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Abstract: Conflicting phylogenetic signals are pervasive across genomes. The potential impact of such
systematic biases may be reduced by phylogenetic approaches accommodating for heterogeneity or
by the exclusive use of homoplastic sites in the datasets. Here, we present the complete mitogenome
of Lynceus grossipedia as the first representative of the suborder Laevicaudata. We employed a
phylogenomic approach on the mitogenomic datasets representing all major branchiopod groups
to identify the presence of conflicts and concordance across the phylogeny. We found pervasive
phylogenetic conflicts at the base of Diplostraca. The homogeneity of the substitution pattern tests and
posterior predictive tests revealed a high degree of compositional heterogeneity among branchiopod
mitogenomes at both the nucleotide and amino acid levels, which biased the phylogenetic inference.
Our results suggest that Laevicaudata as the basal clade of Phyllopoda was most likely an artifact
caused by compositional heterogeneity and conflicting phylogenetic signal. We demonstrated that the
exclusive use of homoplastic site methods combining the application of site-heterogeneous models
produced correct phylogenetic estimates of the higher-level relationships among branchiopods.

Keywords: Laevicaudata; mitochondrial genome; compositional heterogeneity; phylogenetic signal;
model violation

1. Introduction

With an increasing number of mitogenomes being sequenced and various methodolog-
ical advances, mitogenomic data have been successfully utilized to improve phylogenetic
reconstructions across a wide range of taxa [1–3]. The large amount of available mitoge-
nomic data has reduced the stochastic error (sampling error) on phylogenetic inference.
Nevertheless, deep relationships between Arthropoda at the interordinal or intraordinal
level have not been fully resolved, resulting in topologies with high support frequently
conflicting with morphological and nuclear phylogenies [4–6]. Such strong support but
incorrect phylogenies represent systematic errors which can be traced back to homoplastic
characteristics in datasets and model violations [7,8]. Substitutional saturation was the most
frequently discussed cause of homoplasy in nucleotide gene data [9]. Most substitution
models assume compositional homogeneity (stationary), but nucleotide and protein se-
quences might also exhibit nonstationarity, which strongly violates the assumptions of the
stationary models [10,11]. The most common source of model violations are compositional
heterogeneity and rate heterogeneity among lineages [12–14].

Suborder Laevicaudata Linder, 1945 (Branchiopoda: Diplostraca), or smooth clam
shrimp, is a unique group of essentially benthic micro-crustaceans. Among branchiopods,
Laevicaudata can be recognized by a usual body length less than 7 mm, a bivalved carapce,
a proportionally large head, bearing a row of large teeth on the mandibular molar surface
and having laminae abdominalis supporting egg clusters [15–19]. Laevicaudata currently
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comprises about 42 valid species worldwide except in Antarctica [15,16,18,20–24]. Laevi-
caudata, including only one family, Lynceidae Baird, 1845, is composed of three genera:
Lynceus Müller, 1776; Lynceiopsis Daday, 1912; and Paralimnetis Gurney, 1931. They are
distinguished by the shape and size of male claspers, characteristic modified second tho-
racopods, and rostrum [15–17,20], and Lynceus represents nearly 90% of all laevicaudatan
species diversity [17,18,25].

The higher-level relationships of Branchiopoda are well resolved based on both mor-
phological and molecular data [26–32]. The class Branchiopoda is divided into two su-
perorders, Anostraca and Phyllopoda, and three extant orders, Anostraca, Notostraca
and Diplostraca. Laevicaudata and Onychocaudata (Spinicaudata, Cyclestherida and
Cladocera) are sister clades, forming the order Diplostraca, which, together with the
order Notostraca, belongs to the superorder Phyllopoda [26–28]. It is widely accepted
that Laevicaudata and Onychocaudata form a well-defined monophyletic order called
Diplostraca [26–30]. Mitogenomes have substantially aided in estimating phylogenetic
relationships within clades of Branchiopoda such as Anostraca, Notostraca and Clado-
cera [33–36], but limited success has been achieved in resolving the deep relationship be-
tween Laevicaudata and Onychocaudata. The large amount of available mitogenomic data
provides a high phylogenetic resolution of the relationships among Cladocera. However,
phylogenetic estimates thus far have resulted in strong support but incorrect phylogenies
for Diplostraca, even using a site-heterogeneous mixture model [37], which might indicate
a systematic bias arising from model violation.

In order to investigate the phylogenetic signal contained in the mitogenomes for major
groups of Branchiopoda, we sequenced and annotated the complete mitogenome of L.
grossipedia (Lynceidae) as the first complete mitogenome of the suborder Laevicaudata.
The aim of this study is to account for the heterogeneity of sequences and dissect phyloge-
netic signals in the mitogenomic dataset, coupling them with available mitogenomes of
Branchiopoda from GenBank (http://www.ncbi.nlm.nih.gov, accessed on 28 September
2022). We evaluated three methods for diminishing the non-phylogenetic signal concerning
their effectiveness in reducing model violations and their influence on the phylogenetic
reconstruction. We also compared the results of phylogenetic reconstruction with different
approaches based on different datasets. Finally, we conducted four-cluster likelihood
mapping analyses (FcLM) to evaluate and visualize the phylogenetic signal in each dataset.

