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Abstract: Cytokinin oxidase/dehydrogenase (CKX) catalyzes the irreversible breakdown of active
cytokinins, which are a class of plant hormones that regulate cell division. According to conserved
sequences of CKX genes from monocotyledons, PCR primers were designed to synthesize a probe
for screening a bamboo genomic library. Cloned results of three genes encoding cytokinin oxidase
were named as follows: BoCKX1, BoCKX2, and BoCKX3. In comparing the exon-intron structures
among the above three genes, there are three exons and two introns in BoCKX1 and BoCKX3 genes,
whereas BoCKX2 contains four exons and three introns. The amino acid sequence of BoCKX2 protein
shares 78% and 79% identity with BoCKX1 and BoCKX3 proteins, respectively. BoCKX1 and BoCKX3
genes are particularly closely related given that the amino acid and nucleotide sequence identities
are more than 90%. These three BoCKX proteins carried putative signal peptide sequences typical
of secretion pathway, and a GHS-motif was found at N-terminal flavin adenine dinucleotide (FAD)
binding domain, suggesting that BoCKX proteins might covalently conjugate with an FAD cofactor
through a predicted histidine residue.
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1. Introduction

Cytokinin is a phytohormone of plant growth regulators, playing an important role in
the control of plant division. Many developmental events, such as shoot and root branching,
leaf development, delay of senescence, and chloroplast ripening are directly regulated by
the physiological functions of cytokinins [1–5]. In plants, the homeostasis of cytokinins is
balanced in many aspects [6], including rate of de novo synthesis by isopentenyl transferase
enzyme [7], rate of interconversion and transport [8], and rate of cytokinin turnover, mainly
by cytokinin oxidase/dehydrogenase [9].

The CKX gene-encoded cytokinin oxidase/dehydrogenase enzyme (CKX, EC 1.5.99.12)
catalyzes the turnover of the cytokinins, isopentenyl-adenine, zeatin, and their ribosides by
a unique enzymatic reaction by cleaving and oxidizing its side chain for converting isopen-
tenyladenine to unsaturated 3-methyl-2-butenal and adenine [2,10]. CKX enzyme activity
was initially identified by Pačes and coworkers in 1971 [11] and named by Whitty and Hall
in 1974 [12]. After nearly three decades, ZmCKX1 was the first CKX gene independently
cloned by two research groups in maize Zea mays [13,14]. CKX proteins are usually encoded
by homologous genes in plants, such as Arabidopsis thaliana [15,16], Hordeum vulgare [17,18],
Jatropha curcas [19], Oryza sativa [9,20,21], Zea mays [22,23], and so on. Recently, 23 BnCKX
genes were identified in Brassica napus [24]. Therefore, CKX enzyme activity largely governs
the utilization of cytokinins in plant cells.

Elevated cytokinin levels were linked with increased cytokinin degradation by CKX
enzyme in many plants, such as Zea mays [25], Triticum aestivum [26], and Brassica na-
pus [24,27], suggesting that CKX gene expression is manipulated by endogenous cytokinin
extents [5]. Overexpression of the AtCKX3 [28] and OsCKX2 [9] are associated with reduced
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flower numbers and grain numbers, respectively. Expression of the AtCKX1 in Nicotiana
tabacum enhances drought and heat stress tolerance, indicating that cytokinin levels may
have a positive effect on plant stress responses [29–31]. Under salinity condition, rice yield
penalty is reduced by knockdown of the OsCKX2 gene as well as increased inflorescence
meristem cytokinin extent [32].

Alternation in CKX enzymatic activity changes cytokinin concentrations in cells and tis-
sues. CKX enzymes play key roles in contributing to the regulation of cytokinin-dependent
processes and in controlling local cytokinin level [33]. Functions of CKX proteins can be reg-
ulated by several post-translational modifications, e.g., glycosylation, and contain FAD as a
cofactor [21,34]. CKX proteins are widely detected in various subcellular compartments,
such as chloroplast, mitochondria, and so on [35]. Most CKX enzymes are localized in the
apoplast, e.g., ZmCKX1 [23], or vacuole, e.g., AtCKX1 and AtCKX3 [36]. Some CKX pro-
teins are shown to be cytosolic enzymes, such as AtCKX7 [37] and ZmCKX10 [23]. AtCKX1
protein is recently reported to be an endoplasmic reticulum (ER) membrane protein [16].

