion.
In vitro studies with supernatants of sonicated S. pyogenes M49-16 and its isogenic mu-
tant (S. pyogenes M49-16delarcA) with inactivated ADI gene arcA confirmed the results
reported by Cusumano et al. [152,153]. Mouse model of subcutaneous streptococcal infec-
tion showed that a decrease in plasma L-arg concentration was accompanied by thymus
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involution, increased thymocyte apoptosis and Treg cell differentiation [228]. S. pyogenes
M49-16delarcA displayed reduced virulence compared to the original S. pyogenes M49-16
strain, revealing an important role of this enzyme as a streptococcal pathogenicity cue [228].
Streptococcal ADI was found to affect leukocyte inflammatory infiltrate in a murine air
pouch model [229]. The ability of streptococcal ADI to suppress human peripheral blood
lymphocyte proliferation in vitro was verified [230]. It should be noted that this enzyme
is expressed by many, including highly pathogenic microbes, such as Pseudomonas aerugi-
nosa [231], Listeria monocytogenes [232]. Further ADI investigation may contribute to better
understanding of fine mechanisms underlying an interplay between pathogen and host
immune system during diverse infections.
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Whereas a competition between host and pathogen for L-Arg can determine an out-
come of infectious diseases, then a therapeutic intervention aimed at regulating arginine-
metabolizing enzymes may turn out to be a useful tool and a good alternative to antibiotics
in numerous infections.

8. Injuries and Surgical Interventions

An elevated MDSC number, documented in a range of acute inflammatory conditions,
including traumatic brain injury, blunt chest trauma, and burns, is considered to be one of
the main reasons for decline in peripheral blood L-Arg level in these conditions [233–236]
(Figure 5). Although the role of MDSCs has been well characterized in cancer, the clinical
significance of this leukocyte population in injuries and sepsis remains unclear. The
classical hypothesis regarding a mechanism of MDSC induction is based on the “two-signal
model” described by Gabrilovich et al. [237]. According to this model, the expansion of
immature myeloid cells is triggered by various growth- and colony-stimulating factors
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(granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor,
macrophage colony-stimulating factor), which activate the transcription factors C/EBPβ,
STAT (signal transducer and activator of transcription)—3, and Notch suppressing terminal
cell differentiation. The release of the second group of pro-inflammatory stimuli (high-
mobility group protein B1, PGE2, NF-κB, STAT1, STAT6) and ER-stress signals stimulates
MDSC expansion [238].
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Figure 5. L-Arginine metabolism in trauma immunopathogenesis and arginine-dependent processes
as a target of therapeutic approaches. MDSC differentiation is associated with excessive accumulation
of DAMPs and other inflammatory mediators. The MDSC number, building up in injuries, accounts
for decline in blood L-Arg and subsequent immunosuppression. Therapeutic strategies: L-Arg
supplement increases lymphoproliferative response, wound healing and lowers the risk of infectious
complications. ARG, arginase; DAMPs, danger associated molecular patterns; iNOS, inducible nitric
oxide synthase; L-Arg, L-arginine; MDSCs, myeloid derived suppressor cells.

Although the proposed model on MDSC differentiation remains debated, it is hard to
deny that the overproduction of such cells is associated with the excessive accumulation
of inflammatory mediators and the immune system attempting to correct the imbalance.
It is assumed that MDSCs are destined to suppress excessive inflammation provoked by
abundantly released danger-associated molecular patterns (DAMPs). However, MDSC
accumulation may “tip the scales in the opposite direction” and contribute to immune
suppression, as well as an elevated risk of nosocomial infections [238].

Mader et al. analyzed the level of L-Arg and its metabolizing enzymes in peripheral
blood and cerebrospinal fluid in patients with cerebral hemorrhages [239]. It turned out
that, in addition to decreased L-Arg, there was an early increase in the NOS level followed
by its decline to the baseline, whereas arginase activity was elevated throughout the follow-
up period [239]. These data are consistent with previous studies in a cohort of ICU trauma
patients [240]. These patients had elevated peripheral blood mononuclear cell ARG1
activity throughout their ICU stay. Furthermore, patients with injuries were shown to have
a reduced peripheral blood L-Arg level. Likewise, the level of L-Arg in the peripheral blood
also tended to decrease in burns [240]. L-arg-containing supplements are often used in
ICUs for various injuries [138]. For instance, L-Arg used on burn patients increased their
lymphoproliferative response, accelerated wound healing, markedly lowered C-reactive
protein level, and contributed to a shorter ICU stay [240]. An L-Arg supplement is also
used in preoperative patients’ diets, resulting in a lowered risk of infectious complications
and a shortened hospital stay [241].

9. Conclusions

In recent years, it has been increasingly evident that, apart from a well-described
role in various cardiovascular diseases, L-Arg also acts as an inflammatory modulator in
various pathologies. Targeting L-Arg metabolic pathways can help regulate immunological
responses. The use of L-Arg hydrolyzing enzymes, as well as relevant inhibitors, has
limitations because these enzymes perform a number of homeostatic functions. eNOS is
engaged in NO production, crucial for vascular biology. Arginase, being a key enzyme in
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the urea cycle, is involved in ammonia detoxification and regulates T cell functions. While
there is an increasing L-Arg bioavailability to stimulate immune cell defense mechanisms, it
inevitably helps the foe (tumor or pathogen) on the other side of the barricades. Reduction
of the amino acid bioavailability compromises the effectiveness of immune responses.
Again, while there is an increasing L-Arg bioavailability for NOS, the arginase activity
invariably increases. L-Arg supplementation or depletion may negatively affect the vas-
cular endothelium, especially in endothelial dysfunction with impaired eNOS activity. To
effectively impact pathological events, a deeper insight into the L-Arg metabolic pathways
in each specific pathology is required. Thus, development of a therapy aimed at regulating
L-Arg metabolism remains a difficult task, serving as a path between Scylla and Charybdis.
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cationic amino acid transporter; CQ, chloroquine; eNOS, endothelial nitric oxide synthase; DAMPs,
danger associated molecular patterns; HCV, hepatitis C virus; HIF-1α, hypoxia-induced factor 1α;
ICAM-1, intercellular adhesion molecule-1; ICU, intensive care unit; IFNγ—interferon γ; IL, inter-
leukin; iNOS, inducible nitric oxide synthase; L-Arg, L-arginine; MDSC, myeloid-derived suppressor
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