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Abstract: The network pharmacology (NP) approach is a valuable novel methodology for under-
standing the complex pharmacological mechanisms of medicinal herbs. In addition, various in silico
analysis techniques combined with the NP can improve the understanding of various issues used
in natural product research. This study assessed the therapeutic effects of Arum ternata (AT), Poria
cocos (PC), and Zingiber officinale (ZO) on hyperlipidemia after network pharmacologic analysis. A
protein–protein interaction (PPI) network of forty-one key targets was analyzed to discover core
functional clusters of the herbal compounds. The Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway and gene ontology (GO) term enrichment analysis identified significant categories of hy-
polipidemic mechanisms. The STITCH database indicated a high connection with several statin
drugs, deduced by the similarity in targets. AT, PC, and ZO regulated the genes related to the energy
metabolism and lipogenesis in HepG2 cells loaded with free fatty acids (FFAs). Furthermore, the
mixture of three herbs had a combinational effect. The herbal combination exerted superior efficacy
compared to a single herb, particularly in regulating acetyl-CoA carboxylase (ACC) and carnitine
palmitoyltransferase 1 (CPT-1). In conclusion, the network pharmacologic approach was used to
assess potential targets of the herbal combination for treatment. Experimental data from FFA-induced
HepG2 cells suggested that the combination of AT, PC, and ZO might attenuate hyperlipidemia and
its associated hepatic steatosis.

Keywords: network pharmacology; GO enrichment analysis; key target validation; hyperlipidemia;
hepatic steatosis; herbal combination; combinational effect; Arum ternata; Poria cocos; Zingiber officinale

1. Introduction

Hyperlipidemia is a status of an elevated lipid profile in the blood due to lipid
metabolic disorders [1]. The WHO announced that hyperlipidemia and high blood pressure,
along with alcohol consumption and smoking, are the major causes of fatality in recent
years [2]. Hyperlipidemia is generally treated with dietary intervention and hypolipidemic
agents by a clinical practitioner according to the lipid profiles of the patient [3]. The clinical
features of hyperlipidemia are elevated lipids in the bloodstream, including fat, fatty acids,
cholesterol, phospholipids, and triglycerides [4]. The reported environmental factors of
hyperlipidemia were obesity, excessive alcohol intake, BMI, and genetic factors, includ-
ing LDL (low-density lipoprotein), apoA-I, apoE, and microsomal triglyceride transfer
protein [5,6]. Dietary patterns fundamentally impact increased LDL cholesterol levels [7].
Elevated LDL cholesterol is a significant clinical marker of patients with atherosclerosis
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or several cardiovascular diseases because it describes disorders in lipid profiles [8]. The
significant complications of hyperlipidemia include atherosclerosis, coronary artery disease,
myocardial infarction, and ischemic stroke [9]. Reducing LDL cholesterol is considered the
first goal in treating hyperlipidemia to lower the risk of cardiovascular disease [3].

The first-line medication for hyperlipidemia includes statins, whose mechanism is
the inhibition of HMG-CoA reductase, which is the rate-limiting enzyme of cholesterol
synthesis [9]. Studies have reported rhabdomyolysis, muscle pain, and myositis as side
effects of statin drugs [10]. Increased serum statin concentration or decreased body muscle
mass increases the risk of statin-associated muscle symptoms [10]. Statin treatment has
been associated with new-onset diabetes, but the exact mechanisms are unknown [11,12].

The recent trend in studying mechanisms of herbal medicine adopts network pharma-
cology as a feasible tool for mapping the known interactions and analyzing networks be-
tween natural drugs and target genes to identify potential targets based on multi-compound
and multi-target theory [13]. This approach, based on a widely existing database, can form
an initial understanding of the mechanism of action of many polyherbal prescriptions [14].
One study showed that the Network Pharmacology techniques presented significant results
for hyperlipidemia [15]. The characteristics of symptoms from hyperlipidemia and chronic
metabolic disorders can be recognized as ‘phlegm’, which is a pathological byproduct in
oriental medicine, and differentiated or treated as ‘damp-phlegm’ phenotype (or pattern)
patient by practitioners [16]. Banxia Baizhu Tianma Decoction (BBTD) is a representative
prescription that treats patients who have phlegm patterns with oriental medicine [17]. In
addition, there are reports that BBTD attenuated high blood pressure [17]. Yijin-tang is a
traditional prescription for hyperlipidemia and atherosclerosis in oriental medicine [18]. In
addition, Yijin-tang improved systemic inflammation caused by obesity, which can cause
hyperlipidemia, and improved insulin resistance [19]. The common medicinal herbs of
these prescriptions are Pinelliae Tuber (Arum ternata, AT), Poria Sclerotium (Poria cocos, PC),
and Zingiberis Rhizoma (Zingiber officinale, ZO). These three herbs were also listed in the
top five most frequently found herbs in phlegm-eliminating herbal prescriptions, according
to a recent study [20]. ZO inhibited lipid peroxidation using a high-cholesterol-fed rat
model by scavenging radicals. PC was proven to be effective in a high-fat-diet-induced
hyperlipidemia rat model via modulating the metabolic pathways [21,22]. In addition, AT
lowered the blood triglyceride and free fatty acid levels when administered for six weeks
using an obese mouse model [23].

