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Abstract: Macrophages are the foremost controllers of innate and acquired immunity, playing impor-
tant roles in tissue homeostasis, vasculogenesis, and congenital metabolism. In vitro macrophages are
crucial models for understanding the regulatory mechanism of immune responses and the diagnosis
or treatment of a variety of diseases. Pigs are the most important agricultural animals and valuable
animal models for preclinical studies, but there is no unified method for porcine macrophage isolation
and differentiation at present; no systematic study has compared porcine macrophages obtained by
different methods. In the current study, we obtained two M1 macrophages (M1_IFNγ + LPS, and
M1_GM-CSF) and two M2 macrophages (M2_IL4 + IL10, and M2_M-CSF), and compared the tran-
scriptomic profiles between and within macrophage phenotypes. We observed the transcriptional dif-
ferences either between or within phenotypes. Porcine M1 and M2 macrophages have consistent gene
signatures with human and mouse macrophage phenotypes, respectively. Moreover, we performed
GSEA analysis to attribute the prognostic value of our macrophage signatures in discriminating vari-
ous pathogen infections. Our study provided a framework to guide the interrogation of macrophage
phenotypes in the context of health and disease. The approach described here could be used to
propose new biomarkers for diagnosis in diverse clinical settings including porcine reproductive and
respiratory syndrome virus (PRRSV), African swine fever virus (ASFV), Toxoplasma gondii (T. gondii),
porcine circovirus type 2 (PCV2), Haemophilus parasuis serovar 4 (HPS4), Mycoplasma hyopneumoniae
(Mhp), Streptococcus suis serotype 2 (SS2), and LPS from Salmonella enterica serotype minnesota
Re 595.
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1. Introduction

Macrophages are important effectors in specific and non-specific immunity, func-
tioning in the generation and defense of many diseases. Macrophages are derived from
macrophage precursor cells and with high plasticity, including two main subtypes, M1
and M2 [1]. Macrophages exist in a variety of physiological and pathological processes,
and the proportion of M1 and M2 dynamically changes [2–4]. M1 macrophages feature
in the following aspects, producing pro-inflammatory cytokines, mediating resistance
to pathogens, exhibiting strong microbicidal properties, and also contributing to tissue
destruction [5–8]. Classically, M1 macrophages can be activated when cells receive stim-
uli such as IFNγ, LPS, as well as GM-CSF [9]. Phenotypically, M1 macrophages express
high levels of MHC-II, CD68, CD80, and CD86, they are also characterized by an elevated
ability to secrete cytokines such as IL1β, TNF, IL12, and IL18 [6,10,11]. In contrast, M2
macrophages are activated through a pathway opposite to the classical pathway, which
responds to stimuli factors such as CSF-1, IL4, IL10, TGF-β, and IL13. M2 macrophages
play a central role in responses to parasites, tissue remodeling, angiogenesis, and allergic
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diseases [4,12,13]. The polarization of M2 can hydrolyze L-ornithine to arginine 1 (ARG1),
which is the basic amino acid that makes up proline and hydroxyproline [14]. Proline and
hydroxyproline are essential amino acids of collagen, which is an important protein in
tissue repair, which helps to form an external matrix related to tissue repair [15–17].

Owing to their crucial role in host immunity, in vitro macrophage models have been
widely applied in basic research studies. Porcine macrophages are similar to human
macrophages in that they have a wide range of pattern recognition receptors that detect
pathogen-associated molecular patterns (PAMP) on pathogens [18]. The porcine biomedical
model is ideal for many studies on human infection, inflammation, energy metabolism,
and obesity [12,16,19–22]. In specific aspects, porcine is closer to human, compared to mice
to human for example, the overlap degree of immune parameters of porcine and human is
greater than 80% [21,23–27]. However, there is no standard in vitro porcine macrophage
model and the differences between macrophages induced by different methods are not
clear. Here, we questioned whether cultured macrophages help define specific functional
phenotypes encountered in disease and the reliability of isolation, differentiation, and
culture of porcine macrophages. With this in mind, a reliable method for describing
the isolation, differentiation, and culture of porcine bone marrow-derived macrophages
(BMDM) can be regarded as a valuable tool for classifying and studying the defined subset
of macrophages found in specific environments.

Since different macrophage phenotypes are profoundly involved in the development
and outcome of many microbial infected diseases, and are key cells in controlling normal
physiological processes, we question whether a restricted set of gene signatures could be
applied to define a particular functional phenotype encountered in the context of micro-
bial infectious diseases. One of the most useful animal models for preclinical research is
the pig. Thus, we applied RNA-seq to compare the transcriptome differences of porcine
macrophages induced by different methods. By analyzing the correlation between the
transcriptome of macrophages induced by different methods and the transcriptome of
macrophages infected by different pathogens and at different stages of infection, a theoreti-
cal reference value was provided for the diagnosis and molecular mechanisms of swine
disease, such as PRRSV, ASFV, T. gondii, and so on.