Herein, using the higher-level relationships described above as correct topology, we
presented the pervasiveness of phylogenetic conflicts at the base of Diplostraca. The results
uncovered hitherto unrecognized nonphylogenetic signals as the artifactual origin of the
conflicting topologies. The verification methods explicitly taking systematic bias into
consideration consistently supported the monophyly of the Diplostraca.

2. Materials and Methods
2.1. Sample Collection and DNA Extraction

L. grossipedia was collected from Chengde of Hebei Province, China (116◦10′ E, 41◦28′

N). All samples were morphologically identified and preserved in 95% ethanol at−20 ◦C for
DNA extraction. All specimens and vouchers (No. LGPHECD01-11) were deposited in the
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and
Palaeontology, Chinese Academy of Sciences, Nanjing, China. Total DNA was extracted
using the DNeasy tissue kit (Qiagen, Hilden, Germany) following the manufacturer’s
instructions.

2.2. PCR Amplification, Sequencing, Sequence Assembly, and Gene Annotation

The mitochondrial genome was amplified by Polymerase Chain Reaction (PCR) us-
ing 14 primer pairs (Supplementary Table S1). Amplification reactions and sequencing
were performed according to the previously described method [38], and assembling of
mtDNA fragments, annotation of mitogenome, and comparison followed the procedure of
Sun and Cheng [39]. Overlapped mtDNA fragments were assembled into contigs using

http://www.ncbi.nlm.nih.gov
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BioEdit 7.0.9.0 [40]. Sequence annotation and accurate boundary determination of PCGs
and rRNA genes were first performed by the NCBI’s web interface for BLAST [41] and
then by alignment with the homologous genes from other released sequences of Bran-
chiopoda. Miotochondrial tRNA genes and their secondary structures were identified by a
combination of MITOS online software [42] and tRNAscan-SE 1.2.1 online software [43].

2.3. Sequence Alignment and Substitutional Saturation Test

Mitochondrial genomes of 44 relevant taxa were retrieved from GenBank (http://
www.ncbi.nlm.nih.gov, accessed on 28 September 2022), together with our newly generated
Laevicaudata mitogenome, resulting in a dataset (Supplementary Table S2). The dataset
is composed of 42 ingroup species representing 16 families and 3 orders of Branchiopoda:
Diplostraca (5 species), Notostraca (3 species), and Anostraca (22 species). Hutchinsoniella
macracantha Sanders, 1955 (Cephalocarida: Hutchinsoniellidae) and Squilla biformis Bigelow,
1891 (Malacostraca: Squillidae) were selected as outgroups. The amino acid sequences
of 13 protein-coding genes (PCGs) were aligned using MUSCLE implemented in MEGA
X [44]. The corresponding nucleotide sequences of each PCG were aligned by the aligned
amino acid sequences implemented in DAMBE 6 [45].

We estimated saturation for each PCG, and for the three codon positions using DAMBE
6 [45], which determined an “index of substitution saturation” (Iss) based on the notion of
entropy in information theory. We excluded partitions or genes which showed significant
nucleotide saturation from phylogenetic analyses. The non-synonymous substitution rate
(Ka) for each taxon was calculated in comparison with the outgroup using DAMBE 6 [45].

2.4. Analyses of Sequence Heterogeneity and Phylogenetic Signal Dissection

We calculated the base composition of each taxon for each PCG and compared the AT%
for each gene among the branchiopod species included in this study. The compositional
diversity of amino acids of 13 PCGs across branchiopod suborders was obtained by calcu-
lating the frequency of four amino acids which were encoded by GC-rich codons (glycine,
alanine, arginine and proline; GARP). The homogeneity of substitution pattern (ID test) for
each gene was estimated using a Monte-Carlo method with 1000 replicates implemented in
MEGA X [44]. The null hypothesis that sequences have evolved with the same pattern of
substitution was rejected at α < 0.01. We also evaluated the compositional heterogeneity
in each of the 13 mitochondrial proteins separately by performing posterior predictive
analysis (PPA) with the global test statistic as implemented in PhyloBayes 4.1c [46].

A significant conflict between the branchiopod phylogenies is the placement of Laevi-
caudata. To resolve the deep relationship between Laevicaudata and Onychocaudata and
to address the sources of deep phylogenetic conflict, we divided taxa into four clades: (1)
Anostraca; (2) Notostraca; (3) Laevicaudata; and (4) Onychocaudata.