Non-alcoholic fatty liver disease (NAFLD) is one of the most common metabolic liver
disorders worldwide and is closely associated with metabolic syndromes, such as dyslipi-
demia and obesity [24]. The main characteristic of NAFLD is too much fat stored in the
liver [25]. Evidence suggests that NAFLD causes dyslipidemia, such as hyperlipidemia [26].
Decreased LDLR expression on the cell surface of NAFLD may discourage the removal of
LDL cholesterol from the sera [27]. Therefore, targeting NAFLD is a potential strategy for
attenuating hyperlipidemia [26].

The phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) pathway is an intra-
cellular signal transduction pathway that plays a pivotal role in glucose, lipid, and protein
metabolism [28]. The level of AKT phosphorylation decreased in the muscle, liver, and vis-
ceral adipose tissues in obese patients with NAFLD [29]. In NAFLD, the phosphorylation
of AMP-activated protein kinase (AMPK) decreases fatty acid and cholesterol synthesis by
regulating the expression of adipogenesis genes (Acetyl-CoA carboxylase, ACC; Peroxi-
some proliferator-activated receptor gamma, PPARG; CCAAT Enhancer Binding Protein
Alpha, CEBPA; and 3-Hydroxy-3-methylglutaryl-CoA Reductase, HMGCR), as well as in-
creasing the expression of fatty acid oxidation and lipolysis genes, such as serine/threonine
kinase 1 (CPT1) [30–32]. AMPK directly impacts lipid metabolism as a regulator of energy
expenditure, but FFAs directly impair hepatic glucose and lipid homeostasis [33].

Using the latest network pharmacology technique and online pharmacological database,
this study analyzed the components and target information of three herbal medicines to
find targets and mechanisms that can modulate hyperlipidemia. In addition, an in vitro
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study was performed to verify the mechanism of these herbs estimated by network phar-
macology using a fatty acid-induced hepatic steatosis model. Finally, an analysis of the
efficacy and mechanism of the three medicinal herbs that can be used in the prescription of
hyperlipidemia highlights their potential for treating hyperlipidemia.

2. Materials and Methods
2.1. Data Preparation
Data Acquisition of Herbs from the Online Database

The TCMSP (https://tcmsp-e.com accessed on 12 August 2022) [34], which is a phar-
macology database of Traditional Chinese Medicine, was used to collect the compounds
and targets of the herbal combination. The oral bioavailability (OB) and drug-likeness
(DL) were used for screening of bioactive compounds [18]. OB represents the rate and
extent of an active ingredient or active moiety that is absorbed into the blood circulation
and becomes available at the site of action [35]. DL can describe the molecular properties
affecting the pharmacodynamics and pharmacokinetics [36]. The threshold values of the
two indices were ≥30% (OB) and ≥0.18 (DL) [37]. The results from the TCMSP database
were reinforced using the OASIS database to sum the additional bioactive compounds with
proper literature-based evidence for their activity (https://oasis.kiom.re.kr/accessed on 12
August 2022).

2.2. Hyperlipidemia-Associated Targets Prediction

Information on hyperlipidemia-associated target genes was collected from the Dis-
GeNET (https://www.disgenet.org/, accessed on 17 August 2022) and genecards (https:
//www.genecards.org/, accessed on 17 August 2022) [38,39]. “Hyperlipidemia” was used
for the search, and only Homo sapiens proteins were selected. The distributional results of
targets and compounds from herbs were presented as Venn diagrams using bioinformatics
and evolutionary genomics website (http://bioinformatics.psb.ugent.be/webtools/Venn/
(accessed on 17 August 2022)) [40].

2.3. Protein–Protein Interaction (PPI) Network Construction

A PPI network with STRING (Switzerland) was produced using a query list of target
genes and exported to Cytoscape software version 3.9.1 (USA), a free software package
for visualizing, modeling, and analyzing molecular and genetic interaction networks
(confidence score = 0.400) [41]. The total PPI network was clustered functionally using
MCODE (USA) and analyzed further with ClueGO (USA) and CluePedia (USA), which
are Cytoscape plugins (USA) [41–43]. The STRING database aims to provide a critical
assessment and integration of protein–protein interactions, including direct interactions [44].
A protein–chemical network was then screened using the STITCH database version 5.0
(USA) by submitting a target gene list [45].

2.4. Gene Ontology (GO) Terms and KEGG Pathway Enrichment Analysis

The enrichment of GO terms of BP was analyzed in the DAVID database (USA). Kyoto
Encyclopedia of Genes and Genomes (KEGG) signaling-pathway enrichment analysis was
performed using the Database for Annotation, Visualization, and Integrated Discovery
(DAVID) v.6.8 (https://david.ncifcrf.gov/, accessed on 29 August 2022) [46]. A list of target
genes was submitted, and the gene identifier was set to ‘official gene symbol’.

