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Abstract: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death world-
wide; the main risk factors associated with the suffering are tobacco smoking (TS) and chronic
exposure to biomass-burning smoke (BBS). Different biological pathways have been associated with
COPD, especially xenobiotic or drug metabolism enzymes. This research aims to identify single
nucleotide polymorphisms (SNPs) profiles associated with COPD from two expositional sources:
tobacco smoking and BBS. One thousand-five hundred Mexican mestizo subjects were included in
the study and divided into those exposed to biomass-burning smoke and smokers. Genome-wide
exome genotyping was carried out using Infinium Exome-24 kit arrays v. 1.2. Data quality control
was conducted using PLINK 1.07. For clinical and demographic data analysis, Rstudio was used.
Eight SNPs were found associated with COPD secondary to TS and seven SNPs were conserved
when data were analyzed by genotype. When haplotype analyses were carried out, five blocks were
predicted. In COPD secondary to BBS, 24 SNPs in MGST3 and CYP family genes were associated.
Seven blocks of haplotypes were associated with COPD-BBS. SNPs in the ARNT2 and CYP46A1 genes
are associated with COPD secondary to TS, while in the BBS comparison, SNPs in CYP2C8, CYP2C9,
MGST3, and MGST1 genes were associated with increased COPD risk.

Keywords: chronic obstructive pulmonary disease; toxicity; indoor pollution; microarray analysis;
genome-wide association study

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a complex and multifactorial dis-
ease; preventable, treatable, and partially reversible, characterized by airflow limitation
due to an airway inflammatory process in response to chronic exposure to noxious par-
ticles [1–3]. Worldwide, COPD is the third leading cause of death, with a prevalence of
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251 million people and nearly 3000 million deaths. Of these deaths, 90% were recorded in
low- and middle-income countries [3,4].

COPD is associated with environmental exposure risk factors, such as tobacco smoking
or biomass-burning smoke exposure (BBS). Other factors are clinical and genetic character-
istics that could lead to different phenotypes of COPD [1,2].

The main clinical features of COPD are dyspnea, pulmonary hypertension, hypoxemia,
hypercapnia, chest tightness, wheezing, cough, phlegm (sputum), mucus (bronchitis), and
low oxygen saturation, among others. [2,5] It has been described that the clinical phenotype
can vary depending on the exposure factor. For example, patients with COPD secondary to
BBS (COPD-BBS) present higher FEV1 values than smokers with COPD (COPD-S) [6,7];
the predominant phenotype in COPD-BBS is bronchitis, with increased production of
mucus and phlegm [8]. In addition, the CAT (COPD assessment test) score indicates that
patients with COPD-BBS have a smaller decrease in their quality of life, evidenced by less
difficulty when carrying out their daily activities and better physical performance (6-min
walk test) [9]. These phenotypic differences in the disease may be due to the heterogeneity
of pollutants substances’ content and individuals’ genetic variability.

COPD research has dabbled in the genetics of the disease. So far, it is known that the
genetic deficiency of α1-antitrypsin, encoded by the SERPINA1 gene, caused by a single
nucleotide polymorphism (SNPs), is the only genetic factor that predisposes to COPD,
regardless of environmental risk factors [10]; however, it does not explain the whole variety
of the disease in the world population.

Genome-wide association studies (GWAS), in which thousands of genetic variants
are included in case-control comparisons and cohort models, have helped identify SNPs’
association with the disease’s clinical characteristics, such as tobacco smoking, cachexia,
and decreased lung function [11–13]. Some associated SNPs are present in non-coding
areas, making it challenging to explain their biological impact on the disease.

Another strategy used in genetic association studies is the analysis of variants in
candidate genes by gene functionality or their relationship with other genes within the
same interaction network [14,15]. Some reported genes include TNF, CCL2, SERPINA12,
SERPINE2, FAM13A, and TFGB1; this has allowed the description of associations between
SNPs and the different clinical phenotypes of the disease (emphysema or bronchitis) [16,17].
It is essential to mention that these studies have been carried out in groups of smokers,
which has left aside the evaluation of patients with COPD-BBS.

This work aims to describe the association of SNPs in candidate genes related to the
processing of xenobiotic, cytotoxic, and drugs with COPD, both secondary to tobacco
smoking and BBS, and possible SNPs profiles that can differentiate them.

2. Materials and Methods
2.1. Population Included

For this study, 1500 subjects were included and divided into 2 comparison groups; the
first was composed of 900 smokers: 300 patients with COPD secondary to tobacco smoking
(COPD-S) and 600 smokers without the disease (SWOC). The second comparison group
included 600 subjects exposed to smoke from biomass burning, divided into 220 patients
with COPD secondary to BBS (COPD-BBS) and 380 subjects exposed to BBS but without
COPD (BBES).

Mexican mestizo subjects over 40 years of age and of indistinct sex were included; for
the comparison group of smokers, participants with a tobacco index (TI) > 5 packs/year
and no history of exposure to BBS were included. In the exposed to BBS group, subjects
with an exposure index to BBS (BEI) >100 h/year were included and were never smokers.
COPD patients were defined when the post-bronchodilator FEV1/FVC ratio was <70%
(Supplementary Figure S1). Participants with other inflammatory, autoimmune, or respi-
ratory diseases were eliminated. The participants were recruited from the COPD Clinic,
smoking cessation support groups of the Tobacco Smoking and COPD Research Depart-
ment, from COPD early detection campaigns in rural Oaxaca [18], and from suburban areas
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of Mexico City. The Ethics in Research Committee from Instituto Nacional de Enfermedades
Respiratorias Ismael Cosio Villegas approved the protocol under code numbers B14-17,
B11-19, and C53-19.