2. Materials and Methods
2.1. Animals

Seven day old Duroc × (Landrace × Yorkshire) hybrid pigs (DLY) used in this study were
obtained from the experimental farm of Sichuan Agricultural University (Ya’an Campus). The
animal experiment was approved by the Experimental Animal Ethics Committee of Sichuan
Agricultural University under permit number 20210167 and was performed following the
guidelines for the management and use of laboratory animals. According to the IACUC
guidelines, pigs were killed by bloodletting, and then the femurs were collected to separate
BMDM. The femur was separated and used for further bone marrow cell isolation.

2.2. Cell Culture

In this study, bone marrow cells were obtained by puncture and passed through a
40 µM cell strainer (FALCON, New York, NY, USA, 352340). After erythrocytes were
removed by an ACK lysate kit (Gibco, Grand Island, Now York, NY, USA, A1049201),
the mononuclear cells were resuspended and cultured with DMEM/F12 (Gibco, Grand
Island, Now York, USA, 11330-0320) supplemented with 10% heat-inactivated fetal bovine
serum (FBS) (Gibco, Grand Island, Now York, NY, USA, 10099141C), 100 U/mL penicillin,
and 100 mg/mL streptomycin (Gibco, Temecula, CA, USA, 030311B) (DMEM/F12 10%
FBS) at 37 ◦C in 5% CO2 humidified air. After 4 h, the unattached cells were enriched
and seeded in a new flask for macrophage differentiation by the different stimuli detailed
(M1_IFNγ + LPS: 100 ng/mL IFNγ and 20 ng/mL LPS, M1_GM-CSF: 20 ng/mL GM-CSF,
M2_IL4 + IL10: 10 ng/mL IL10 and 10 ng/mL IL4, and M2_M-CSF: 20 ng/mL M-CSF)
(Table 1). The experiments were performed in triplicate.
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Table 1. Brief methods of bone marrow-derived macrophage induction.

Abbreviation Phenotype Method

M1_IFNγ + LPS M1 100 ng/mL IFNγ (Proteintech, Rosemount, IL, USA,
HZ-1301), and 20 ng/mL LPS (sigma, USA, L4516)

M1_GM-CSF M1 20 ng/mL GM-CSF (absin, Shanghai, China, abs04132)

M2_IL4 + IL10 M2 10 ng/mL IL10(Proteintech, USA, HZ-1145), and 10 ng/mL
IL4 (Proteintech, Rosemount, IL, USA, HZ-1004)

M2_M-CSF M2 20 ng/mL M-CSF (absin, Shanghai, China, abs00846)
Macrophage induction methods were adapted from [19,28,29].

2.3. RNA-Seq

After the induction, macrophage cells were collected and used for total RNA extraction
using Trizol (Invitrogen, San Francisco, CA, USA, 15596026), and the RNA-seq libraries
were constructed using the NEBNext® UltraTM RNA Library Prep Kit (NEB, Ipswich,
MA, USA, 7530). The paired-end RNA-seq sequencing libraries were further sequenced by
the Illumina Novaseq6000 platform (PE150), yielding 151Gb raw data and an average of
804 million 150-bp paired-end raw reads (Novogene Co. Ltd., Tianjing, China).

Sequenced reads were aligned to the pig reference genome (Sus_scrofa.Sscrofa11.1.104.gtf
and Sus_scrofa.Sscrofa11.1.cdna.all.fa.gz). Gene expression was quantified by using Kallis-
tov0.44.0 [30] and obtaining read counts for each transcript. We standardize read counts
to TPM (per million transcript readings) and differential gene expression analysis was
performed using the Edge R package. KEGG and GO annotation were performed us-
ing the online tool Metascape and hub genes were identified by using Metascape (https:
//metascape.org/gp/index.html, accessed on 4 November 2022), KEGG pathway analysis,
and GO biological process analysis was performed for different genes. In order to com-
pare the protein functions of macrophages between different methods, the protein–protein
interaction network (PPI) was constructed by String (https://string-db.org, accessed on
17 November 2022) and the key Hub genes were identified.

Raw and processed RNA-seq data were deposited in the NCBI GSE202115.