Bambusa oldhamii, green bamboo, is a perennial plant in the tropics and subtrop-
ics, and bamboo shoot is an economic vegetable in far-eastern Asia [38–44]. Bamboo is
one of the fast-growth timber plants, which are controlled by plant hormones, especially
cytokinins [45]. Bamboo cytokinin biosynthesis by the BoAIPT1 isopentenyltransferase
enzyme [7] and cytokinin degradation by the BoCKX enzymes may play equally important
roles for fine-tuning cytokinin levels in the rapid-dividing tissues. In this study, we cloned
and reported three completely sequenced CKX genes, including all exon-intron conforma-
tions and partial upstream promoter regions. Sequence analysis of the BoCKX1–3 predicts
multiple asparagine residues as putative target sites of glycosylation. In addition, several
cis-acting elements were discovered from the promoters regions of three BoCKX genes.

2. Materials and Methods
2.1. Plant Material

Edible fresh green bamboo shoot mainly harvested between April and September
from Mucha mountain areas, Taipei City, Taiwan. Samples were divided into inedible shell
and edible shoot and were frozen and stored at −80 ◦C freezer.

2.2. Reagents

DNA ladders and iProof DNA polymerase were obtained from Bio-Rad, Hercules,
CA, USA. PrimeStar DNA polymerase mixture was purchased from Takara, Kusatsu,
Shiga, Japan. T4 DNA ligase and restriction endonucleases were purchased from New
England Biolabs, Ipswich, MA, USA. SeaKem® LE Agarose was obtained from Lonza, Basel,
Switzerland. Gel extraction/PCR cleanup kit was purchased from Biotools, New Taipei
City, Taiwan. Plasmid mini-prep kit was obtained from Geneaid, New Taipei City, Taiwan.
Oligonucleotides synthesis and DNA sequencing services were provided by Tri-I Biotech,
New Taipei City, Taiwan.

2.3. Total RNA Extraction, cDNA Synthesis, and DIG Labeled Probe Preparation

TRIZOL reagents (Invitrogen, Waltham, MA, USA) were used to extract total RNA
from bamboo etiolated shoots and utilized as materials for complementary DNA (cDNA)
synthesis using MMLV reverse transcriptase (Invitrogen, Waltham, MA, USA), and used as
PCR template. Degenerate primers CKX-F (5′-GGGAGATGGTGACGTGCTCCAA-3′) and
CKX-R (5′-CAGCGACACSRMGTAGAACAC-3′) were designed according to the conserved
regions of the OsCKX1 and OsCKX2 genes from Oryza sativa [4]. PCR reaction was carried
out at 94 ◦C for 30 s, 60 ◦C for 30 s, and 72 ◦C for 1 min, and then repeated for 30 cycle-
reaction. The 900 bp BoCKX fragment (Figure S1) was confirmed by DNA sequencing (Tri-I
Biotech, New Taipei City, Taiwan). DIG-labeled probe was synthesized by PCR reaction
using DIG DNA labeling kit supplied by Roche, Basel, Switzerland.
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2.4. Genomic Library Screening, Phage DNA Preparation, and DNA Sequencing by
Chromosome Walking

A genomic library of green bamboo was previously constructed by Lambda FIX®

II/XhoI Partial Fill-In Vector Kit (Strategene, San Diego, CA, USA) [7]. Nine to twenty-three
kb bamboo genomic DNA fragments were conjugated with a 41.9 kb Lambda FIX® II vector,
and the overall phage DNA constructed were between 50 and 65 kb [7]. The DIG-labeled
BoCKX probe was used to screen the bamboo genomic DNA library. Plaques of phages
were transferred onto a Hybond-H+ hybridization membrane (MilliporeSigma, Burlington,
MA, USA). The processes of hybridization and detection were based on the instructions of
the manufacturer (Roche, Basel, Switzerland). Phage DNA was purified from E. coli XL1-
Blue MRA (P2) by traditional method [46] and digested by NotI restriction endonuclease.
Phage DNA isolated from positive clones (Lambda midi kit, Qiagene, Hilden, Germany)
were further confirmed by DNA sequencing (Tri-I Biotech, New Taipei City, Taiwan), and
chromosome walking method was used to obtain complete genomic sequences of the three
BoCKX genes.