Three methods for reducing the nonphylogenetic signals were conducted: (1) exclu-
sion of the genes with the most strongly deviating composition according to the AT% of
L. grossipedia; (2) exclusion of the proteins with a significant model violation according
to posterior predictive analysis (PPA); and (3) removal of fast-evolving sites. To evaluate
the key phylogenetic splits and visualize the phylogenetic content of datasets, we con-
ducted four-cluster likelihood mapping analyses (FcLM) using both nucleotide and amino
acid datasets as implemented in TreePuzzle v5.3 [47]. We preferred the topology of the
currently accepted relationships within Branchiopoda: (((Laevicaudata, Onychocaudata),
Notostraca), Anostraca).

2.5. Phylogenetic Analysis

Five datasets were used for phylogenetic analyses: (1) 13 protein-coding genes without
the third codon positions (the PCG12 matrix; 7587 bp); (2) amino acid sequences of 13 PCGs
(the PAA matrix; 3796 aa); (3) a concatenated nucleotide sequence alignment of the first and
the second codon positions of six PCGs including cox1, cox2, cox3, cytb, atp6 and nad3 (the
Pnuc6 matix; 3464 bp); (4) a concatenated amino acid sequence alignment of seven PCGs

http://www.ncbi.nlm.nih.gov
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except atp8, nad2, nad4, nad4l, nad5 and nad6 (the Paa7 matrix; 2043 aa); (5) a concatenated
amino acid sequence alignment removing fast-evolving sites from Paa7 matrix (the Paas7
matrix; 1094 aa).

2.5.1. Phylogenetic Analyses under Site-Homogeneous Models

In order to compare the results of phylogenetic inference from different evolutionary
models, phylogenetic analyses of four datasets (PCG12, PAA, Pnuc6 and Paa7) were first
carried out under site-homogeneous models implemented in RAxML 2.2.3 [48] for maxi-
mum likelihood inference (ML) and Bayesian inference using MrBayes 3.2 [49]. Because
highly heterogeneous sequence divergence was present across branchiopod clades, and
applying standard homogenous models might prompt inaccurate inferences, we did not
apply this method to the Paas7 matrix. The best-fit model for the nucleotide dataset (Pnuc6)
according to the Akaike Information Criterion (AIC) was determined using jModelTest
version 0.1.1 [50], and ProtTest 3 [51] was used for the amino acid dataset (Paa7). The best
selected partition schemes and models of two datasets were listed in Supplementary Table
S3. For the ML analyses, branch support of two datasets was estimated using the rapid
bootstrap method in RAxML with 1000 replicates. Analyses with the software MrBayes
were conducted in two simultaneous runs, each with four chains, for 10 million generations,
and trees being sampled every 1000 generations. The first 25% were discarded as burn-in,
and the remaining trees were used to calculate Bayesian posterior probability (BPP) values.
Values of the Potential Scale Reduction Factor (PSRF) approaching 1.0 suggested that the
runs reached convergence.

2.5.2. Phylogenetic Analyses under Site-Heterogeneous Models

Substitution saturation is recognized as one of the primary obstacles for deep phylo-
genetic inference, and removing sites that have experienced multiple substitutions would
make for erratic phylogenetic estimates [52]. In order to correctly retrieve the phylogenetic
signals of pattern-heterogeneity from mitogenomic sequence data, we performed Bayesian
inference analyses under the site-heterogeneous model CAT + GTR for three datasets
(Pnuc6, Paa7, and Paas7), as implemented in PhyloBayes 4.1c [46]. Two independent
chains of 5000 cycles were run for each analysis, with one point every five samples. The
initial 1000 trees sampled in each MCMC run were discarded as burn-in after checking for
convergence using bpcomp (max_diff < 0.3). The 50% majority-rule consensus tree and the
associated posterior probabilities (PPs) were then computed using all chains.

Bayesian cross-validation [53] was used to compare the fit of site-homogeneous (LG
and GTR) and site-heterogeneous (CAT-mtREV and CAT-GTR) models as implemented in
PhyloBayes 4.1c [46]. Ten replicates were conducted, 1100 sampling cycles were run and
the first 100 samples were discarded as burn-in. Fast-evolving sites for Paa7 matrix were
identified using the discrete gamma rate category to which they belong using TreePuzzle
v5.3 [47], and the sites belonging to the most rapidly evolving gamma category were
removed.

3. Results
3.1. Characteristics of L. grossipedia Mitogenome

The complete mitogenome of L. grossipedia is 15,023 bp in length (GenBank accession
number: OP746066). This is the first completely sequenced mitogenome in the order
Laevicaudata. All of the 37 typical animal mitochondrial genes were identified, consisting
of 13 PCGs, 22 tRNAs, two mitochondrial ribosomal RNAs (rrnS and rrnL) and a putative
control region (Table 1). Twenty-three genes were encoded by the majority strand (J-strand)
and fourteen by the minority strand (N-strand). Gene arrangement of the branchiopod
mitogenomes was considered to be rather well-conserved, although several events of
translocation, inversion, tandem duplication and random loss have occurred [33,34]. We
found two gene rearrangement phenomena in the mitogenome of L. grossipedia: (1) the local
inversion of trnI, and (2) the remote inversion of trnL1. The latter observed at the nad1–rrnL
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junction was the dominant gene rearrangement event in Branchiopoda. In addition to
the control region, the mitogenome of L. grossipedia had 181 bp of intergenic nucleotides
in 13 different locations, with intergenic spacer lengths ranging from 1 to 63 bp. The
longest intergenic spacer was located between trnG and nad3 (Table 1). In the L. grossipedia
mitogenome, ATN codons initiated all PCGs. Six PCGs used TAA/TAG as the termination
codons, while truncated termination codons (T) was observed in the other seven genes
(Table 1).