2.4. Gene Set Enrichment Analysis (GSEA) and Network Construction

To assay, whether our gene signatures (M1_IFNγ + LPS, M1_GM-CSF, M2_IL4 + IL10,
and M2_M-CSF) can discriminate macrophages infected with various pathogens (Table 2),
we applied GSEA to explore the correlation between our macrophage signatures with
pathogen-infected macrophages obtained from the publicly available Gene Expression Om-
nibus (GEO) NCBI database (http://www.ncbi.nlm.nih.gov/geo/, accessed on 30 November
2022) [31].

Since the GSEA method was originally developed for analyzing microarray data,
we normalized the raw count for standard GSEA by TPM and transformed TPM into
a GCT format gene expression data set. Genes were ranked based on the correlation
between their expression and class distinction, by evaluating if an a priori-defined set
of genes (M1_IFNγ + LPS, M1_GM-CSF, M2_IL4 + IL10, and M2_M-CSF) were randomly
distributed or were primarily associated with a tested class.

Table 2. Gene Set Enrichment Analysis (GSEA) in clinical samples.

GEO ID Cohort Description Experimental Groups

GSE174494
Macrophages were obtained by lung perfusion in pigs infected with the
PRRSV virus. The harvested infected macrophages were detected by
RNA-seq.

Alveolar M φ from PRRSV (n = 3) vs. PPRRSV-GFP (n = 3) vs.
RPMI-1640 (n = 3).

GSE145954 PAMs infected ASFV isolates (MOI = 1), and transcriptome analysis was
performed on infected cells and normal PAM at 0, 6, 12, and 24 h.

Alveolar M φ from ASFV-0h (n = 3) vs. ASFV-6h (n = 3) vs.
ASFV-12h (n = 3) vs. ASFV-24 h (n = 3) vs. uninfected (n = 3).

GSE146715 PAM-infected with T. gondii Me49 for 15 h. Transcriptome analysis was
performed on infected and uninfected PAM.

Alveolar M φ from T. gondii Me49-PAM (n = 3) vs. uninfected
(n = 3).

https://metascape.org/gp/index.html
https://metascape.org/gp/index.html
https://string-db.org
http://www.ncbi.nlm.nih.gov/geo/
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Table 2. Cont.

GEO ID Cohort Description Experimental Groups

GSE153330
PAM-infected with TgRH (type i), TgME49 (type ii), or
TgHB1-Toxoplasma for 6, 12, and 24 h. Transcriptome analysis was
performed on infected and uninfected PAM.

Alveolar M φ from PAM at different infection times for each
infection strain (n = 3) vs. uninfected (n = 3).

GSE34544 The piglets were infected with SS2 and HPS4 28 days later. Transcriptome
analysis of infected and uninfected PAM.

Alveolar M φ from PAM for each infection strain (n = 6) vs.
uninfected (n = 6).

GSE30696

GSE181105 Infected PAM were obtained 6 and 15 h after infection with Mhp or
PRRSV. Microarray analysis of infected and uninfected PAM.

Alveolar M φ from PAM for each infection strain (n = 3) vs.
uninfected (n = 3).

GSE22782 Infected PAM were obtained after piglets were infected with HP-PRRSV
for 5 days. Microarray analysis of infected and uninfected PAM.

Alveolar M φ from PAM for each infection strain (n = 6) vs.
uninfected (n = 6).

GSE30918 Infected PAM were obtained 48 h after PCV2 infection. Microarray
analysis of infected and uninfected PAM.

Alveolar M φ from PAM for each infection strain (n = 3) vs.
uninfected (n = 3).

GSE156504 Infected PAM were obtained after 21 h of infection with different strains
of PRRSV. Transcriptome analysis of infected and uninfected PAM.

Alveolar M φ from PAM for each infection strain (n = 3) vs.
uninfected (n = 3).

GSE49882 Infected PAM were obtained after 6 and 15 h of infection with Mycoplasma
hyopneumoniae and PRRSV.

Alveolar M φ from PAM for each infection strain (n = 3) vs.
uninfected (n = 3).

GSE30956
BMDM were stimulated with LPS from Salmonella enterica serotype
Minnesota Re 595 for 0, 2, 7, and 24 h to obtain macrophages after a
reaction.

Alveolar M φ from PAM for each infection strain (n = 3) vs.
uninfected (n = 3).

GSE45145
BMDM from different breeds of pigs were stimulated with LPS from
Salmonella enterica serotype Minnesota Re 595 for 0, 2, 7, and 24 h to obtain
macrophages after the reaction.

Alveolar M φ from PAM for each infection strain (n = 3) vs.
uninfected (n = 3).