The clinical evaluation of the patients was carried out by specialized chest physicians
from the Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas using
GOLD guidelines. Ref. [19] Demographic and ancestry data were obtained through a
questionnaire. Before taking biological samples, all patients signed an informed consent
approved by institutional ethical boards.

2.2. Biological Samples

All participants took a blood sample by forearm puncture, and DNA and plasma
were obtained using the previously described methodology [20]. The DNA samples were
quantified spectrophotometry through a nanodrop device (Thermo Scientific, Wilmington,
DE, USA), and samples with a 260/280 ratio between 1.8 and 2.2 were selected, adjusted to
60 ng/µL, and their integrity was evaluated in 1.5% agarose gels.

2.3. Whole Exome Genotyping

After sample quality control, the groups were composed of 370 smokers
(COPD-S = 150, SWOC = 220) and 401 subjects exposed to BBS (COPD-BBS = 101,
BBES = 300) (Supplementary Figure S2). The samples were genotyped using the Illu-
mina Infinium Exome-24 Kit arrays v1.2 (5200 Illumina Way, San Diego, CA 92122, USA)
with a genotyping capacity of up to 560,000 variants.

We applied functional candidate gene methodology to select only genes related to the
metabolism of xenobiotics, cytotoxic products, and drug metabolism. Through bibliography
research, we selected 38 genes. After applying the Hardy–Weinberg (p > 1 × 10−9 test and
excluding SNPs with MAF < 10%, we chose all SNPs in the proposed genes. We worked
with 748 SNPs in both comparison groups (Supplementary Figure S3).

2.4. Data Analysis

PLINK v. 1.07 [21] was used for data quality control (QC). We considered a genotype
call rate > 95% and eliminated subjects with >0.05 of missing genotypes; sex discrepan-
cies were considered by X chromosome homozygosity (men > 0.8, women < 0.2), while
relatedness was assessed by identity by descent (IBD) considering pi-hat values < 0.25.

Association analysis was carried out using PLINK v. 1.07 applying Fisher’s exact
test adjusted by covariates; in the smoker group comparison, we included sex, age, and
cigarettes/day (TI) as covariates, while in the biomass group, comparison, age, and biomass
burning-smoke exposure index (BEI) was included, utilizing the Bonferroni correction test.

The R language [22] and the Rstudio interface [23] were employed for statistical analy-
sis. Admixture and principal component analysis (PCA) were carried out using packages
SNPRelate and gdsfmt from Bioconductor. We included Hapmap population data from
Northern Europeans from Utah (CEU), Yoruba in Ibadan from Nigeria (YRI), and native
Amerindian populations (AMR) described by Huerta-Chagoya, and we selected 32 ancestry
informative markers (AIMs) and used k = 3 [24]. The distribution of demographic vari-
ables, exposure data, or lung function was analyzed to determine the type of statistical
comparison being made.

2.5. Severity Analysis

Afterward, we stratified COPD patients based on the GOLD states, comparing mild
(GOLD 1 + 2) vs. severe forms (GOLD 3 + 4) of the illness to avoid bias by subgrouping. This
analysis was carried out for COPD-S and COPD-BBS individually using PLINK v. 1.07 and
applying Fisher’s exact test, correcting by covariates, and the Bonferroni multiple testing.
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2.6. Multiple Correspondence Analysis

We applied multiple correspondence analysis (MCA) to determine possible grouping
between SNPs associated, exposure indexes, and/or FEV1 values. These analyses were
carried out using Rstudio [22] and the packages FactoMineR [25] and factoextra [26].

2.7. Calculation of Haplotype Blocks

We included 750 SNPs in the Haplotype blocks analysis. This analysis was carried
out using Haploview 4.2 software, [27] applying the analysis algorithm presented by
Gabriel et al. [28]. We applied a window of inclusion of 5000 Kb per pair of SNPs. Linkage
disequilibrium (LD) was presented using D’ value. Haplotypes association analysis was
carried out using R through Fisher’s exact test between cases vs. controls and adjustment by
logistic regression, including covariates. Genes’ schemes and SNPs’ positions are included
in the Supplementary Material (Supplementary Figures S7 and S8).

3. Results
3.1. Population Studied

After quality control, 745 subjects were included; 354 were in the group of smok-
ers (COPD-S = 141, SWOC = 213) and 391 had been exposed to BBS (COPD-BBS = 98,
BBES = 293). The distribution of the variables presented a non-normal distribution, so the
demographic, clinical, and exposure variables are presented as a function of the median and
quartiles 1 and 3. At the same time, the comparisons were made using the Mann–Whitney
U test and χ2 for qualitative variables.

When comparing COPD-S vs. SWOC, significant differences (p < 0.05) were found
in the male–female ratio, age, BMI, and TI; because of this, sex, age, and TI were selected
for covariate correction. In the BBS comparison group (COPD-BBS vs. BBES), significant
differences (p < 0.05) were found in age and BBS exposure index (BEI), so these were
included as covariates in the association analysis of this group (Table 1).

Table 1. Demographic and lung function data of COPD and control subjects.