Table 1. Annotation of the mitochondrial genome of L. grossipedia.

Gene GenBank
Position no. Size (nts) Strand a Start Codon Stop Codon Anticodon IGN b

trnI 1–64 64 - GAT 46
trnQ 111–179 69 - TTG 9
trnM 189–253 65 + CAT 12
nd2 266–1216 951 + ATA TAG −2

trnW 1215–1277 63 + TCA −1
trnC 1277–1339 63 - GCA 0
trnY 1340–1405 66 - GTA −5
cox1 1401–2939 1539 + ATA TAA 2

trnL1-CUN 2942–3006 65 + TAG 1
trnL2-UUR 3008–3069 62 + TAA 19

cox2 3089–3770 682 + ATT T 1
trnK 3771–3835 65 + CTT 0
trnD 3836–3898 63 + GTC 0
atp8 3899–4060 162 + ATT TAA −4
atp6 4057–4720 664 + ATA T 0
cox3 4721–5508 788 + ATG T −1
trnG 5509–5569 61 + TCC 63
nd3 5633–5990 358 + ATA T 3
trnA 5991–6052 62 + TGC 14
trnR 6067–6126 60 + TCG −3
trnN 6124–6187 64 + GTT 0

trnS1-AGN 6188–6244 57 + GCT 0
trnE 6245–6307 63 + TTC 0
trnF 6308–6369 62 - GAA 0
nd5 6370–8041 1672 - ATT T 0

trnH 8042–8103 62 - GTG 0
nd4 8104–9403 1300 - ATG T −1

nd4L 9403–9690 295 - ATG TAA 5
trnT 9696–9757 62 + TGT 0
trnP 9758–9820 63 - TGG 2
nd6 9823–10,303 481 + ATT T 0
cytb 10,304–11,434 1131 + ATG TAA −2

trnS2-UCN 11,433–11,499 67 + TGA 4
nd1 11,504–12,415 912 - ATT TAA 0
rrnL 12,416–13,738 1323 - 0
trnV 13,739–13,806 68 - TAC 0
rrnS 13,807–14,586 780 - 0

Control region 14,589–15,023 437 + 0
a Plus strand (+)/mius strand (-); b Number of intergenic nucleotides. Numbers of IGN indicate non-coding
nucleotides between genes (positive values) or gene overlap (negative values).

For L. grossipedia, the AT content of the complete genome, PCGs, rRNA, tRNA and
control region were greater than those of Leptestheria brevirostris Barnard, 1924, 75%, 73.6%,
76.8%, 75.8% and 81%, respectively (Table 2). The highest AT content occurs in the third
codon position of PCGs (84.3%). Atp8 had a very high AT content (83.7%), while the lowest
AT content was found in cox1 (66.8%). The AT contents of L. grossipedia were the highest
when compared with other species of Branchiopoda, showing an obvious AT mutation
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bias. In most branchiopods, the mitogenome has a positive AT-skew and negative GC-
skew [37,39]. L. grossipedia and Leptestheria brevirostris exhibited a similar pattern (Table 2).
The nucleotide skew statistics for the mitochondrial genomes of L. grossipedia analysed in
the present study also indicated the following: (1) the AT-skew of all PCGs was negative
(−0.32 ~−0.07); (2) the GC-skew was positive and the AT-skew of each PCG on the minority
strand was negative, whereas both the GC-skew and AT-skew of each PCG on the majority
strand were negative (except cox1) (Table 2).

Table 2. Nucleotide composition and skewness levels of L. grossipedia (Laevicaudata)/Leptestheria
brevirostris (Spinicaudata).

Regions
Nucleotide Composition (%)

AT-Skew GC-Skew
T (U) C A G A + T

Whole genome 36.8/31.9 15.3/22.4 38.1/26.5 9.9/19.2 75.0/59.5 0.02/−0.09 −0.21/−0.08
PCGs 43.8/35.4 12.5/22.6 29.8/22.0 13.8/20.0 73.6/57.4 −0.19/−0.23 0.05/−0.06