3. Results
3.1. Comparing M1 with M2 to Generate Porcine Macrophage Gene Signatures

To fully characterize the specificity of two macrophage phenotypes polarized by dif-
ferent methods, we applied RNA-seq and compared the transcriptomic commonalities and
differences across phenotypes and methods within phenotype. The principal components
analysis (PCA) plot indicated that the macrophages clearly separated between phenotypes
and within phenotype (Figure 1A). DEGs were evaluated by GO and KEGG after being
transformed into gene IDs. The BP (biological process) components of the GO annota-
tions of DEGs were used to examine the functional enrichment of DEGs. To ascertain the
connection between DEGs and signaling pathways, KEGG analysis was performed. The
DEGs of M1 (M1 IFN + LPS, and M1 GM-CSF) compared to M2 (M2 IL4 + IL10, and M2
M-CSF) were found to be enriched in biological processes related to immune response, such
as Cell activation, Regulation of cell activation, Inflammatory response, Innate immune
response, and pathways such as Hematopoietic cell lineage, Cytokine–cytokine receptor
interaction (Figures 1B and S2 and Additional file S1). Moreover, we observed that the
upregulated DEGs mainly enriched into phagosome pathways, pathways in cancer, and
disease-related pathways, while the down-regulated genes enriched into tissue develop-
ment pathways. To verify the reliability of polarized macrophages, 49 classical macrophage
marker genes were retrieved from the previous literature, containing 29 and 20 macrophage
markers for M1 and M2, respectively (Supplementary Table S2). Consistently, all 29 classi-
cal M1 and 20 M2 markers are highly expressed in M1 and M2, respectively (Figure 1C,
Additional file S1). Using a p value < 0.01 and absolute log2FC value > 1 as criteria, 730 dif-
ferential expressed genes (DEGs) were identified. Comparing M1 to M2 620 and 110 genes
were significantly upregulated and downregulated, respectively (Additional file S1). To
examine more closely the correlations between the genes of the core response to M1
macrophages (M1_IFNγ + LPS, and M1_GM-CSF) and M2 (M2_IL4 + IL10, and M2_M-CSF)
macrophages, we ran a protein–protein interaction analysis using String to identify the hub
genes. Ranked by connectivity and betweenness centrality, MPO, S100A12, CTSG, CCR2,
CAMP, S100A9, KIT, CXCR4, and CYBB were identified as the major hub genes (Figure 1D,
and Additional file S1).
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3.2. Revealing Transcriptomic Differences of Macrophages within Phenotypes 

Figure 1. Transcriptomic comparison of porcine macrophage phenotypes, M1 (M1_IFNγ + LPS, and
M1_GM-CSF) versus M2 (M1_IFNγ + LPS, and M1_GM-CSF). (A) PCA clustering M1_IFNγ + LPS
(n = 4), M1_GM-CSF (n = 4), M2_IL4 + IL10 (n = 3), M2_M-CSF (n = 3); (B) Top enriched GO biological
processes of 730 DEG genes, M1 (M1_IFNγ + LPS, and M1_GM-CSF) and M2 (M2_IL4 + IL10, and
M2_M-CSF); (C) Heatmap exhibiting 49 classical macrophage marker genes expression profile among
M1_IFNγ + LPS, M1_GM-CSF, M2_IL4 + IL10, and M2_M-CSF; (D) The DEGs between M1 and M2
were studied by using the String online tool. The interaction between each protein pair is represented
by lines, and the size of the circle is directly proportional to the degree.

3.2. Revealing Transcriptomic Differences of Macrophages within Phenotypes

We also observed that the specific macrophage phenotypes were separately clustered
by induction methods, M1_IFNγ + LPS versus M1_GM-CSF and M2_IL4 + IL10 versus
M2_M-CSF (Figure 2). Comparing M1_IFNγ + LPS to M1_GM-CSF, 207 and 391 genes
were significantly upregulated and downregulated, respectively (Additional file S2). DEGs’
annotation indicates that they are enriched in biological processes related to immune re-
sponse, such as Regulation of cell activation, Inflammatory response, Response to the
bacterium, and pathways such as Staphylococcus aureus infection, Cytokine–cytokine
receptor interaction, Pathways in cancer (Figures 2C and S2, and Additional file S2).
To examine more closely the correlations between the genes of the core response to
M1_IFNγ + LPS and M1_GM-CSF, we incorporated a network-based protein–protein in-
teraction analysis approach by String. Ranked by connectivity and betweenness cen-
trality, CD68, MRC1, CD28, HLA-DRA, PPARG, A2M, S100A9, SELP, RETN, and CAMP
were identified as the primary hub and bottleneck genes of macrophages (Figure 2E, and
Additional file S2).