COPD-S (n = 141) SOWC (n = 213) p COPD-BBS (n = 98) BBES (n = 293) p

Demographic data

Sex (M/W)% 73.7/26.3 51.8/48.2 <0.01 † 90/10 99.3/0.7 0.57 †
Age (Years) 68 (62–74) 51 (44–58) <0.01 73 (68–78) 61 (54–69) <0.01

BMI (Kg/m2) 25.5 (22.7–29.3) 27.6 (25.0–30.1) 0.04 26.1 (23.0–31.2) 27.6 (24.7–30.8) 0.09

Tobacco smoking data

Cigarette per day (cig/day) 20 (12–30) 16 (10–21) 0.64
Years of smoking (Years) 41 (32.0–50.0) 30 (24.0–37.5) <0.01

TI (pack/year) 40 (21.0–54.5) 25 (16.5–39.0) <0.01

Biomass-burning smoke exposure data

Hours or exposition (h/day) 12 (10.0–15.0) 10 (10.0–12.0) <0.01
Years of exposition (years) 50 (33.5–60.0) 40 (15.0–53.0) <0.01

BBS smoke exposition index (BEI) 453.0 (350.0–600.0) 400.0 (150.0–530.0) <0.01

Lung function data (post-bronchodilator)

FEV1 (%) 58.0 (43.0–76.0) 96.5 (86.0–106.0) <0.01 68.0 (54.0–81.0) 103.0 (93.0–115.0) <0.01
FVC (%) 83.0 (71.0–98.0) 91.5 (86.0–104.0) <0.01 87.0 (74.0–100.0) 99.0 (87.0–110.5) <0.01

FEV1/FVC (%) 57.6 (44.9–64.9) 81.5 (78.0–85.4) <0.01 60.7 (50.9–67.0) 84.5 (78.0–93.6) <0.01

GOLD state%

GOLD I (%) 15 (11.1) 28 (32.2) NA
GOLD II (%) 73 (54.1) 47 (54.0) NA
GOLD III (%) 33 (24.4) 11 (12.6) NA
GOLD IV (%) 14 (10.4) 1 (1.2) NA

Demographic, tobacco consumption, biomass-burning smoke exposition, and lung function data are expressed in
median and quartiles (q1–q3). Qualitative variables were compared by χ2 test (†), and qualitative variables by
the Mann–Whitney U test. Statistical differences were considered when p < 0.05. Kg: kilograms; m: meters; TI:
tobacco index; FEV1: forced expired volume in 1st second; FVC: forced vital capacity; NA = not applicable.

By ancestry analysis, we found different proportions for both groups of comparison.
We found a highly conserved Amerindian composition in the biomass-burning comparison
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group (COPD_BBS, BBES), while in the smokers’ comparison (COPD_S, SWOC), we found
a heterogeneous composition, predominantly Amerindian and Caucasian (Figure 1).
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Figure 1. (A) PCA for the ancestral composition of the included population. We included Hapmap
population data: northern Europeans from Utah (CEU), Yoruba in Ibadan from Nigeria (YRI), and
native Amerindian (AMR). COPD_BBS: COPD patients exposed to biomass-burning smoke; COPD_S:
COPD patients as smokers; SWOC: Smokers without COPD; COPD_BBS: COPD secondary to
biomass-burning smoke exposition; BBES: Biomass burning exposed subject. (B) Admixture plot
for ancestry composition in subjects included. We included the following Hapmap population data:
Northern Europeans from Utah (CEU, in red), Yoruba in Ibadan from Nigeria (YRI, in green), and
native Amerindian (AMR, in blue).

3.2. Association Analysis in the Group of Smokers

All the SNPs associated with this stage met the Hardy–Weinberg equilibrium and
MAF > 10% (Supplementary Table S1). In the comparison of smokers (COPD-S vs. SWOC),
after correction for covariates, 8 SNPs/alleles were found associated (p < 0.05) with COPD
secondary to TS, 6 SNPs (rs11572191, rs8133, rs17497857, rs4964059, rs3901896, rs8041826)
associated with increased risk (OR > 1.0), and 2 SNPs (rs4147611, rs3742377) with decreased
risk (OR < 1.0). Of the SNPs associated with risk, rs11572191 in the CYP2J2 gene presented
the highest OR value, with an almost three-fold increased risk of developing COPD sec-
ondary to smoking. On the other hand, the ARNT2 and ARNTL2 genes each presented
two SNPs associated with increased risk, these being the genes with the highest number
of associated SNPs in this comparison group. However, when we applied the Bonferroni
correction, no significant associations were retained (Table 2).

Seven SNPs associated with an increased risk of COPD secondary to TS were found
in the genotype analysis. Of these SNPs, rs11572191 in CYP2J2, rs17497857 in ARNTL2,
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rs3901896, and rs8041826 in ARNT2 remained associated. On the other hand, the rs1951576
and rs943881 in CYP46A1 and rs6488842 in MGST1 are new findings by this model analysis.
Interestingly, rs11572191 and rs17497857 are associated with heterozygous genotypes
(Table 3).

Table 2. Allele association analysis in smokers’ comparison.