The false discovery rate (FDR) was used as a statistical test method of the enrichment
analysis in the DAVID database, which is based on fisher’s exact test [47]. The data of
relative gene ratio, adjusted p-value, and gene counts of each GO term and KEGG were
processed and presented as bubble plots using the R package (ggplot2) and public script in
R studio (USA) [48].

https://tcmsp-e.com
https://oasis.kiom.re.kr/accessed
https://www.disgenet.org/
https://www.genecards.org/
https://www.genecards.org/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://david.ncifcrf.gov/
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2.5. Chemicals and Antibodies

Dulbecco’s Modified Eagle’s Medium (DMEM) was purchased from Hyclone (Lo-
gan, UT, USA), and fetal bovine serum (FBS) and penicillin/streptomycin solution were
purchased from Invitrogen (Carlsbad, CA, USA). The EZ-Cytox assay kit, obtained from
Daeil Lab Service (Chungcheongkuk-do, South Korea), was used to measure cell viabil-
ity. The phosphorylation-form or non-phosphorylation-form primary antibodies of ACC
(Acetyl-CoA carboxylase), AMPK (AMP-activated protein kinase), AKT (Protein kinase B),
CPT-1 (Carnitine palmitoyltransferase-1) were purchased from Cell signaling Technology
(Berkeley, CA, USA), and β-actin was obtained from Santa Cruz Biotechnology (Santa Cruz,
CA, USA), which also supplied secondary antibodies. The oligonucleotide primers for
real-time qPCR were produced by Macrogen (Seoul, South Korea).

2.6. Preparation of Samples

Dried herbs of A. ternata (AT), P. cocos (PC), and Z. officinale (ZO) were purchased from
Herbmaul (Chungcheongbuk-do, South Korea). To prepare the extract, dried herbs (100 g)
were ground to a powder and extracted with 500 mL in distilled water at 100 ◦C for 15 min.
In addition, the mixed sample was blended with equal weights of AT, PC, and ZO (33 g
each). The hot water extracts were filtered twice through 8 µm-pore-size Whatman filter
paper, concentrated by rotary evaporation (Buchi, Flawil, Switzerland), and freeze-dried
to obtain lyophilized extracts of AT, PC, and ZO. These were then eluted with DPBS and
filtered through a 0.22 µm syringe filter before cell treatment.

2.7. Cell Culture and Treatment

HepG2 cells (a human hepatocellular carcinoma cell line) were purchased from the
Korean Cell Bank (no. 88065, Seoul, South Korea) and cultured in DMEM supplemented
with a 1% penicillin/streptomycin and 10% FBS at 37 ◦C in humidified 5% CO2 environment.
To evaluate anti-intracellular lipid accumulation effects, the FFAs (oleic acid and palmitic
acid, 2:1, v/v, respectively) were dissolved in DMSO at 1 mM concentrations. The HepG2
cells were serum-starved for 12 h, cultured with serum-free DMEM containing 1% bovine
serum albumin (BSA), and exposed to 1 mM FFAs [49]. Each sample was co-treated during
incubation in FFA-BSA complex media for 24–48 h for further analysis.

2.8. Cell Viability Assay

The cell viability of HepG2 cells was determined using the EZ-Cytox cell viability
assay kit (Seoul, South Korea) according to the manufacturer’s instructions with slight
modifications [50]. Briefly, HepG2 cells were plated at a density of 4 × 104 cells/well
in 96-well plates. After 24 h incubation, the medium was changed to FBS-free DMEM
containing a serially diluted sample (0–50 µg/mL), treated with different concentrations,
and incubated at 37 ◦C in a humidified containing 5% CO2 for 24 h. Then, 10 µL of EZ-
Cytox reagent was added to each well, and cells were incubated for 1 h. Optical densities
(ODs) were measured at 450 nm using a microplate reader (Versamax, Molecular Devices,
CA, USA).

2.9. Western Blot Analysis

The protein levels related to hepatic steatosis were measured by Western blot. The
whole protein was isolated using a RIPA buffer (Thermo Fisher Scientific, Rockford, IL,
USA) containing a protease and phosphatase inhibitor cocktail (Gendepot, Barker, TX, USA)
after the cells were washed with Dulbecco’s phosphate-buffered saline (DPBS). The protein
concentrations were determined using a BCA kit (Thermo Fisher Scientific, Rockford, IL,
USA). Equal amounts of protein sample (40 µg/mL) were mixed with the 5× Lane Marker
Reducing sample buffer (BioRad, Hercules, CA, USA) and denatured at 95 ◦C for 10 min.
The protein lysates were loaded into 7.5% SDS-PAGE gels, electrophoresed, and transferred
to PVDF membranes activated by methanol at 100 V for 60 min using an electrophoretic
transfer cell (Bio-rad, Hercules, CA, USA). The membranes were blocked with 5% BSA in
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TBS/T (TBS containing 0.1% Tween 20) for 2 h at room temperature. The blots were incu-
bated with primary antibodies (diluted at 1:1500 in TBS/T containing 3% BSA) overnight
at 4 °C with gentle shaking. After washing with TBS/T, the membranes were incubated
with secondary antibodies (diluted at 1:3000 in TBS/T containing 1% BSA) at room temper-
ature for 3 h. The membrane was detected using a Western blot imaging system (Fusion
Solo chemiluminescence system, Vilber Lourmat, Collegien, France), and proteins were
visualized using a Super Signal West Pico ECL buffer (Thermo Fisher Scientific, Rockford,
IL, USA) [51].