Comparing M2_IL4 + IL10 to M2_M-CSF, 391 and 211 genes were significantly up-
regulated and downregulated, respectively (Additional file S3). Running GO and KEGG
annotations, the DEGs enriched in tissue development-related biological processes such
as Tube morphogenesis, Reproductive structure development, Regulation of vasculature
development, and pathways such as Osteoclast differentiation, Hematopoietic cell lineage,
Cell adhesion molecules (Figures 2D and S3 and Additional file S3). IL6, CD4, IGF1, IL10,
PTGS2, FOS, PPARG, NTRK1, ADIPOQ, FLT1, and HMOX1 were identified as the pri-
mary hub and bottleneck genes of macrophages induced by colony factors and cytokines’
exposure (Figure 2F and Additional file S3).
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Figure 2. Comparison of transcriptomics in different phenotypes of porcine macrophages.
(A) Heatmap showing that specific macrophage phenotypes were aggregated by the induction
method, M1_IFNγ + LPS, and M1_GM-CSF; (B) Heatmap showing that specific macrophage pheno-
types were aggregated by the induction method M2_IL4 + IL10 and M2_M-CSF; (C) GO pathway
enrichment analysis of two polarized macrophages, M1_IFNγ + LPS and M1_GM-CSF; (D) GO
pathway enrichment analysis of two polarized macrophages, M2_IL4 + IL10 and M2_M-CSF; (E)
The DEGs were studied by using the String online tool, M1_IFNγ + LPS, and M1_GM-CSF. The
interaction between each protein pair is represented by lines, and the size of the circle is directly
proportional to the degree of interaction. We adopt a node number greater than 1; (F) The DEGs are
studied by using the String online tool, M2_IL4 + IL10, and M2_M-CSF. The interaction between each
protein pair is represented by lines, and the size of the circle is directly proportional to the degree of
interaction. We adopt a node number greater than 2.

3.3. Application of M1_IFNγ + LPS, M1_GM-CSF, M2_IL4 + IL10, and M2_M-CSF Signatures
to the Identification of Swine Disease and Its Molecular Mechanism

As macrophages play a key role in determining the activation or resolution of immune
responses and can determine the fate of pathogen infection, we evaluated the robustness of
our macrophage signatures (M1_IFNγ + LPS, M1_GM-CSF, M2_IL4 + IL10, M2_M-CSF)
in discriminating macrophages infected with specific pathogens based on the enrichment
analysis of selected genes. The association between the chosen clinical trials where infected
pig macrophages were examined in 308 transcriptomes’ data obtained from the GEO
(Table 2 and Additional file S4).

The results indicated that genes from the SS2 infected macrophages were most signifi-
cantly enriched in the M1_IFNγ + LPS set, genes from the PPRSV, ASFV, Mhp, and LPS
infected were most significantly enriched in the M1_GM-CSF, genes from the PCV2 and
T. gondii Me49 infections were most significantly enriched in the M2_M-CSF set, and genes
from the different species of T. gondii infections were most significantly enriched in the
M2_IL4 + IL10 set (Figure 3).

Together, our results indicate that our macrophage signatures could characterize
microarrays and RNA-seq from specific pathological scenarios.
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Figure 3. Validation of M1_IFNγ + LPS, M1_GMCSF, M2_M-CSF, and M2_IL4 + IL10 signatures.
(A) SS2-infected macrophages were enriched in M1_IFNγ + LPS based on GSEA (Data source:
Microarray analysis); (B) PRRSV-infected macrophages were enriched in M1_GM-CSF based on
GSEA (Data source: RNA-seq); (C). T. gondii-infected macrophages were enriched in M2_IL4 + IL10
based on GSEA (Data source: RNA-seq); (D) T. gondii Me49-infected macrophages were enriched in
M2_M-CSF based on GSEA (Data source: RNA-seq).