1st codon position 35.4/29.0 12.6/20.5 32.0/25.6 20.0/25.1 67.4/54.4 −0.05/−0.06 0.24/0.10
2nd codon position 48.6/44.0 16.9/22.2 20.5/17.3 14.0/16.5 69.2/61.4 −0.41/−0.43 −0.10/−0.15
3rd codon position 47.4/33.0 8.1/25.1 37.0/23.0 7.6/18.5 84.3/56.0 −0.12/−0.19 −0.03/−0.15

rRNA 39.3/27.3 7.6/16.3 37.5/34.8 15.7/21.53 76.8/62.1 −0.02/0.12 0.35/0.14
tRNA 36.7/31.3 10.7/16.6 39.1/30.1 13.5/22.1 75.8/61.3 0.03/−0.02 0.12/0.14
atp6 42.0/35.1 16.9/25.2 31.5/20.1 9.6/19.5 73.5/55.3 −0.14/−0.27 −0.28/−0.13
atp8 45.6/33.3 12.2/28.8 38.1/23.1 4.1/14.7 83.7/56.4 −0.09/−0.18 −0.5/−0.32
cox1 39.2/33.5 16.7/23.7 27.6/20.5 16.5/22.2 66.8/54.1 −0.17/−0.24 −0.01/−0.03
cox2 38.2/30.8 16.6/24.7 32.9/22.9 12.3/21.6 71.1/53.7 −0.07/−0.15 −0.15/−0.07
cox3 39.5/37.1 17.1/22.3 29.8/19.6 13.7/21.0 69.2/56.7 −0.14/−0.31 0.11/−0.03
cytb 39.5/34.3 16.6/24.4 31.6/20.6 12.4/20.7 71.0/54.9 −0.11/−0.25 −0.14/−0.08
nad1 48.7/36.4 8.5/18.6 26.2/24.1 16.6/20.8 74.9/60.6 −0.30/−0.20 0.32/0.06
nad2 46.3/40.0 11.4/27.1 31.8/17.6 10.4/15.4 78.2/57.6 −0.19/−0.39 −0.05/−0.28
nad3 43.2/40.2 15.3/19.9 30.2/18.8 11.3/21.1 73.4/59.0 −0.18/−0.36 −0.15/0.03
nad4 49.8/36.5 7.4/21.1 27.9/22.5 14.9/20.8 77.8/59.0 −0.28/−0.24 0.34/0.02

nad4L 52.2/34.3 3.4/19.9 26.8/24.9 17.5/20.9 79.0/59.3 −0.32/−0.16 0.67/0.02
nad5 44.5/32.3 8.1/20.6 31.8/26.6 15.6/20.5 76.2/58.8 −0.17/0.10 0.31/0.00
nad6 45.8/39.1 13.1/25.7 34.2/20.1 6.9/15.1 80.0/59.2 −0.15/−0.32 −0.31/−0.26

3.2. Levels of Substitutional Saturation and Heterogeneous Sequence Divergence within
Branchiopod Mitogenomes

The third codon positions were saturated for all genes, and about half of the first and
second codon position also showed significant levels of saturation (Table S4). Therefore,
they were not considered for further phylogenetic analyses.

The value of Ka was low for Notostraca (0.24~0.25), Spinicaudata (0.26~0.27) and
Cladocera (0.25~0.27), but generally higher for Anostraca (0.32~0.38) and Laevicaudata
(0.32 ± 0.01), which suggested that Anostraca and Laevicaudata had relatively higher evo-
lutionary rates among Branchiopoda. We analysed the compositional heterogeneity of both
the nucleotides and amino acids of 13 PCGs across branchiopod suborders. There was con-
siderable variation in the AT content of mitogenomes within branchiopods (47.8%~83.7%),
and Laevicaudata had the highest AT% by a high margin (Table 3). There was consider-
able variation in GC-encoding GARP amino acids of the mitochondrial genome within
Branchiopoda (range: 14.37%~18.78%; mean: 17.66%; standard deviation: 1.24), and Laevi-
caudata had the lowest GARP%. Our observation showed a high degree of compositional
heterogeneity among branchiopod mitogenomes in both nucleotide and amino acid level,
which led to systematic error in phylogenetic analyses [11,54–56]. To test the homogeneity
of substitution pattern, we made 903 pairwise comparisons to calculate the ID. When
we compared the concatenated 13 PCGs, 719 comparisons had a statistically significant
heterogeneous substitution pattern, suggesting that the substitution pattern evolved mul-
tiple times. The ID test on each 13 PCGs also suggested a high level of variation in the
substitution patterns among different genes (Table 3). The null hypothesis that sequences
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have evolved with the same pattern of substitution was rejected (α < 0.01), although a
correlation was observed between the level of variation in the substitution patterns and the
gene lengths.

Table 3. ID test summary and AT% on individual mitochondrial genes.