2.10. Quantitative Real-Time Polymerase Chain Reaction

The expression levels related to hepatic steatosis were determined using a quantitative
real-time polymerase chain reaction (qPCR). The total RNA was isolated from HepG2 cells
using a TRIzol reagent (Thermo Fisher Scientific, Rockford, IL, USA). According to the man-
ufacturer’s instructions. Briefly, reverse transcription was performed using AccuPower RT
PreMix (Bioneer, Daejeon, Republic of Korea) and oligo deoxythymine (dt) 18 primers (Invit-
rogen, Carlsbad, CA, USA). Primer-specific binding cDNA was amplified on a Light Cycler
480 PCR system (Roche, Basel, Switzerland) using 10 µL of SYBR green fluorescence dye
Mastermix (Roche, Basel, Switzerland), 8 µL of ultrapure water, 1 pmol/µL of primer, and
1 µL of template cDNA. At least 45 amplification cycles consisting of denaturation at 95 ◦C
for 10 min, annealing at 55–58 ◦C for 15 s, and extension at 72 ◦C for 15 s. The following
primers were used: CEBPA-forward, 5′-GCGCAAGAGCCGAGATAAAG-3′, reverse, 5′-
CACGGCTCAGCTGTTCCA-3′; PPARG-forward, 5′-ATGCCAAAAATATCCCTGGTTTC-
3′, reverse, 5′-GGAGGCCAGCATGGTGTAGA-3′; ACC-forward, 5′-TGGCGTCCGCTCTG-
TGATA-3′, reverse, 5′-CATGGCGACTTCTGGGTTG-3′; and HMGCR-forward, 5′-TGATT-
GACCTTTCCAGAGCAAG-3′, reverse, 5′-CTAAAATTGCCATTCCACGAGC-3′; and β-
actin-forward, 5′-GACGGCCAGGTCATCACTATTG-3′, reverse, 5′-CCACAGGATTCCATA-
CCCAAGA-3′, used as the internal control. Ct results with a melting curve were checked
using Roche LightCycler 480 software (Roche Applied Science, Carlsbad, CA, USA). The Ct
values for the expression of each gene were normalized using the Ct values of β-actin gene
expression [52].

2.11. Oil Red O Staining

The lipid accumulation was estimated by staining the intracellular lipid droplets
with the Oil Red O reagent (Thermo Fisher Scientific, Rockford, IL, USA). HepG2 cells
were plated at a density of 4 × 105 cells/well in six-well plates. After 24 h, the cells were
incubated with the samples (25, 50 µg/mL) and FFAs (1 mM) for 48 h. The cells were
washed with DPBS and then fixed with 10% formalin for one hour at room temperature.
After fixation, the cells were washed with 60% isopropanol and stained with a prepared
working solution of Oil Red O for 15 min. The stained cells were washed three times with
ultrapure water and dried. The cells were examined under an inverted microscope system
with the camera (DMI 6000, Leica, Wetzlar, Germany), and the stains were re-dissolved in
pure isopropanol to measure OD at 520 nm wavelength [53].

2.12. Statistical Analysis

The analysis was conducted using one-way ANOVA in Graph Pad Prism version 5.0
software (Graph Pad, La Jolla, CA, USA). The standard curves were constructed using
Excel and PowerPoint (Microsoft, Redmond, WA, USA). The significance of the differences
between the untreated controls and the FFs-treated cells, and between the FFA-treated and
the sample-treated cells, were determined. The results are presented as means ± SDs, and
p-values of <0.05 were considered significant.
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3. Results
3.1. Selection of Potential Compounds from AT, PC, and ZO

The data of AT, PC, and ZO compounds and targets were retrieved from TCMSP and
OASIS. Table 1 lists the compounds studied, and Figure 1A presents a data plot. ZO, PC,
and AT have 6, 7, and 33 compounds; all three herbs commonly share one compound
(palmitic acid).
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3.2. Target Prediction

In total, 168 and 291 targets for hyperlipidemia from disease databases were screened
for three herbs from TCMSP (Figure 1B,C). As a result, 41 common targets assumed to
be involved with hyperlipidemia were obtained between the target lists of the disease
database and TCMSP (Figure 1D). The distributions of targets were visualized using a Venn
diagram.
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Table 1. Compounds of Zingiber officinale, Poria cocos and Arum ternata.

Compound List

Herb Name CID OB DL

Zingiber officinale
(ZO)

(10)-Gingerol 168115 19.14 0.28
10-Gingerdione 5317591 21.42 0.29

6-methylgingediacetate2 53179662 48.73 0.32
shogaol 5281794 31.00 0.14

poriferast-5-en-3beta-ol 457801 36.91 0.75
thymol 6989 41.47 0.03

Poria cocos
(PC)

Cerevisterol 10181133 37.96 0.77
Dehydroabietic acid 94391 14.93 0.28

(2R)-2-[(3S,5R,10S,13R,14R,16R,17R)-3,16-
dihydroxy-4,4,10,13,14-pentamethyl-

2,3,5,6,12,15,16,17-octahydro-1H-
cyclopenta[a]phenanthren-17-yl]-6-

methylhept-5-enoic
acid

10743008 30.93 0.81

Ergosterol peroxide 5351516 40.36 0.81
ergosta-7,22E-dien-3beta-ol 5283628 43.51 0.72

hederagenin 73299 22.42 0.74
trametenolic acid 12309443 38.71 0.80

Arum ternata (AT)