SNP/Alleles COPD-S
(n = 141) AF% SWOC

(n = 213) AF% OR CI (95%) p p *

rs11572191/CYP2J2
C 245 86.88 401 94.13 1.00 (Ref.)
T 37 13.12 25 5.87 2.96 1.67–5.26 0.0002 NS

rs8133/MGST3
G 197 69.86 335 78.64 1.00 (Ref.)
T 85 30.14 91 21.36 1.48 1.05–2.08 0.026 NS

rs4147611/MGST3
G 163 57.80 205 48.12 1.00 (Ref.)
T 119 42.20 221 51.88 0.71 0.52–0.96 0.026 NS

rs17497857/ARNTL2
T 246 87.23 392 92.02 1.00 (Ref.)
A 36 12.77 34 7.98 1.75 1.03–2.96 0.037 NS

rs4964059/ARNTL2
A 217 76.95 352 82.63 1.00 (Ref.)
C 65 23.05 74 17.37 1.50 1.01–2.24 0.047 NS

rs3742377/CYP46A1
G 240 85.11 336 78.87 1.00 (Ref.)
A 42 14.89 90 21.13 0.61 0.39–0.92 0.019 NS

rs3901896/ARNT2
T 137 48.58 243 57.04 1.00 (Ref.)
C 145 51.42 183 42.96 1.40 1.03–1.90 0.029 NS

rs8041826/ARNT2
A 238 84.40 378 88.73 1.00 (Ref.)
G 44 15.60 48 11.27 1.61 1.03–2.53 0.037 NS

Comparison of frequencies by logistic regression method, including age, sex, and TI as covariates. We considered
a significant association when p < 0.05. * p-value after Bonferroni correction test, AF: allele frequency, %. OR: odds
ratio; CI: confidence interval; SNP: single nucleotide polymorphism; Ref: reference; NS: no significant.

We extracted the data of COPD-S and COPD-BBS, looking for possible differentiation
patterns, including SNPs with MAF > 1% by MCA. Even though we have differential
grouping patterns, the variance did not surpass >1% (Supplementary Figure S4A).

We included 336 SNPs for the MCA in smokers’ comparison. By biplots, we did not
find any cluster of SNPs that could explain variance >1% (Supplementary Figure S4C).
Next, we included all the SNPs associated with the allele analysis but did not get any
possible component (Supplementary Figure S5).

The possible participation of other SNPs in the genetic susceptibility was assessed
through haplotype blocks, including all associated SNPs, before correction for covariates to
maximize the analysis screen. Five blocks of haplotypes were found to form in the ARNTL2
gene, CYP19A1, ARNT2, CYP46A2, and MGST3, all with LD > 85 (Figure 2).

When the association of haplotypes was carried out, we found nine different combina-
tions of SNPs associated with COPD-S in the genes: ARNTL (rs10741616-
rs7126796), ARNTL2 (rs11048977-rs1037924-rs17497857-rs7138982), CYP19A1 (rs10046-
rs700519-rs6493489-rs2899472-rs2414095-rs700518), ARNT2 (rs1374213-rs3901896-rs7168908-
rs2278709), CYP46A1 (rs3742377-rs943881-rs1951576-rs12435918-rs2146238), ARNT (rs10847-
rs11552229-rs2228099), and MGST3 (rs8133-rs4147611) (Table 4). Of these combinations, six
haplotypes were associated with a lower risk of COPD-S and three to higher risk (OR > 1.5).
We found five haplotypes containing SNPs previously associated in the allele or genotype
analysis: rs3901896 in ARNT2, rs1951576 in CYP46A1, and rs17497857 in ARNTL2, also
rs8133 and rs4147611 in MGST3.
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Table 3. Genotype association analysis in smokers’ comparison.

SNP/Alleles COPD-S
(n = 141) GF% SWOC

(n = 213) GF% OR CI (95%) p

rs11572191/CYP2J2
CC 105 74.47 190 89.20 1.00 (Ref.)
CT 35 24.82 21 9.86 5.51 2.36–13.5 0.0001
TT 1 0.71 2 0.94 2.5 0.007–0.08 0.86

rs17497857/ARNTL2
TT 106 75.18 182 85.45 1.00 (Ref.)
TA 34 24.11 28 13.15 2.41 1.14–5.19 0.022
AA 1 0.71 3 1.41 1.17 1.89–39.23 0.94

rs3901896/ARNT2
TT 38 26.95 70 32.86 1.00 (Ref.)
TC 61 43.26 103 48.36 1.05 0.51–2.15 0.89
CC 42 29.79 40 18.78 2.75 1.19–6.56 0.019

rs8041826/ARNT2
AA 103 73.05 168 78.87 1.00 (Ref.)
AG 32 22.70 42 19.72 2.49 1.17–5.39 0.019
GG 6 4.26 3 1.41 4.0 5.98–41.7 0.0002

rs1951576/CYP46A1
AA 85 60.28 133 62.44 1.00 (Ref.)
AG 41 29.08 73 34.27 0.73 0.37–1.40 0.35
GG 15 10.64 7 3.29 3.88 1.02–15.16 0.047

rs6488842/MGST1
CC 79 56.03 122 57.28 1.00 (Ref.)
CT 46 32.62 82 38.50 1.03 0.55–1.95 0.92
TT 16 11.35 9 4.23 3.85 1.16–13.21 0.029

rs943881/CYP46A1
TT 79 56.03 122 57.28 1.00 (Ref.)
TC 46 32.62 82 38.50 1.03 0.55–1.95 0.92
CC 16 11.35 9 4.23 3.85 1.16–13.21 0.029

Comparison of frequencies by logistic regression method, including age, sex, and TI as covariates. We considered
a significant association when p < 0.05. GF: genotype frequency, %; OR: odds ratio; CI: confidence interval; SNP:
single nucleotide polymorphism; Ref: reference.