2.5. Bioinformatics and Promoter Analysis

Protein sequence alignment was analyzed by Vector NTI Suite 10 Sequence Soft-
ware (Invitrogen, Waltham, MA, USA). Phosphorylation and glycosylation sites were
predicted by NetNGly (http://www.cbs.dtu.dk/servies/NetNGly/, accessed on 15 March
2020) [47] and NetPhos (http://www.cbs.dtu.dk/services/NetPhos/, accessed on 15 March
2020) [48], respectively. The putative cis-acting elements and the transcriptional start site
were predicted by PlantPAN (retrieved from: http://PlantPAN.itps.ncku.edu.tw, accessed
on 25 May 2020) [49] and PlantProm (retrieved from: http://mendel.cs.rhul.ac.uk, accessed
on 25 May 2020) [50].

3. Results
3.1. Cloning of Three BoCKXs Genes by Screening a Bamboo Genomic DNA Library

A Lambda FIX® II genomic library constructed genomic DNA was hybridized and
screened by a DIG labeled BoCKX probe (Figure S1) [38]. Sequence alignment results
showed a high similarity of 64% between the deduced amino acid sequence of the BoCKX
probe and ZmCKX1 proteins (Figure S1). Phage DNAs were isolated from positive clones
and digested by NotI restriction enzyme (Figure 1), followed by DNA sequencing. Three
different digestion patterns from four positive clones were observed, indicating that three
different BoCKX genes were identified. Chromosome walking methodology was performed
to obtain the total sequence information of these positive clones. Luckily, three full-length
BoCKX genes with partial promoter regions were obtained, namely BoCKX1 (Figure 1A,
lane 1), BoCKX2 (Figure 1B, lanes 1 and 2), and BoCKX3 (Figure 1A, lane 2). Gene names,
BoCKX1–3, were designated in the order of DNA sequencing accomplished. These genomic
DNA sequences had been deposited at GenBank (Bethesda, MD, USA) with accession
numbers, GU263785, GU263786, and GU263787, respectively.

3.2. Genomic Organization of the Three BoCKXs Genes

Phage DNA containing bamboo CKX genes were completely sequenced by chromo-
some walking method, and exon-intron structures of the three BoCKX genes were plotted
in Figure 2A. The intron-exon organizations of various CKX genes in plants were compared
and shown in Figure 2B. BoCKX1 contained a 1578 bp open-reading frame (ORF) and
encoded a 525 amino acid polypeptide or a 57.0 kDa protein (Figure 2A). BoCKX2 contained
a 1572 bp ORF and encoded a 523 amino acid polypeptide or a 57.4 kDa protein (Figure 2A).
BoCKX3 contained a 1569 bp ORF and encoded a 522 amino acid polypeptide or a 56.6 kDa
protein (Figure 2A).

http://www.cbs.dtu.dk/servies/NetNGly/
http://www.cbs.dtu.dk/services/NetPhos/
http://PlantPAN.itps.ncku.edu.tw
http://mendel.cs.rhul.ac.uk
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Figure 1. Three CKX genes were isolated by screening a bamboo genomic DNA Library. BoCKX1 

(A, lane 1), BoCKX2 (B, lanes 1 and 2), and BoCKX3 (A, lane 2) phagemids were purified and then 

digested by NotI. The size of the Lambda FIX II vector (41.9 kb) was indicated. 
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Figure 2. Exon-intron organization of Bamboo CKX genes. Introns (lines) and exons (rectangles) 

were graphed to scale, along with the number of base pairs (bp). Sequences compared (A) were 

isolated from Bambusa oldhamii (BoCKX1, GU263785; BoCKX2, GU263786; and BoCKX3, GU263787). 