Gene
Number of Comparisons with

Significant Heterogeneity
Proportion of Significant

Heterogeneity (%)
AT% a

Max Mean Min LG b

nd2 554 61.4 78.2 68.6 57.2 78.2
cox1 588 65.1 66.8 61.7 54.1 66.8
cox2 368 40.8 71.1 64.2 53.7 71.1
atp8 123 13.6 83.7 70.2 47.8 83.7
atp6 435 48.2 73.5 64.8 54.6 73.5
cox3 597 66.1 69.2 62.3 51.2 69.2
nd3 350 38.8 76.8 68.7 56.8 73.5
nd5 710 78.6 76.2 66.5 54.8 76.2
nd4 692 76.6 77.8 67.0 55.1 77.8
nd4l 318 35.2 79.0 68.8 59.3 79.0
nd6 334 37.0 80.0 69.9 55.7 80.0
cytb 569 63.0 71.0 62.9 54.9 71.0
nd1 598 66.2 74.9 65.6 56.9 74.9

Note: For each gene, a total of 903 pairwise comparisons are made and shown. The null hypothesis that sequences
have evolved with the same pattern of substitution is rejected (α < 0.01). AT% a: AT% of each 13 PCGs of
Branchiopoda; LG b: AT% of each 13 PCGs of L. grossipedia.

3.3. Phylogenetic Analyses Using Standard Homogeneous Models

Homogeneous analyses of either nt or aa data yielded maximal support for the mono-
phyly of Anostraca and Phyllopoda (MLnt&aa-BS = 100%; Figure 1). Phyllopoda included
four major groups (Cladocera, Spinicaudata, Laevicaudata and Notostraca), and Laevi-
caudata was resolved as a sister to the remaining phyllopods. However, the relationships
among these four groups differed based on different datasets: monophyletic Notostraca
was resolved as a sister to Onychocaudata when inferences were drawn from nucleotide
data (MLnt&aa-BS = 95%; Figure 2a), whereas Notostraca occupied a sister position to
Spinicaudata based on the amino acid data (MLnt&aa-BS = 62%; Figure 2b), which were
consistent with the four-cluster likelihood mapping analyses (nt: 57.1% and aa: 72.1%,
Figure 2c,d). These results, based on site-homogeneous analyses, were congruent with
previous mitogenomes analyses [37], but not consistent with the currently accepted sister
group relationship between Laevicaudata and Onychocaudata [26,29,33]. The conflict was
not resolved by the Bayesian and ML analyses under site-homogenous models with a
partitioning scheme for both Pnuc6 and Paa7 datasets, each matrix supporting similar trees
(Figure S1) to those presented in Figure 1.

3.4. Reducing Compositional Heterogeneity in Sequence Data

Phylogenetic analyses of the individual mitochondrial genes and proteins and PPA
test demonstrated that both the nucleotide composition of all 13 PCGs and the amino
acid composition of six among the 13 mitochondrial proteins violated the assumptions of
the CAT model (Table 4), indicating that compositional bias was usually a genome-wide
phenomenon [54].



Curr. Issues Mol. Biol. 2023, 45 827

Curr. Issues Mol. Biol. 2023, 3, FOR PEER REVIEW 8 
 

 

ure 2c,d). These results, based on site-homogeneous analyses, were congruent with previ-
ous mitogenomes analyses [37], but not consistent with the currently accepted sister group 
relationship between Laevicaudata and Onychocaudata [26,29,33]. The conflict was not 
resolved by the Bayesian and ML analyses under site-homogenous models with a parti-
tioning scheme for both Pnuc6 and Paa7 datasets, each matrix supporting similar trees 
(Figure S1) to those presented in Figure 1. 

 
Figure 1. Maximum-likelihood phylograms of Branchiopoda based on concatenation of 13 mito-
chondrial genes under site-homogeneous models obtained with RAxML: (a) PCG12 matrix and (b) 
PAA matrix. Major groups are labeled and each group is indicated with a representative line draw-
ing. Nodal supports are bootstrap values. The trees of Branchiopoda between the nucleotide and 

Figure 1. Maximum-likelihood phylograms of Branchiopoda based on concatenation of 13 mito-
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(b) PAA matrix. Major groups are labeled and each group is indicated with a representative line
drawing. Nodal supports are bootstrap values. The trees of Branchiopoda between the nucleotide
and amino acid datasets exhibit incongruence by the monophyly of Onychocaudata. (c) and (d) are
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analyses. For each matrix, the sequences are divided into four clades: (a) Anostraca; (b) Notostraca;
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topologies.
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Table 4. Results of Posterior Predictive Test on individual mitochondrial genes.