(3S,6S)-3-(benzyl)-6-(4-
hydroxybenzyl)piperazine-2,5-quinone 11438306 46.89 0.27

10,13-eicosadienoic 549062 39.99 0.20
3,4-Dihydroxybenzaldehyde 8768 38.35 0.03

4-Methoxybenzoic acid 7478 29.69 0.03
8-Octadecenoic acid 5282758 33.13 0.14

Baicalein 5281605 33.52 0.21
Xanthosine 64959 44.72 0.21
caffeic acid 689043 25.76 0.05
oct-1-ene 8125 39.25 0.01
Baicalin 64982 40.12 0.75
Choline 305 0.47 0.01

9-oxononanoic acid 75704 19.60 0.03
docosanoic acid 8125 15.69 0.26
9-Heptadecanol 136435 14.24 0.09

Palmitic acid 985 19.30 0.10
Baicalein 5281605 33.52 0.21

Hydroquinone 785 29.26 0.02
Anethole 637563 32.49 0.03
Adenine 190 62.81 0.03
Cavidine 193148 35.64 0.81

Chrysophanol 10208 18.64 0.21
Coniferin 5280372 10.28 0.27

Cycloartenol 92110 38.69 0.78
Ephedrine 9294 43.35 0.03
Furfural 7362 34.35 0.01

gondoic acid 5282768 30.70 0.20
Homogentisic acid 780 92.44 0.04

Linoleic acid 5280450 41.90 0.14
Oleic acid 445639 33.13 0.14

Pentadecanoic acid 13849 20.18 0.08
Sitogluside 5742590 20.63 0.62

Stigmast-4-en-3-one 5484202 36.08 0.76
Thymidine 5789 11.34 0.11
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Table 1. Cont.

Compound List

Herb Name CID OB DL

AT ∩ ZO
beta-sitosterol 222284 15.00 0.81
Stigmasterol 5280794 43.83 0.76

AT ∩ ZO ∩ PC Palmitic acid 985 19.30 0.10

3.3. PPI Networks Construction and Analysis

The PPI Network was built for 41 targets expected to be significant for hyperlipidemia
using the STRING Database. The full network consisted of 41 nodes and can be divided into
two clusters using the MCODE of Cytoscape (Figure 2). The targets were arranged in order
of importance of network parameters of degree, betweenness centrality, and stress. AKT
Serine/Threonine Kinase 1 (AKT1), peroxisome proliferator-activated receptor γ (PPARγ),
and prostaglandin-endoperoxide synthase 2 (PTGS2) act as important targets (Table 2).
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Figure 2. (A) Full protein–protein interaction network of 41 hyperlipidemia-related target genes
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Cytoscape.

Table 2. Network parameters analyzed from the total PPI network.

Degree Stress Betweenness
Centrality

AKT1 31 894 0.131579
PPARG 27 682 0.092949
PTGS2 26 494 0.049889
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Table 2. Cont.

Degree Stress Betweenness
Centrality

CAT 26 484 0.049086
VEGFA 25 454 0.042859
PPARA 23 448 0.049087
CRP 23 542 0.066034
IL10 22 238 0.018832
SERPINE1 21 476 0.049813
MMP9 19 164 0.011888
HIF1A 19 178 0.012385
PLG 18 472 0.057540
ESR1 17 154 0.010555
PTEN 16 228 0.023134
MPO 15 314 0.053684
TGFB1 14 26 0.001131
SELP 12 98 0.007016
FASN 12 104 0.011726
PON1 11 100 0.012281
LPL 11 72 0.006200
CD40LG 11 42 0.004880
AR 11 94 0.010259
GCG 11 42 0.005491
AHR 11 30 0.001772
SOD1 10 12 0.000844
HMGCR 9 256 0.051766
DDIT3 9 26 0.001189
CYP1A1 9 50 0.005523
BAX 8 8 0.000513
PTGS1 8 4 0.000256
AKR1B1 7 2 0.000056
FABP1 7 18 0.001893
CETP 6 6 0.000569
F7 5 32 0.005104
PIK3CG 4 2 0.000214
ACHE 4 6 0.000341
ADRB2 3 0 0.000000
NR3C2 3 8 0.000383
SERPIND1 2 0 0.000000
LYZ 1 0 0.000000
SOAT1 1 0 0.000000

3.4. CTP Visualization of Cytoscape

Forty-one targets were analyzed through the KEGG pathway. Based on this, the
compounds–targets–pathways network was visualized in Cytoscape (Figure 3). The top
five pathways expected to be effective for hyperlipidemia were identified by importing
41 targets into the DAVID database. Each node was connected to the edges of the com-
pounds, targets, and pathways that are expected to be correlated with each other. Table 3
lists the top enriched KEGG pathways related to lipid metabolism analyzed using the target
gene list.
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and their targets. As a result, the pathway of the ‘AGE-RAGE signaling pathway in 
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Figure 3. Visualization of the compounds–targets–pathways network constructed with the compo-
nents of the herbal combination.