Exon-intron structures of the CKX genes were compared among different species (B). 

Figure 1. Three CKX genes were isolated by screening a bamboo genomic DNA Library. BoCKX1
(A, lane 1), BoCKX2 (B, lanes 1 and 2), and BoCKX3 (A, lane 2) phagemids were purified and then
digested by NotI. The size of the Lambda FIX II vector (41.9 kb) was indicated.

Curr. Issues Mol. Biol. 2023, 3,  4 
 

 

 

Figure 1. Three CKX genes were isolated by screening a bamboo genomic DNA Library. BoCKX1 

(A, lane 1), BoCKX2 (B, lanes 1 and 2), and BoCKX3 (A, lane 2) phagemids were purified and then 

digested by NotI. The size of the Lambda FIX II vector (41.9 kb) was indicated. 

3.2. Genomic Organization of the Three BoCKXs Genes 

Phage DNA containing bamboo CKX genes were completely sequenced by chromo-

some walking method, and exon-intron structures of the three BoCKX genes were plotted 

in Figure 2A. The intron-exon organizations of various CKX genes in plants were com-

pared and shown in Figure 2B. BoCKX1 contained a 1578 bp open-reading frame (ORF) 

and encoded a 525 amino acid polypeptide or a 57.0 kDa protein (Figure 2A). BoCKX2 

contained a 1572 bp ORF and encoded a 523 amino acid polypeptide or a 57.4 kDa protein 

(Figure 2A). BoCKX3 contained a 1569 bp ORF and encoded a 522 amino acid polypeptide 

or a 56.6 kDa protein (Figure 2A). 

 

Figure 2. Exon-intron organization of Bamboo CKX genes. Introns (lines) and exons (rectangles) 

were graphed to scale, along with the number of base pairs (bp). Sequences compared (A) were 

isolated from Bambusa oldhamii (BoCKX1, GU263785; BoCKX2, GU263786; and BoCKX3, GU263787). 

Exon-intron structures of the CKX genes were compared among different species (B). 

Figure 2. Exon-intron organization of Bamboo CKX genes. Introns (lines) and exons (rectangles)
were graphed to scale, along with the number of base pairs (bp). Sequences compared (A) were
isolated from Bambusa oldhamii (BoCKX1, GU263785; BoCKX2, GU263786; and BoCKX3, GU263787).
Exon-intron structures of the CKX genes were compared among different species (B).

BoCKX1 and BoCKX3 were composed of three exons and two introns (Figure 2A,B),
as also observed in other CKX genes, such as OsCKX1 [4] and ZmCKX1 [13,14]. Unlike
BoCKX1 and BoCKX3, the exon 2 of BoCKX2 was divided into exons 2a and 2b (Figure 2A,B).
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As a result, BoCKX2 possessed four exons and three introns, similar to Dendrobium sonia
DsCKX1 [51] and OsCKX2 (Figure 2B) [4]. AtCKX1–6 genes all consisted of four introns and
five exons (Figure 2B) [15].

3.3. Protein Similarity of CKXs Proteins

Protein sequence alignment research revealed that BoCKX proteins had 71–92% identi-
ties, with BoCKX1 protein being the most similar to BoCKX3 protein (92% identity; Figure 3
and Table 1).
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Figure 3. Sequence alignment of the primary structure of BoCKX proteins with CKXs proteins from
other species. The sequences shown here were from Arabidopsis thaliana (AtCKX1), Bambusa oldhamii
(BoCKX1–3), Dendrobium sonia (DsCKX1), Hordeum vulgare (HvCKX2), Oryza sativa (OsCKX1–3), and
Zea mays (ZmCKX1). The conserved FAD-binding site, GHS motif, was indicated.
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Table 1. Amino acids identities (%) among the coding regions of the BoCKX1, BoCKX2, and
BoCKX3 proteins.