Gene/Datasets
Nucleotide Data Sets Amino Acid Data Sets

Z Score p Score NDT * Z Score p Score NDT *

nd2 6.42 0.00 31 3.50 0.00 18

cox1 5.20 0.02 32 0.37 0.24 6

cox2 4.82 0.03 18 0.01 0.42 0

atp8 5.67 0.00 11 2.11 0.03 14

atp6 4.67 0.00 25 0.26 0.30 4

cox3 4.31 0.02 31 −0.89 0.81 2

nd3 6.05 0.01 20 0.41 0.29 3

nd5 13.10 0.00 33 5.79 0.00 16

nd4 6.81 0.00 39 4.34 0.00 10

nd4l 7.12 0.00 26 2.04 0.05 5

nd6 5.67 0.01 24 2.15 0.05 5

cytb 6.59 0.00 26 0.92 0.19 3

nd1 5.13 0.00 35 1.28 0.09 7

13 PCGs 5.60 0.00 39 13.18 0.00 33
NDT *: Number of taxa with significantly deviating composition.

The sequence heterogeneity analysis showed that Laevicaudata exhibited significantly
higher heterogeneity than the other branchiopods. Laevicaudata being resolved as the basal
clade of Phyllopoda with high support was most likely due to artifactual phylogenetic
inferences, probably resulting from the high degree of heterogeneity. If we excluded
Laevicaudata, no inferences can be made about the relationships of this taxon. Accordingly,
we applied three exclusive uses of homoplastic sites methods to reduce the potential
impact of compositional heterogeneity on phylogenetic inference. Using the concatenated
sequences of the 13 PCGs or 13 mitochondrial proteins for phylogenetic inference was
proven to be not impactful in reconciling model misspecification (Table 4). When only
seven mitochondrial proteins or six PCGs with the lowest Z scores were used for the
phylogenetic analyses, the Z scores were reduced, but the compositional heterogeneity was
still significant (Z = 7.27 for 7 proteins; Z = 5.00 for 6 PCGs). However, when only the Paas7
matrix was used for phylogenetic analyses, the CAT model was no longer violated (p = 0.09,
Z = −1.48). Therefore, the compositional heterogeneity in the concatenated sequences of
mitochondrial proteins could be reduced to a degree that the CAT model was no longer
violated.

3.5. Phylogenetic Results under Heterogeneous Model

Nonstationary heterogeneous composition models, which account for compositional
heterogeneity among lineages, have been manifested to control systematic errors in tree
reconstruction [10,57]. The results of Bayesian cross-validation tests showed that: (1) The
CAT-GTR+Γ4 mixture model offered a better fit to the data compared with GTR+Γ4 (2∆lnL
= 430 ± 48), and (2) the CAT-mtREV+Γ4 mixture model was better, compared with LG + Γ4
(2∆lnL = 16086 ± 1546).

Bayesian inference from the Pnuc6 dataset under a site-heterogeneous model recov-
ered the monophyly of Diplostraca, but with low probability (BInt-PP = 0.71; Figure 2a). The
result indicated that the high support for Laevicaudata as the earliest branch of Phyllopoda
under site-homogeneous models was partly due to among-lineage compositional bias. In
contrast, the analysis of the Paa7 matrix using the CAT-mtREV+Γ4 mixture model model
did not support the monophyly of Diplostraca, and the result supported Laevicaudata
as a sister to the rest of Phyllopoda (Figure 2b), as did site-composition homogeneous
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models. When we removed fast-evolving sites (46.45%) from Paa7 matrix, the monophyly
of Diplostraca was recovered with high support (BInt-PP = 0.96; Figure 2c), confirming
that the removal of the fast-evolving positions increased the ratio of phylogenetic to non-
phylogenetic signal [58]. This observation also implied that compositional heterogeneity
and fast-evolving positions in the amino acid datasets were two sources of phylogenetic
artifacts and nonstationary heterogeneous composition model showed significant improve-
ments over site-homogenous models in the phylogenetic reconstruction.

4. Discussion
4.1. Pervasiveness of Phylogenetic Conflicts

In this study, several datasets were utilized to test basal relationships of Diplostraca
and to compare the results of phylogenetic inference from different evolutionary models.
Nevertheless, the standard phylogenetic methods consistently failed to uncover the correct
phylogeny (Figure 1 and Figure S1). High nodal supports concealed the pervasiveness of
phylogenetic conflicts. The non-monophyly of Diplostraca supported by these analyses was
an artifactual result overturning a key relationship supported by morphological cladistic
studies [26–28,31] and phylogenomic analyses [29,30,32,59]. The monophyly of Diplostraca
was supported based on the list of supporting synapomorphies, such as bivalved carapaces
in adults, larvae with small and budlike first antennae, highly modified first male thoraco-
pod pair for clasping females and trunk limb exopods in adults with long dorsal lobes [31].
Furthermore, the recovery of the monophyly of Diplostraca through the exclusive use of ho-
moplastic sites and the application of site-heterogeneous models (Figure 2a) confirmed that
the non-monophyly of Diplostraca was an artifact. In FcLM analyses based on nucleotide
sequences, the majority of quartets supported Notostraca as the closest relatives of Laevi-
caudata (Figure 3). This is congruent with part of the current results (Figure 2a and Figure
S1a). In FcLM analyses based on amino acid sequences, the majority of quartets supported
Notostraca as the closest relatives of Onychocaudata (Figure 4). This is again congruent
with part of our results (Figure 2b and Figure S1b). Using amino acid sequences or the
removal of fast-evolving sites was considered an efficient approach to reduce systematic
errors and to resolve deep relationships [60–62]. However, the quartet puzzling analysis
plotted the probability of the preferred: (((Laevicaudata, Onychocaudata), Notostraca)
topology, Anostraca) and the probabilities only ranged from 1.1% to 26.4% (Figures 3 and 4).
Measurement of phyologenetic signal showed 0.8% of unresolved quartets and 13.1% of
partly resolved quartets presented in the Paas7 matrix (excluding 46.45% sites), and quartet
support for preferred topology was still low (23.2%). These results suggested that the
phylogenetic signal for a deep relationship between Laevicaudata and Onychocaudata was
always weak and differed among amino acid datasets (Figure 3). These findings could be
explained by the decay of the phylogenetic signal or a limited signal in the mitogenomic
sequences. The limitations of mitogenomes applied in deep phylogeny of Arthropod have
already been pointed out [63] and emphasized [1,4–6,64]. When the non-phylogenetic sig-
nal was higher than the phylogenetic signal due to mutational saturation, high AT-content,
parasitic life-styles or explosive radiation events, considerable systematically erroneous
relationships were recovered [6]. Our analyses confirmed these conclusions.
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4.2. Heterogeneity and Tree Topology