Curr. Issues Mol. Biol. 2023, 45 806 
 

 

We included 336 SNPs for the MCA in smokers’ comparison. By biplots, we did not 
find any cluster of SNPs that could explain variance >1% (Supplementary Figure S4C). 
Next, we included all the SNPs associated with the allele analysis but did not get any 
possible component (Supplementary Figure S5). 

The possible participation of other SNPs in the genetic susceptibility was assessed 
through haplotype blocks, including all associated SNPs, before correction for covariates 
to maximize the analysis screen. Five blocks of haplotypes were found to form in the 
ARNTL2 gene, CYP19A1, ARNT2, CYP46A2, and MGST3, all with LD > 85 (Figure 2). 

 
Figure 2. Haplotype block for SNPs associated in the smokers’ comparison. Five blocks with LD > 
80 were predicted, block 1 is conformed of two SNPs in ARNTL2, block 2 by 3 SNPs in CYP19A1, 
block 3 by SNPs in ARNT2, block 4 with 3 SNPs in CYP46A1, and block 5 by 3 SNPs in MGST3. 
Color and values in the haplotypes represent D’ LD values. The color intensity corresponds to the 
higher LD value. 

When the association of haplotypes was carried out, we found nine different combi-
nations of SNPs associated with COPD-S in the genes: ARNTL (rs10741616-rs7126796), 
ARNTL2 (rs11048977-rs1037924-rs17497857-rs7138982), CYP19A1 (rs10046-rs700519-
rs6493489-rs2899472-rs2414095-rs700518), ARNT2 (rs1374213-rs3901896-rs7168908-
rs2278709), CYP46A1 (rs3742377-rs943881-rs1951576-rs12435918-rs2146238), ARNT 
(rs10847-rs11552229-rs2228099), and MGST3 (rs8133-rs4147611) (Table 4). Of these combi-
nations, six haplotypes were associated with a lower risk of COPD-S and three to higher 
risk (OR > 1.5). We found five haplotypes containing SNPs previously associated in the 
allele or genotype analysis: rs3901896 in ARNT2, rs1951576 in CYP46A1, and rs17497857 
in ARNTL2, also rs8133 and rs4147611 in MGST3. 

Table 4. Haplotypes association analysis in smokers’ comparison. 

Haplotypes COPD-S 
(n = 141) Freq% 

SWOC 
(n = 213) Freq% p OR CI (95%) 

rs10741616-rs7126796 (ARNTL) 
GT 49.8 57.5 0.046 0.74 (0.55–0.99) 

rs11048977-rs1037924-rs17497857-rs7138982 (ARNTL2) 
GACC 12.8 8.0 0.037 1.69 (1.03–2.77) 

rs10046-rs700519-rs6493489-rs2899472-rs2414095-rs700518 (CYP19A1) 
CACCGA 3.5 7.7 0.022 0.44 (0.21–0.9) 

rs1374213-rs3901896-rs7168908-rs2278709 (ARNT2) 
TTGC 48.6 57 0.027 0.71 (0.53–0.96) 
TCGC 14.5 8.7 0.015 1.79 (1.12–2.87) 

Figure 2. Haplotype block for SNPs associated in the smokers’ comparison. Five blocks with LD > 80
were predicted, block 1 is conformed of two SNPs in ARNTL2, block 2 by 3 SNPs in CYP19A1, block
3 by SNPs in ARNT2, block 4 with 3 SNPs in CYP46A1, and block 5 by 3 SNPs in MGST3. Color
and values in the haplotypes represent D’ LD values. The color intensity corresponds to the higher
LD value.
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Table 4. Haplotypes association analysis in smokers’ comparison.

Haplotypes COPD-S
(n = 141) Freq%

SWOC
(n = 213) Freq% p OR CI (95%)

rs10741616-rs7126796 (ARNTL)
GT 49.8 57.5 0.046 0.74 (0.55–0.99)

rs11048977-rs1037924-rs17497857-rs7138982 (ARNTL2)
GACC 12.8 8.0 0.037 1.69 (1.03–2.77)

rs10046-rs700519-rs6493489-rs2899472-rs2414095-rs700518 (CYP19A1)
CACCGA 3.5 7.7 0.022 0.44 (0.21–0.9)

rs1374213-rs3901896-rs7168908-rs2278709 (ARNT2)
TTGC 48.6 57 0.027 0.71 (0.53–0.96)
TCGC 14.5 8.7 0.015 1.79 (1.12–2.87)

rs3742377-rs943881-rs1951576-rs12435918-rs2146238 (CYP46A1)
AAAAG 14.9 21.1 0.037 0.65 (0.44–0.98)

rs10847-rs11552229-rs2228099 (ARNT)
CAC 30.5 40.5 0.007 0.65 (0.44–0.89)

rs8133-rs4147611 (MGST3)
GT 42.2 51.9 0.012 0.68 (0.5–0.92)
TG 30.1 21.4 0.008 1.59 (1.13–2.24)

Haplotypes association analysis corrected by covariates (age, sex, and BEI). Data are presented as% frequency.
χ2 was carried out to calculate p-values, OR and CI (95%); we considered significant association when p < 0.05.
Freq%: Frequency in %; OR: odds ratio; CI: confidence interval.