BoCKX1 BoCKX2 BoCKX3

BoCKX1 100 78 92
BoCKX2 100 79
BoCKX3 100

The deduced amino acid sequences of CKXs from several plant species underwent
phylogenetic analysis (Figure 4). All CKX protein sequences contained a conserved GHS
motif as the FAD-binding site and the histidine residue within the GHS motif may be
responsible for covalently conjugated with FAD cofactor [34]. OsCKX1 and ZmCKX1
proteins were the closest homolog to BoCKX1 (78% identity) and BoCKX3 (76% identity)
proteins, and these genes contained similar exon-intron organization (Figure 2B, Figure 4).
Although BoCKX2 and OsCKX2 shared identical genomic organization (Figure 2B, Figure 4),
the amino acid similarity was only 52% identity.
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Figure 4. Phylogenetic analysis of CKXs from other plant species by Vector NTI Suite 10 Sequence
Software (Invitrogen, Waltham, MA, USA).

3.4. Analysis of the cis-Acting Elements in BoCKX1

To better understand the potential transcriptional regulations, the upstream sequence
of the BoCKX1 was completely sequenced and limited promoter region (−262) was obtained
(Figure 5). PlantProm [50] predicted the probable transcriptional start site (+1) of BoCKX1,
which was situated 83 base pairs from the translational start codon (ATG, Figure 5). Pro-
moter sequence analysis was obtained from PlantPAN [49], and a putative TATA box and
an NGATT motif [52] were addressed at −27 and −235 positions, respectively (Figure 5).
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Figure 5. Promoter sequence analysis of the BoCKX1 gene. The start codon of translation (ATG) was
shaded. The predicted transcriptional start site was indicated as “+1”. The putative functional TATA
box and one NGATT element were indicated.

3.5. Analysis of the cis-Acting Elements in BoCKX2

To better understand the potential transcriptional regulations, the upstream sequence
of the BoCKX2 was completely sequenced and over 1.4 kb promoter region was obtained
(Figure 6). PlantProm [50] predicted the probable transcriptional start site (+1) of BoCKX2,
which was situated 44 base pairs from the translational start codon (ATG, Figure 6). Pro-
moter sequence analysis was performed by PlantPAN [49], and a putative TATA box and
CAAT box were addressed at −27 and −40 positions, respectively (Figure 6). Among the
promoter region, nine NGATT motifs [52] and one as-1 like conserved site (−1289) [53]
were identified (Figure 6).
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3.6. Analysis of the cis-Acting Elements in BoCKX3

To better understand the potential transcriptional regulations, the upstream sequence
of the BoCKX3 was completely sequenced and ~1.2 kb promoter region was obtained
(Figure 7). PlantProm [50] predicted the probable transcriptional start site (+1) of BoCKX2,
which was situated 79 base pairs from the translational start codon (ATG, Figure 7). Pro-
moter sequence analysis was obtained by PlantPAN [49], a putative TATA box was ad-
dressed at −24 position, and five NGATT conserved regions [52] were boxed (Figure 7).
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Figure 7. Promoter sequence analysis of the BoCKX3 gene. The start codon of translation was shaded.
The predicted transcriptional start site was indicated as “+1”. The putative functional TATA box and
five NGATT elements were designated.

3.7. Comparison of Features in Plant CKX Proteins

CKX proteins had been reported to localize at different compartments [16,23,36,37],
and some of them were secreted proteins [23]. All three BoCKX proteins were predicted to
carry putative signal peptide sequences typical of secretion pathway (Table 2). Cytosolic
and vacuolar forms of CKX were identified in other species [16,36], suggesting that there
still may be some unknown BoCKX genes in B. oldhamii.

CKX functions are regulated by post-translational modifications, e.g., glycosylation.
All CKX proteins were predicted to be glycoproteins (Table 2), and maize CKXs had been
shown to be glycoproteins [14]. By using the NetNGly algorithms, BoCKX1, BoCKX2,
and BoCKX3 had seven, five, and six putative glycosylation sites and at least five of them
were more than 50% probability (Table 2), implying that BoCKX1–3 may be glycoproteins.
In addition to glycosylation, many phosphorylation sites were predicted in BoCKX1–3
(Table 3); however, substantial results are needed.
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Table 2. Features of different CKX proteins from various plants.