4. Discussion

Growing evidence shows macrophages have high plasticity and extensive polariza-
tion, which hinders the definition of macrophages obtained by different methods. The
establishment of the porcine macrophage model is important for pig health and disease
research. Transcriptomics is one of the primary tools in this investigation, however, we are
aware of its shortcomings. Since the transcriptome is type-specific and changes over time
and in response to stimulation, and some tissue-specific disorders cannot be diagnosed
by RNA-seq, several studies have demonstrated that not all genes are expressed solely
in particular cells [32]. Of course, considering the operability of the laboratory and the
better differentiation effect of young piglets, we only used the 7-day-old DLY, which has
certain limitations. In the present study, we generated four porcine macrophage pheno-
types, namely M1_IFNγ + LPS, M1_GM-CSF, M2_IL4 + IL10, and M2_M-CSF and created
four macrophage molecular signatures by transcriptomic analysis. First, we identified
730 DEGs by comparing M1 (merging M1_IFNγ + LPS and M1_GM-CSF) with M2 (mering
M2_IL4 + IL10 and M2_M-CSF). In line with previous reports, the porcine macrophages
had similar gene profiles to human and mouse classical macrophage phenotypes and
alternative phenotypes, respectively. For example, porcine M1 highly expressed CXCR4,
S100A9, FCRL3, JAK3, and SLAMF1, while M2 highly expressed CCL11, POSTN, PTX3
MFAP4, PTH1R, and AGTR1. Apart from the well-known macrophage markers, we no-
ticed that porcine M1 highly expressed MPO, S100A12, CTSG, CCR2, CAMP, KIT, and
CYBB, and M2 highly expressed ANK2, ALDH1A1, PTHLH, and CACNA1H. MPO is a
marker of macrophage aggregation in inflammatory species and promotes the recognition
of macrophage scavenger receptors [33]. S100A12, CSTG, CAMP, and KIT are antimicrobial
response genes. CSTG, CAMP, and CYBB are involved in macrophage phagocytosis [34–36].
Both CCR2 and CXCR4 are pro-inflammatory genes involved in macrophage migration [37].
ANK2 promotes the growth and invasion of pancreatic carcinoma, and the peptide derived
from ANK2 is an effective and specific autophagy inhibitor binding to ATG8 [38,39]. Stud-
ies have shown that the expression level of ALDH1A1 is reduced in the inflammatory state,
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which is part of early inflammation [40]. PTHLH is involved in cell and organ growth,
development, migration, and survival, and can be used as an independent marker of prog-
nosis [41]. These genes may serve as specific porcine macrophage markers and potential
therapeutic targets. It is worth mentioning that four MHC haplotype genes were detected
expressing in porcine bone marrow-derived macrophages, such as CIITA, HLA-DOB, HLA-
DRA, SLA-DMB, and two of them, HLA-DRA and SLA-DMB, are differentially expressed,
comparing M1 versus M2 [42].

After revealing the transcriptomic difference between the two main macrophage phe-
notypes, we conducted a transcriptomic comparison of M1_IFNγ + LPS with M1_GM-CSF,
and M2_IL4 + IL10 with M2_M-CSF. We found that porcine M1_IFNγ + LPS highly ex-
pressed S100A9, SELP, RETN, CAMP, and M1_GM-CSF highly expressed CD68, MRC1,
CD28, HLA-DRA, PPARG, and A2M. S100A9 is related to the CD68 regulating macrophage
function pathway and promoting macrophage migration, which can induce neutrophil
chemotaxis and promote macrophage migration and adhesion under inflammatory condi-
tions [43]. RETN has been reported to induce the production of pro-inflammatory cytokines
and chemokines in PBMC [44]. CAMP can inhibit the phagocytosis of macrophages through
the CAMP-1-activated CAMP-effect-exchange protein [45]. CD68 is highly expressed in
macrophages and belongs to the scavenger family. It has the functions of clearing cell debris,
promoting phagocytosis, and mediating the recruitment and activation of macrophages.
MRC1 and A2M mediate the phagocytosis of macrophages [43]. CD28 can enhance the
expression of RANTES and MIP-1α in T cells and MIP-1β, and increase the number and
differentiation of macrophages in the wound healing stage [9,46]. HLA-DRA has been
proven to inhibit the phagocytosis of macrophages in order to protect the intracellular
niche from phagocytosis and killing of host macrophages, which is positively related to the
regulation of GM-CSF [47–49].

We found that porcine M2_IL4 + IL10 highly expressed PPARG, NTRK1, ADIPOQ,
FLT1, HMOX1, and M2_M-CSF highly expressed IL6, CD4, IGF1, IL10, PTGS2, FOS,
PPARG [50–52]. PPARG has an anti-inflammatory effect, and its ligand is responsible
for clearing the expression of genes of apoptotic cells and macrophage-mediated inflamma-
tory responses [53,54]. Interestingly, PPARG was also specifically expressed in M1_GM-
CSF. NTRK1 decreases malignancy and/or spontaneous degeneration of neuroblastoma
cells [55]. ADIPOQ and FLT1 have anti-inflammatory functions [56–58]. According to
reports, HMOX1 also has anti-cancer, anti-inflammatory, anti-apoptotic, anti-proliferation,
and anti-oxidation effects [59]. Although IL6 is usually associated with pro-inflammatory
function and involves many inflammatory diseases, it can increase the polarization of alter-
natively activated (AAM) [60]. AAM and IL6 together, lead to the release of IL10 [60,61].
At the same time, FOS can increase the expression level of IL10 and promote the formation
of osteoclasts [62]. IGF1 and IL10 are also positively correlated with the inhibition of
inflammation and wound healing. Interestingly, IL10 also promotes macrophage phagocyte
debris [63]. CD4 has an anti-inflammatory effect, inhibits macrophage migration, and
induces M2 polarization [64]. Interestingly, PTGS2 is a pro-inflammatory gene [65].