3.3. Severity Analysis

We stratify COPD-S and COPD-BBS subjects according to the GOLD stages (mild
stages: GOLD I + II; severe stages: GOLD III + IV). In COPD-S, we found four SNPs:
rs12435918 in CYP46A1, rs625456 in GSTM2, and rs1058930 in CYP2C8 associated with
severe forms of COPD secondary to tobacco smoking (Supplementary Table S8). For
COPD-BBS, we found rs12300289 in ARNTL2, rs10847 in ARNT, and rs2234696 in GSTM3
associated with the severe form of COPD secondary to biomass-burning smoke exposition
(Supplementary Table S9).

3.4. Association Analysis in the Group Exposed to BBS

In the BBS exposure comparison group (COPD-BBS vs. BBES), 24 SNPs were found to
be significantly associated (p < 0.05), of which twenty were associated with a higher risk
of COPD and four with a decreased risk of suffering from the disease. Interestingly, the
associated polymorphisms are mainly distributed in the MGST3, MGST1, CYP2C8, and
CYP2C9 genes (Table 5). After applying the Bonferroni correction test, only three SNPs
remained associated, rs11799886/MGST3 (p = 0.019), rs1856908/CYP2C9 (p = 0.003), and
rs1934953/CYP2C8 (p = 0.021).

When performing the genotype analysis, 23 SNPs associated with the disease were
found; three with reduced risk and twenty with a higher COPD risk. In six SNPs, no
homozygotes were found for the minor allele and the leading associations were with the
heterozygous genotypes. It should be noted that the groups of SNPs in the MGST3, CYP2C8,
CYP2C9, and MGST1 genes remained associated. MGST3 presented the highest number of
associated SNPs and OR values, presenting a three-fold increased risk of developing the
disease. In the case of CYP2C8, although only three SNPs were found to be associated with
increased risk, their OR values were also up to four times higher risk of developing COPD
secondary to BBS (Table 6).
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Table 5. Allele association analysis in exposed biomass-burning smoke comparison.

SNP/Allele COPD-BBS
(n = 98) AF% BBES

(n = 293) AF% OR CI (95%) p p *

rs4147611/MGST3
T 125 63.78 450 76.79 1.00 (Ref.)
G 71 36.22 136 23.21 1.94 1.33–2.85 0.0007 NS

rs11799886/MGST3
G 16 8.16 12 2.05 1.00 (Ref.)
A 180 91.84 574 97.95 3.96 1.66–9.49 0.002 0.019

rs6681/MGST3
C 190 96.94 582 99.32 1.00 (Ref.)
T 6 3.06 4 0.68 8.99 1.85–43.78 0.007 NS

rs9333378/MGST3
A 149 76.02 497 84.81 1.00 (Ref.)
G 47 23.98 89 15.19 1.72 1.12–2.64 0.013 NS

rs957644/MGST3
C 176 89.80 563 96.08 1.00 (Ref.)
T 20 10.20 23 3.92 2.26 1.17– 4.37 0.015 NS

rs10789501/CYP4A22
C 90 45.92 308 52.56 1.00 (Ref.)
T 106 54.08 278 47.44 1.58 1.07–2.34 0.021 NS

rs6690005/CYP4Z1
A 92 46.94 306 52.22 1.00 (Ref.)
G 104 53.06 280 47.78 1.55 1.06–2.29 0.026 NS

rs12059860/CYP4B1
T 186 94.90 577 98.46 1.00 (Ref.)
C 10 5.10 9 1.54 15.06 1.38–164 0.026 NS

rs1856908/CYP2C9
T 139 70.92 498 84.98 1.00 (Ref.)
G 57 29.08 88 15.02 2.05 1.31–3.19 0.002 0.003

rs1934953/CYP2C8
G 135 68.88 482 82.25 1.00 (Ref.)
A 61 31.12 104 17.75 2.01 1.29–3.12 0.002 0.021

rs3752988/CYP2C8
T 160 81.63 530 90.44 1.00 (Ref.)
C 36 18.37 56 9.56 2.06 1.19–3.57 0.01 NS

rs9332220/CYP2C9
G 173 88.27 558 95.22 1.00 (Ref.)
A 23 11.73 28 4.78 2.29 1.15–4.56 0.019 NS

rs1801253/ADRB1
C 179 91.33 568 96.93 1.00 (Ref.)
G 17 8.67 18 3.07 2.49 1.13–5.53 0.024 NS

rs10509681/CYP2C8
T 184 93.88 575 98.12 1.00 (Ref.)
C 12 6.12 11 1.88 2.73 1.09–6.86 0.033 NS

rs12794714/CYP2R1
G 118 60.20 298 50.85 1.00 (Ref.)
A 78 39.80 288 49.15 0.54 0.36–0.81 0.0026 NS

rs1138272/GSTP1
C 192 97.96 583 99.49 1.00 (Ref.)
T 4 2.04 3 0.51 8.95 1.563–51.22 0.014 NS

rs7129781/CYP2R1
T 186 94.90 576 98.29 1.00 (Ref.)
C 10 5.10 10 1.71 2.97 1.039– 8.49 0.042 NS

rs1913263/MGST1
G 90 45.92 350 59.73 1.00 (Ref.)
A 106 54.08 236 40.27 1.86 1.26–2.735 0.002 NS
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Table 5. Cont.