3.5. Network Analysis Using ClueGO, CluePedia

Using the full target list of the herbal combination, the network of major pathways
and its component targets was visualized using ClueGO and CluePedia in Cytoscape
(Figure 4). The ClueGO network could identify and visualize the interaction of pathways
and their targets. As a result, the pathway of the ‘AGE-RAGE signaling pathway in
diabetic complication’ interconnected two other significant pathways in lipid disorders,
such as ‘regulation of lipolysis in adipocytes’ and ‘PPAR signaling pathway’, with the core
target of AKT1 or PPARG (Figure 4A). In addition, CluePedia illustrated the layout of the
disposition of major pathways and their component genes according to their cellular layer
of localization (Figure 4B).

Table 3. Enriched KEGG pathway obtained from DAVID database.

KEGG Pathway

Entry Pathway FDR Genes

hsa04923 Regulation of lipolysis in
adipocytes 0.00039 AKT1, PTGS1, PTGS2,

ADRB2

hsa04932 Non-alcoholic fatty liver
disease 0.00054 AKT1, BAX, DDIT3,

PPARA, TGFB1

hsa03320 PPAR signaling pathway 0.00062 FABP1, LPL, PPARA,
PPARG

hsa04152 AMPK signaling
pathway 0.0019 AKT1, FASN,

HMGCR, PPARG
hsa04979 Cholesterol metabolism 0.0023 CETP, LPL, SOAT1
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results of cluster 1, confirming that they had significant results for cholesterol, 
triglyceride, the PPAR signaling pathway, and cholesterol metabolism. C and D are the 
results of cluster 2. Significant results were confirmed for lipid response, non-alcoholic 
fatty liver, and atherosclerotic disease. 

 
Figure 5. Bubble plot visualization of enrichment analysis (BP terms and KEGG pathways) from 
two target clusters from the herbal combination. Significant (A) BP terms and (B) KEGG pathways 
of target cluster 1. Significant (C) BP terms and (D) KEGG pathways of target cluster 2. 

Figure 4. Visualization of the KEGG pathways and targets of the herbal combination analyzed by
ClueGO and CluePedia. (A) Visualization of significantly enriched KEGG pathways and their genes
(created with ClueGO) (B) Cerebral layout of significant KEGG pathways and their genes by their
cellular compartment (created with CluePedia).

3.6. BP and KEGG Enrichment Analysis

For a detailed analysis of the 41 targets, two clusters divided using Cytoscape’s
MCODE app were analyzed to obtain information on the pathways of the candidate
targets through the KEGG pathway analysis in the DAVID database, and each cluster was
represented using the bubble plot of the GGPlot2 package (Figure 5). A and B are the results
of cluster 1, confirming that they had significant results for cholesterol, triglyceride, the
PPAR signaling pathway, and cholesterol metabolism. C and D are the results of cluster
2. Significant results were confirmed for lipid response, non-alcoholic fatty liver, and
atherosclerotic disease.

3.7. Visualization of the Target–Chemical Interaction Using STITCH

As the enrichment analysis results from the functional cluster indicated the significant
potential of targets on lipid disorders, this study investigated the chemical-target network
in the STITCH database (Figure 6). As a result, the targets from cluster 1 harbor strong
interactions with various currently used statins.

3.8. AT, PC, ZO, and Mixed Extract (MIX) Improved the Energy Metabolism-Related Proteins in
the Hepatic Steatosis Model

The HepG2 cells did not show any significant decrease in viability at <50 µg/mL
(93.96%, 96.37%, 95.84%, and 95.42% at 50 µg/mL of AT, PC, ZO, and MIX, respectively)
(Figure 7A). The influence on the protein expression of ACC, AMPK, AKT, and CPT-1 was
investigated in the steatosis model. At 50 µg/mL, AT and PC stimulated the phospho-
rylation of ACC, AMPK, and AKT and increased CPT-1 expression related to fatty acid
oxidation. In addition, ZO promoted the phosphorylation of AMPK and AKT, and the
expression of CPT-1. In particular, MIX strongly upregulated AKT, AMPK, and CPT-1,
comparable to the effects of AT, PC, and ZO at 50 µg/mL (Figure 7B).
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Figure 7. AT, PC, ZO, and MIX stimulate ACC, AMPK, and AKT phosphorylation in FFA-induced 
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treated with various concentrations (0–50 μg/mL) of AT, PC, ZO, and MIX for 24 h. The results are 
presented as means ± SDs of the percentages determined by three independent experiments versus 
the non-treated controls. (B) HepG2 cells were co-treated with each sample and FFAs for 24 h. 
Western blot analysis shows the effect on the phosphorylation of ACC and AMPK and AKT protein 
expression related to the energy metabolism and lipogenesis in FFA-induced hepatic steatosis 
HepG2 cells. The band intensities were measured by densitometry and normalized versus the 
intensities of the total forms and β-actin. The results are presented as the means ± SDs of three 
independent experiments. # p < 0.05 versus FFA-treated controls, and * p < 0.05, ** p < 0.01 versus 
FFA-treated HepG2 cells. 

3.9. AT, PC, and ZO Regulated the Expression of Genes Related to Lipogenesis and Reduced FFA-
Induced Intracellular Lipid Accumulation 

The influence of herbal extracts on the gene expressions of CEBPA, PPARG, and 
HMGCR was investigated in FFA-induced HepG2 cells incubated with various 
concentrations of AT, PC, ZO, and MIX for 6 h or 48 h. HepG2 cells stimulated with 1 mM 
FFAs showed increased CEBPA, PPARG, and HMGCR mRNA expressions. AT and ZO 
prevented these upregulations. The mixture of AT, PC, and ZO regulated these, excluding 
the mRNA expression of HMGCR (Figure 8A). Furthermore, Oil Red O staining 
demonstrated the superior efficacy of MIX in reducing lipid accumulation both in optical 
density and in the microscopic analysis (Figure 8B). 