We have investigated the variations among various phenotypes and associated them
with disease outcomes because we are interested in investigating the potential application
of macrophage phenotypes. We proposed a consensus collection of markers describ-
ing major macrophages’ activation phenotypes, namely M1_IFNγ + LPS, M1_GM-CSF,
M2_IL4 + IL10, and M2_M-CSF, able to characterize robustly controlled in vitro and in vivo
scenarios for macrophage induction. Our study confirmed that macrophages cultured
in vitro have different enrichment pathways from macrophages infected with different
pathogens. At the same time, it is confirmed that macrophages infected with the same
pathogen in vivo or in vitro also have different enrichment pathways. Since the descrip-
tion of the polarization state of macrophages has not been unified, our study provides a
framework to guide the definition of the phenotype of porcine macrophages in the disease
state. Future research into the macrophage model in a disease setting will help us create
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medications and diagnostic tools for particular disorders. Nevertheless, we can never
ignore the bias using public downloaded transcriptomic data.

We conclude here that there are transcriptomic differences between and within two
macrophage phenotypes in our porcine model. In general, we found the four types of
macrophages (M1_IFNγ + LPS, M1_GM-CSF, M2_IL4 + IL10, and M2_M-CSF) have dif-
ferent functions. Compared with M1_GM-CSF, M1_IFNγ + LPS has a weaker phagocytic
capacity, but stronger antibacterial and migratory capacity; M2_IL4 + IL10 has a stronger
tissue repair function, while M2_M-CSF has a stronger wound healing ability [66]. At
the same time, we used the four established gene characteristics to identify various pig
infectious diseases with prognosis and predictive values. Pigs’ immunological parameters
overlap with either mice or humans’ in particular ways more than mice and humans’ do
with each other [21,23–27]. Indeed, it would be an interesting research direction to establish
similar models of pig, mouse, and human macrophages for future studies.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cimb45030151/s1, Figure S1: The KEGG or GO Anal-
ysis of M1 and M2; Figure S2: The KEGG or GO Analysis of M1_IFNγ + LPS and M1_GM-CSF;
Figure S3: The KEGG or GO Analysis of M2_IL4 + IL10 and M2_M-CSF; Table S1: Data output quality
list. Table S2: The observed marker genes of M1 and M2 macrophages. References [67–109] are cited
in the supplementary materials.

Author Contributions: M.L., K.L. and L.L. contributed to the funding acquisition. J.L. and L.L.
conceived and designed the experiments. J.L., T.Y., C.T., P.Y., A.Z., L.C. and L.H. performed the
experiments. J.L. and L.L. wrote the first draft of the manuscript and contributed to the manuscript
revision. All authors have read and agreed to the published version of the manuscript.

Funding: Experimental work was supported by the National Key R and D Program of China
(2021YFD1300800 and 2020YFA0509500), the Science Foundation of the Sichuan Province (2021YFS0008
and 2022YFQ0022), the China Postdoctoral Science Foundation (2021M692329).

Institutional Review Board Statement: All the experiments were conducted following these pro-
tocols and were approved by the Experimental Animal Ethics Committee of Sichuan Agricultural
University under permit number of 20210167. All experimental steps were performed following
relevant guidelines and regulatory requirements.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Takahashi, K. Development and Differentiation of Macrophages and Related Cells: Historical Review and Current Concepts.

J. Clin. Exp. Hematop. 2001, 41, 1–31. [CrossRef]
2. Murray, P.J.; Wynn, T.A. Protective and Pathogenic Functions of Macrophage Subsets. Nat. Rev. Immunol. 2011, 11, 723–737.

[CrossRef] [PubMed]
3. Sica, A.; Mantovani, A. Plasticity and Polarization. J. Clin. Investig. 2012, 122, 787–795. [CrossRef] [PubMed]
4. Ma, W.; Gao, F.; Gu, K.; Chen, D. The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review.