SNP/Allele COPD-BBS
(n = 98) AF% BBES

(n = 293) AF% OR CI (95%) p p *

rs1042669/MGST1
T 147 75.00 380 64.85 1.00 (Ref.)
G 49 25.00 206 35.15 0.61 0.39–0.94 0.024 NS

rs9332959/MGST1
G 147 75.00 381 65.02 1.00 (Ref.)
T 49 25.00 205 34.98 0.63 0.41–0.96 0.031 NS

rs4149197/MGST1
G 115 58.67 399 68.09 1.00 (Ref.)
C 81 41.33 187 31.91 1.52 1.01–2.28 0.044 NS

rs11048977/ARNTL2
G 151 77.04 409 69.80 1.00 (Ref.)
A 45 22.96 177 30.20 0.64 0.48–0.99 0.047 NS

rs2899472/CYP19A1
C 187 95.41 573 97.78 1.00 (Ref.)
A 9 4.59 13 2.22 2.9 1.09–7.72 0.033 NS

rs117987520/CYP11A1
G 193 98.47 585 99.83 1.00 (Ref.)
A 3 1.53 1 0.17 11.67 1.08–126.5 0.043 NS

Comparison of frequencies by logistic regression method, including age and BEI as covariates. We considered a
significant association when p < 0.05. * p-value after Bonferroni correction test, AF: allele frequency, %. OR: odds
ratio; CI: confidence interval; SNP: single nucleotide polymorphism; Ref: reference; NS: no significant.

For BBS comparison, we included 298 SNPs after filtering by MAF (>1%). We did
not find any clusters with more than 2% of the variance (Supplementary Figure S4B).
Looking for other clustering patterns, we included only the SNPs associated with COPD-
BBS, but no grouping patterns that could explain higher variability were found (<1%)
(Supplementary Figure S6).

We found seven blocks of haplotypes in high LD in the genes ARNTL, CYP2R1, MGST1,
ARNTL2, GSTP1, CYP1A2, ARNT2, CYP2C18, CYP2C9, CYP2C8, GSTM5, GSTM3, and
MGST3 (Figure 3). In block 4, we found the rs1856908 reported in allele and genotype
analysis. A haplotype block (block 7) was found in MGST3; this block was found in the
smokers’ comparison (rs8133-rs4147611).
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GG 56 57.14 124 42.32 1.00 (Ref.) 
GT 35 35.71 133 45.39 0.46 0.25–0.83 0.01 
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CA 9 9.18 13 4.44 3.2 1.17–8.57 0.021 
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GA 3 3.06 1 0.34 12.9 1.45–2.8 0.036 
AA 0 0.00 0 0 NA NA NA 
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Figure 3. Haplotypes blocks include all the SNPs associated with BBS comparison. Seven blocks 
were identified in the biomass comparison. Color and values in the diamonds represent D’ LD val-
ues. The intensity of the color is directly proportional to the higher LD value. 

Eight combinations of SNPs were associated with a lower risk of suffering COPD (OR 
< 1) and eighteen were associated with a higher risk (OR > 1.5). The larger SNP combina-
tion was composed of 15 variants that range from CYP2C18 to CYP2C9, with the highest 
OR value at almost eight times higher risk of COPD. MGST3 was the gene with more 
blocks; we found three haplotypes, and the SNPs included in the haplotypes had been 
previously reported in alleles and genotypes analyses (Table 7). 

Table 7. Haplotypes association analysis in BBS comparison. 

Haplotypes 
COPD-BBS 

(n = 98) Freq% 
BBES 

(n = 293) Freq% p OR CI (95%) 

rs10741616-rs7126796 (ARNTL) 
AT 28.3 20.6 0.023 1.51 (1.05–2.18) 

rs1993116-rs12794714 (CYP2R1) 
CA 40.1 49.3 0.024 0.69 (0.49–0.95) 
CG 18.3 12 0.023 1.65 (1.07–2.54) 

rs1913263-rs4149192 (MGST1) 

Figure 3. Haplotypes blocks include all the SNPs associated with BBS comparison. Seven blocks
were identified in the biomass comparison. Color and values in the diamonds represent D’ LD values.
The intensity of the color is directly proportional to the higher LD value.

Eight combinations of SNPs were associated with a lower risk of suffering COPD
(OR < 1) and eighteen were associated with a higher risk (OR > 1.5). The larger SNP
combination was composed of 15 variants that range from CYP2C18 to CYP2C9, with the
highest OR value at almost eight times higher risk of COPD. MGST3 was the gene with
more blocks; we found three haplotypes, and the SNPs included in the haplotypes had
been previously reported in alleles and genotypes analyses (Table 7).
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Table 6. Genotype association analysis in the exposed to biomass-burning smoke.

SNP/Allele COPD-BBS
(n = 98) GF% BBES

(n = 293) GF% OR CI (95%) p

rs12059860/CYP4B1
TT 88 89.80 284 96.93 1.00 (Ref.)
TG 10 10.20 9 3.07 15.44 1.79–335.6 0.025
GG 0 0 0 0.00 NA NA NA

rs6690005/CYP4Z1
AA 21 21.43 81 27.65 1.00 (Ref.)
AG 50 51.02 144 49.15 1.65 0.81–3.45 0.17
GG 27 27.55 68 23.21 2.86 1.26–6.69 0.013

rs10789501/CYP4A22
CC 19 19.39 82 27.99 1.00 (Ref.)
CT 52 53.06 144 49.15 1.75 0.87–3.68 0.13
TT 27 27.55 67 22.87 2.84 1.24–6.73 0.015