Figure 7. AT, PC, ZO, and MIX stimulate ACC, AMPK, and AKT phosphorylation in FFA-induced
hepatic steatosis and activate CPT-1 related to fatty acid oxidation. HepG2 cells were incubated in
the absence or presence of FFAs (1 mM) with AT, PC, ZO, and MIX for 24 h. (A) HepG2 cells were
treated with various concentrations (0–50 µg/mL) of AT, PC, ZO, and MIX for 24 h. The results
are presented as means ± SDs of the percentages determined by three independent experiments
versus the non-treated controls. (B) HepG2 cells were co-treated with each sample and FFAs for 24 h.
Western blot analysis shows the effect on the phosphorylation of ACC and AMPK and AKT protein
expression related to the energy metabolism and lipogenesis in FFA-induced hepatic steatosis HepG2
cells. The band intensities were measured by densitometry and normalized versus the intensities
of the total forms and β-actin. The results are presented as the means ± SDs of three independent
experiments. # p < 0.05 versus FFA-treated controls, and * p < 0.05, ** p < 0.01 versus FFA-treated
HepG2 cells.

3.9. AT, PC, and ZO Regulated the Expression of Genes Related to Lipogenesis and Reduced
FFA-Induced Intracellular Lipid Accumulation

The influence of herbal extracts on the gene expressions of CEBPA, PPARG, and
HMGCR was investigated in FFA-induced HepG2 cells incubated with various concen-
trations of AT, PC, ZO, and MIX for 6 h or 48 h. HepG2 cells stimulated with 1 mM FFAs
showed increased CEBPA, PPARG, and HMGCR mRNA expressions. AT and ZO prevented
these upregulations. The mixture of AT, PC, and ZO regulated these, excluding the mRNA
expression of HMGCR (Figure 8A). Furthermore, Oil Red O staining demonstrated the
superior efficacy of MIX in reducing lipid accumulation both in optical density and in the
microscopic analysis (Figure 8B).
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for six or 48 h. (A) Relative expressions of CEBPA, PPARγ, ACC, and HMGCR genes were 
determined by qPCR. (B) The impact on lipid accumulation was evaluated by measuring Oil Red O 
staining and comparing the microscopic images. Representative images (100×) of lipid accumulation 
via Oil Red O staining in HepG2 cells under different conditions. The results are presented as the 
means ± SDs of three independent experiments. # p < 0.05, ## p < 0.01 versus the FFA-treated controls, 
and * p < 0.05, ** p < 0.01 versus FFA-treated HepG2 cells. 
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complex multi-components in extracts [54]. As therapeutic efficacy is based on the 
combined effects of mixed compounds, it was necessary to understand the complex 
interaction between multi-compounds from the herbal medicines and multi-targets of its 
compounds [55]. On the other hand, drug discovery is challenging and time-consuming 
when using conventional experiment-based screening methodologies [56]. 

In recent studies of oriental medicine, however, the network pharmacological 
approach allowed an understanding of the complex mechanisms of activity exerted by 
multiple compounds and an ability to predict the pharmacological activity [57,58]. This 
study deduced the targets, estimated to have a significant impact on hyperlipidemia based 
on the in silico study using network pharmacology analysis, and validated its real impact 
by performing an in vitro study. Several studies investigated the impact of natural 
products on hyperlipidemia using network pharmacology [15,59,60], but studies 
investigating herbal prescriptions (or their combinations) are relatively rare. In the present 
study, herbal combination exerted stronger activity than single herbs on hyperlipidemia 
and their related metabolic disorders, at least in certain aspects. Therefore, this result will 
arouse the interest of fellow researchers to conduct investigations on other herbal 
prescriptions on hyperlipidemia.  

Three major herbs with potential use in hyperlipidemia and its backgrounding 
metabolic disorders were deduced by analyzing the composition of the prescription based 
on the empirical knowledge databases of oriental medicine. Network pharmacology 

Figure 8. AT, PC, ZO, and MIX ameliorate lipogenesis in FFA-induced hepatic steatosis HepG2 cells.
HepG2 cells were incubated in the absence or presence of FFAs (1 mM) with AT, PC, ZO, and MIX for
six or 48 h. (A) Relative expressions of CEBPA, PPARγ, ACC, and HMGCR genes were determined
by qPCR. (B) The impact on lipid accumulation was evaluated by measuring Oil Red O staining and
comparing the microscopic images. Representative images (100×) of lipid accumulation via Oil Red
O staining in HepG2 cells under different conditions. The results are presented as the means ± SDs of
three independent experiments. # p < 0.05, ## p < 0.01 versus the FFA-treated controls, and * p < 0.05,
** p < 0.01 versus FFA-treated HepG2 cells.