Front. Immunol. 2019, 10, 1140. [CrossRef]
5. Rendra, E.; Riabov, V.; Mossel, D.M.; Sevastyanova, T.; Harmsen, M.C.; Kzhyshkowska, J. Reactive Oxygen Species (ROS) in

Macrophage Activation and Function in Diabetes. Immunobiology 2019, 224, 242–253. [CrossRef]
6. Martinez, F.O.; Gordon, S. The M1 and M2 Paradigm of Macrophage Activation: Time for Reassessment. F1000Prime Rep. 2014,

6, 13. [CrossRef]
7. Bility, M.T.; Cheng, L.; Zhang, Z.; Luan, Y.; Li, F.; Chi, L.; Zhang, L.; Tu, Z.; Gao, Y.; Fu, Y.-X.; et al. Hepatitis B Virus Infection and

Immunopathogenesis in a Humanized Mouse Model: Induction of Human-Specific Liver Fibrosis and M2-Like Macrophages.
PLoS Pathog. 2014, 10, e1004032. [CrossRef]

8. Anderson, N.R.; Minutolo, N.G.; Gill, S.; Klichinsky, M. Macrophage-Based Approaches for Cancer Immunotherapy. Cancer Res.
2021, 81, 1201–1208. [CrossRef]

https://www.mdpi.com/article/10.3390/cimb45030151/s1
http://doi.org/10.3960/jslrt.41.1
http://doi.org/10.1038/nri3073
http://www.ncbi.nlm.nih.gov/pubmed/21997792
http://doi.org/10.1172/JCI59643
http://www.ncbi.nlm.nih.gov/pubmed/22378047
http://doi.org/10.3389/fimmu.2019.01140
http://doi.org/10.1016/j.imbio.2018.11.010
http://doi.org/10.12703/P6-13
http://doi.org/10.1371/journal.ppat.1004032
http://doi.org/10.1158/0008-5472.CAN-20-2990


Curr. Issues Mol. Biol. 2023, 45 2347

9. Lacey, D.C.; Achuthan, A.; Fleetwood, A.J.; Dinh, H.; Roiniotis, J.; Scholz, G.M.; Chang, M.W.; Beckman, S.K.; Cook, A.D.;
Hamilton, J.A. Defining GM-CSF– and Macrophage-CSF–Dependent Macrophage Responses by In Vitro Models. J. Immunol.
2012, 188, 5752–5765. [CrossRef]

10. Martinez, F.O.; Gordon, S.; Locati, M.; Mantovani, A. Transcriptional Profiling of the Human Monocyte-to-Macrophage Differenti-
ation and Polarization: New Molecules and Patterns of Gene Expression. J. Immunol. 2006, 177, 7303–7311. [CrossRef]

11. Vogel, D.Y.S.; Vereyken, E.J.F.; Glim, J.E.; Heijnen, P.D.A.M.; Moeton, M.; van der Valk, P.; Amor, S.; Teunissen, C.E.; van
Horssen, J.; Dijkstra, C.D. Macrophages in Inflammatory Multiple Sclerosis Lesions Have an Intermediate Activation Status.
J. Neuroinflamm. 2013, 10, 809. [CrossRef] [PubMed]

12. Swindle, M.M.; Makin, A.; Herron, A.J.; Clubb, F.J.; Frazier, K.S. Swine as Models in Biomedical Research and Toxicology Testing.
Vet. Pathol. 2012, 49, 344–356. [CrossRef] [PubMed]

13. Sironi, M. Differential Regulation of Chemokine Production by Fc Receptor Engagement in Human Monocytes: Association of
CCL1 with a Distinct Form of M2 Monocyte Activation (M2b, Type 2). J. Leukoc. Biol. 2006, 80, 342–349. [CrossRef] [PubMed]

14. Mantovani, A.; Sozzani, S.; Locati, M.; Allavena, P.; Sica, A. Macrophage Polarization: Tumor-Associated Macrophages as a
Paradigm for Polarized M2 Mononuclear Phagocytes. Trends Immunol. 2002, 23, 549–555. [CrossRef] [PubMed]

15. Morris, S.M. Arginine Metabolism: Boundaries of Our Knowledge. J. Nutr. 2007, 137, 1602S–1609S. [CrossRef]
16. Perleberg, C.; Kind, A.; Schnieke, A. Genetically Engineered Pigs as Models for Human Disease. DMM Dis. Model. Mech. 2018,

11, dmm030783. [CrossRef]
17. Pepe, G.; Calderazzi, G.; De Maglie, M.; Villa, A.M.; Vegeto, E. Heterogeneous Induction of Microglia M2a Phenotype by Central

Administration of Interleukin-4. J. Neuroinflamm. 2014, 11, 211. [CrossRef]
18. Giraud, E.; Lestinova, T.; Derrick, T.; Martin, O.; Dillon, R.J.; Volf, P.; Műller, I.; Bates, P.A.; Rogers, M.E. Leishmania Pro-
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