Gene
Name a

No. of
Exons

Length
(aa)

Mass
(kDa) b

Subcellular
Localization (PSORT) c

Glycosylation
Sites d

Phosphorylation Sites e

Ser Thr Tyr Reference

BoCKX1 3 525 57.0 S f 7/6 11/8 4/1 6/3 This study
BoCKX2 4 523 57.4 S 5/5 14/8 5/3 8/3 This study
BoCKX3 3 522 56.6 S 6/5 11/8 3/1 8/4 This study
DsCKX1 4 536 60.4 S 2/2 h - - - [51]
OsCKX1 3 558 59.1 S 2/1 - - - [35]
OsCKX2 4 532 56.0 M g 6/5 - - - [35]
OsCKX3 5 525 58.0 S 3/3 - - - [35]
ZmCKX1 3 534 57.2 S 8/5 - - - [22]

a Bo, Bambusa oldhamii; Ds, Dendrobium sonia; Os, Oryza sativa; Zm, Zea mays. b Molecular mass calcu-
lated with peptide-mass tool (http://ca.expasy.org/tool/peptide-mass.html accessed on 15 March 2020) [54].
c Subcellular localization predicted with PSORT (http://psort.nibb.ac.jp/ accessed on 15 March 2020) [55].
d All predicted N-glycosylation sites/predicted glycosylation sites with 50% probability were analyzed by
NetNGly (http://www.cbs.dtu.dk/servies/NetNGly/ accessed on 15 March 2020) [47]. e Phosphorylation
site with 50% probability/predicted phosphorylation site with 90% probability was analyzed by NetPhos
(http://www.cbs.dtu.dk/services/NetPhos/ accessed on 15 March 2020) [48]. f S: secretory pathway. g M: mito-
chondria. h -: non-determined.

Table 3. Predicted cis-acting elements of the BoCKX genes and its functions.

Cis-Element Consensus Sequence Function References

TATA box TATAAT Core promoter cis-element of genes in eukaryotes [50]

CAAT box CAAT The CAAT box is a conserved consensus sequence as
the binding site of the RNA transcriptional factor [50]

As-1 box TGACG Activation sequence 1 (as-1) is a salicylic acid (SA)- and
auxin-responsive element [53,56,57]

NGATT N=G/A/C/T GATT Arabidopsis cytokinin response regulators ARR1
binding element [52,58,59]

4. Discussion

A multi-gene family of CKX in plants has been reported previously [17,36]. In this
study, we identified three cytokinin oxidase/dehydrogenase genes from green bamboo
by screening a bamboo genomic DNA library (Figure 1). In the genomic DNA library
construction, 9–23 kb bamboo genomic fragments were ligated with a phage vector [7].
Fortunately, four positive clones isolated contained three full coding regions as well as
different sizes promoter regions (Figure 1). BoCKX1 and BoCKX3 genes had identical exon-
intron structures (Figure 2A) as well as 92% amino acid sequence identity (Table 1). The
exon-intron structure of the BoCKX2 was slightly different in comparison with the above
two genes (Figure 2A). All three BoCKX genes showed similar exon-intron organizations
between other CKX genes (Figure 2B). In theory, cytoplasmic, ER-membrane, or vascular-
localized CKX should exist in green bamboo, and more screening of bamboo genomic DNA
can be performed.

Several putative cis-acting elements were predicted from promoter regions of the
BoCKX1–3 genes (Figure 5, Figure 6, and Figure 7), and the functions of the motifs were
listed in Table 3. All three BoCKX genes contained a conserved TATA box and a typical
CAAT box was identified in the upstream site of TATA box of the BoCKX2 [50]. CKX
gene expression is induced by abiotic stress and plant hormones, such as abscisic acid
and cytokinins [25]. As-1 box [53,56,57] and NGATT motif [52,58,59] were present in the
5′-flanking regions of BoCKX genes, suggesting that the BoCKX gene expressions may be
affected by different plant hormones and cytokinin response regulator proteins.

http://ca.expasy.org/tool/peptide-mass.html
http://psort.nibb.ac.jp/
http://www.cbs.dtu.dk/servies/NetNGly/
http://www.cbs.dtu.dk/services/NetPhos/
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