The comparisons of AT% between Laevicaudata and Spinicaudata (Table 2), the ID
test (Table 3) and the PPA test (Table 4) demonstrated a high degree of compositional
heterogeneity among branchiopod mitogenomes at both the nucleotide and amino acid
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levels, which could bias the phylogenetic inference. The CAT+GTR model used in Bayesian
inference analyses, implemented in PhyloBayes 4.1c [46], was chosen for its superiority in
accommodating site-heterogeneous patterns of molecular evolution [11,12]. However, the
Bayesian analysis under the site-heterogeneous model for the amino acid dataset (Paa7
matrix) recovered a topology almost identical to the phylogenetic analysis under the site-
homologous model for the amino acid dataset of the PAA matrix (Figures 1b and 2b). This
suggested that the homoplasy in amino acid datasets was not only due to compositional het-
erogeneity considered in site-heterogeneous model. When we applied amino acid recoding
to our datasets (removing fast-evolving sites from Paa7 matrix; the Paas7 matrix) combined
with the site-heterogeneous model, the monophyly of Diplostraca was recovered correctly
(Figure 2c). Our study demonstrated that removing fast-evolving sites could be an effec-
tive method to overcome the among-site rate heterogeneity from nonstationarity [65,66].
Although phylogenetic resolution to the monophyly of Diplostraca was improved when
we applied a variety of strategies to reduce the effects of saturation and heterogeneity, the
deep relationships within Diplostraca were not fully resolved.

The sum of these analyses suggested that the phylogenetic resolution of Diplostraca
using mitogenomes was trapped by conflicting phylogenetic signals existing across different
genes, which in turn was aggravated by compositional heterogeneity and among-site rate
heterogeneity. The phylogenetic signal and the potential influence of non-phylogenetic
signal should be independently evaluated when mitogenomic datasets were applied in
deep phylogeny.

5. Conclusions

In this study, we extensively dissected the potential sources of non-phylogenetic
signal that resulted in high support but incorrect phylogenies when mitogenomes were
applied in deep phylogeny. We identified significant compositional heterogeneity in both
the nucleotide and amino acid datasets. Phylogenetic analyses under site-homogeneous
models suggested that topological conflict at the base of Phyllopoda were retained across
all datasets, even with the exclusion of the genes with the most strongly deviating composi-
tions. Bayesian inference under the site-heterogeneous CAT-GTR+Γ4 mixture model using
the nucleotide dataset (Pnuc6) recovered the monophyly of Diplostraca. However, it is
limited for the amino acid dataset, regardless of minimization of model violation. Although
slow-evolving sites of the amino acid dataset (Paas7) under the site-heterogeneous model
revealed the monophyly of Diplostraca with high support, the deep relationships among
Laevicaudata, Spinicaudata and Cladocera were not fully resolved, which demonstrated
systematic conflicts in phylogenetic signal. The results of FcLM analyses confirmed the
systematic conflicts and revealed that the phylogenetic signal for deep relationship between
Laevicaudata and Onychocaudata was significantly weaker than the nonphylogenetic sig-
nal across all datasets. Future analyses including the mitogenomes of the other laevicauatan
species are needed to achieve a more complete understanding of the evolutionary history
of Diplostraca by identifying more basal branches.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cimb45020054/s1, Figure S1: Phylogenetic trees of Branchiopoda
(colour-coded) obtained with RAxML and MrBayes inferred from the datasets of Pnuc6 (a) and Paa7
(b). Supports at nodes are ML bootstrap values and Bayesian posterior probabilities; Table S1: List of
primer combinations used to amplify the mitochondrial genome of L. grossipedia; Table S2: Details
of species and mitogenomes of Branchiopoda used in this study; Table S3: Partition schemes and
best-fitting models for phylogenetic analyses; Table S4: Results of the test for substitution saturation.
The references [67–87] are cited in the Supplementary Materials.
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