4. Discussion

The holistic effects of herbal medicines were difficult to analyze because of their com-
plex multi-components in extracts [54]. As therapeutic efficacy is based on the combined
effects of mixed compounds, it was necessary to understand the complex interaction be-
tween multi-compounds from the herbal medicines and multi-targets of its compounds [55].
On the other hand, drug discovery is challenging and time-consuming when using conven-
tional experiment-based screening methodologies [56].

In recent studies of oriental medicine, however, the network pharmacological ap-
proach allowed an understanding of the complex mechanisms of activity exerted by multi-
ple compounds and an ability to predict the pharmacological activity [57,58]. This study
deduced the targets, estimated to have a significant impact on hyperlipidemia based on
the in silico study using network pharmacology analysis, and validated its real impact
by performing an in vitro study. Several studies investigated the impact of natural prod-
ucts on hyperlipidemia using network pharmacology [15,59,60], but studies investigating
herbal prescriptions (or their combinations) are relatively rare. In the present study, herbal
combination exerted stronger activity than single herbs on hyperlipidemia and their re-
lated metabolic disorders, at least in certain aspects. Therefore, this result will arouse the
interest of fellow researchers to conduct investigations on other herbal prescriptions on
hyperlipidemia.
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Three major herbs with potential use in hyperlipidemia and its backgrounding metabolic
disorders were deduced by analyzing the composition of the prescription based on the
empirical knowledge databases of oriental medicine. Network pharmacology analysis
revealed the key compounds from the herb combination that can modulate multiple targets
critical to certain phenotype differentiation in oriental medicine for hyperlipidemia. In
detail, a seemingly complex target network (PPI network) was divided into two different
functional clusters of targets (Figure. 2). Many common genes, which are closely related
to the pathologic mechanisms of hyperlipidemia were shared by two KEGG pathways
‘regulation of lipolysis in adipocytes’ and ‘PPAR signaling pathway’, as investigated by
ClueGO.

The lipolysis process can be defined as the hydrolysis of triacylglycerol into fatty acids
and glycerol to be used as an energy source [61]. This result might explain the observation
of decreased neural lipid accumulation by three herbal extracts in the hepatic steatosis
model, as demonstrated by the Oil Red O staining assay (Figure 7B).

The PPAR signaling pathway plays a key role in treating dyslipidemia by modulating
the lipoprotein metabolism, which is targeted by fibrates [62,63]. Furthermore, the KEGG
enrichment analysis of the functional clusters demonstrated its relationship with cholesterol
metabolism and non-alcoholic fatty liver disease (Figure 4B,D). The enriched BP term results
of these clusters are limited to cholesterol-related terms, as well as triglycerides, sterol, and
lipid homeostasis (Figure 4A). This appears to be relative merit of the herbal combination
to current statin treatment, of which its primary drug mechanism is to inhibit the rate-
limiting enzyme for cholesterol synthesis [64]. In addition, five significantly enriched
KEGG pathways (p < 0.05), which are strongly involved in lipid metabolism within the
rank of the top 20, were found (Table 2).

The combinational effect was evaluated by comparing the efficacy of single extracts
and mixed extracts. As shown in the in vitro data, a mixed extract of three herbs and
single-herb extracts against FFA-induced hepatic steatosis had a notable effect on the lipid
biosynthesis genes (Figure 7). Moreover, as a complex mixture of bioactive compounds, it
has several additional benefits on energy expenditure (by phosphorylating AMPK) or lipid
catabolism (by increasing CPT1a expression) in the aspects of treating dyslipidemia-related
complications (Figure 6). On these markers, even more favorably, the mixed extract exerted
an enhanced efficacy compared to single-herb extracts. This is more advantageous when
patients with hyperlipidemia usually have comorbidities of other metabolic disorders
related to obesity [65,66]. In addition, the STITCH result suggested that the targets of
the herbal combination have a close interaction with several statins that might imply a
similar drug mechanism. Therefore, the herbal mixture might provide an option to treat
hyperlipidemia with new molecular targets and mechanisms that can ameliorate metabolic
disorders and ultimately alternate statins.

However, this study presented limited evidence of the possibility of the herbal com-
bination on hyperlipidemia and other metabolic disorders. The 41 key target genes do
not include the core targets related to the lipid metabolism, such as SREBF1 and SCD1
(Table 2). Moreover, not all the targets could be validated in the experiments deduced
from network pharmacology. The herbal combination sample might show efficacy in the
steatosis model but not in hyperlipidemia because it could not be determined that the
reduced accumulation of lipid droplets was not caused by decreased fatty acid uptake in
media.

The hypolipidemic efficacy of the herbal combination needs to be validated in in vivo
studies. In particular, a comparative study to evaluate the overall efficacy of the herbal
combination on metabolic disorders, not only for dyslipidemia, should be conducted in
comparison with the current statin doses.
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5. Conclusions

The pharmacological activities of three herbs, including ZO, AT, PC against dyslipi-
demia, were estimated via network pharmacological approaches. The herbs potentially
target several key proteins and pathways critical to lipid metabolism. The efficacy and
mechanism of the herbal extracts were investigated in hepatic steatosis model in vitro.
The mixed herb extract showed a stronger potential against hepatic steatosis compared
to single-herb extracts. As a result, we suggest that the herbal combination could be a
candidate drug for hyperlipidemia which can alternate statin, with significant benefits on
modulating lipid metabolism.
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