rs9333378/MGST3
AA 59 60.20 214 73.04 1.00 (Ref.)
AG 31 31.63 69 23.55 1.63 0.98–2.72 0.041
GG 8 8.16 10 3.41 2.90 1.09–7.68 0.027

rs9333413/MGST3
AA 39 39.80 120 40.96 1.00 (Ref.)
AG 36 36.73 136 46.42 0.91 0.48–1.72 0.77
GG 23 23.47 36 12.29 2.22 1.03–4.79 0.042

rs957644/MGST3
CC 80 81.63 271 92.49 1.00 (Ref.)
CT 16 16.33 21 7.17 2.29 1.02–5.07 0.041
TT 2 2.04 1 0.34 5.26 0.48–116.3 0.18

rs6681/MGST3
CC 92 93.88 289 98.63 1.00 (Ref.)
CT 6 6.12 4 1.37 9.77 2.11–54.79 0.005
TT 0 0.00 0 0.00 NA NA NA

rs11799886/MGST3
GG 82 83.67 281 95.90 1.00 (Ref.)
GA 16 16.33 12 4.10 4.51 1.82–11.47 0.001
AA 0 0.00 0 0.00 NA NA NA

rs8133/MGST3
GG 74 75.51 243 82.94 1.00 (Ref.)
GT 19 19.39 48 16.38 1.32 0.63–2.67 0.45
TT 5 5.10 2 0.68 12.44 2.31–99.26 0.006

rs4147611/MGST3
TT 43 43.88 179 61.09 1.00 (Ref.)
TG 39 39.80 92 31.40 2.04 1.09–3.80 0.025
GG 16 16.33 22 7.51 4.57 1.88–11.21 0.0008

rs1856908/CYP2C9
TT 50 51.02 213 72.70 1.00 (Ref.)
TG 39 39.80 72 24.57 2.51 1.36–4.67 0.003
GG 9 9.18 8 2.73 4.59 1.43–14.88 0.009

rs9332220/CYP2C9
GG 77 78.57 266 90.78 1.00 (Ref.)
GA 19 19.39 26 8.87 2.41 1.07–5.33 0.031
AA 2 2.04 1 0.34 2.57 0.09–66.83 0.51

rs1934953/CYP2C8
GG 47 47.96 198 67.58 1.00 (Ref.)
GA 41 41.84 86 29.35 2.53 1.38–4.68 0.0027
AA 10 10.20 9 3.07 4.93 1.54–16.18 0.0072
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Table 6. Cont.

SNP/Allele COPD-BBS
(n = 98) GF% BBES

(n = 293) GF% OR CI (95%) p

rs10509681/CYP2C8
TT 87 88.78 283 96.59 1.00 (Ref.)
TC 10 10.20 9 3.07 4.69 1.48–14.87 0.007
CC 1 1.02 1 0.34 3.13 0.12–84.55 0.44

rs3752988/CYP2C8
TT 64 65.31 240 81.91 1.00 (Ref.)
TC 32 32.65 50 17.06 2.98 1.54–5.78 0.001
CC 2 2.04 3 1.02 4.5 0.45–45.74 0.18

rs1801253/ADRB1
CC 81 82.65 276 94.20 1.00 (Ref.)
CG 17 17.35 16 5.46 3.01 1.24–7.24 0.014
GG 0 0.00 1 0.34 NA NA NA

rs12794714/CYP2R1
GG 36 36.73 76 25.94 1.00 (Ref.)
GA 46 46.94 146 49.83 0.47 0.25–0.89 0.022
AA 16 16.33 71 24.23 0.35 0.14–0.79 0.015

rs1913263/MGST1
GG 22 22.45 100 34.13 1.00 (Ref.)
GA 46 46.94 150 51.19 1.41 0.71–2.91 0.33
AA 30 30.61 43 14.68 3.42 1.57–7.68 0.002

rs4149197/MGST1
GG 35 35.71 129 44.03 1.00 (Ref.)
GC 45 45.92 141 48.12 0.96 0.51–1.79 0.89
CC 18 18.37 23 7.85 3.73 1.56–9.06 0.003

rs1042669/MGST1
TT 56 57.14 123 41.98 1.00 (Ref.)
TG 35 35.71 134 45.73 0.44 0.24–0.79 0.007
GG 7 7.14 36 12.29 0.5 0.17–1.32 0.18

rs9332959/MGST1
GG 56 57.14 124 42.32 1.00 (Ref.)
GT 35 35.71 133 45.39 0.46 0.25–0.83 0.01
TT 7 7.14 36 12.29 0.52 0.17–1.34 0.19

rs2899472/CYP19A1
CC 89 90.82 280 95.56 1.00 (Ref.)
CA 9 9.18 13 4.44 3.2 1.17–8.57 0.021
AA 0 0.00 0 0.00 NA NA NA

rs117987520/CYP11A1
GG 95 96.94 292 99.66 1.00 (Ref.)
GA 3 3.06 1 0.34 12.9 1.45–2.8 0.036
AA 0 0.00 0 0 NA NA NA

Comparison of frequencies by logistic regression method, including age and BEI as covariates. We considered a
significant association when p < 0.05. GF: genotype frequency; OR = odds ratio; CI = confidence interval; SNP =
singles nucleotide polymorphism; Ref = reference; NA = not applicable.

In the analysis by severity, we found four SNPs associated, three with the severe GOLD
stages and one with mild COPD stages. When data were corrected by covariates, three out
of four SNPs remained associated. However, no SNP retained its association after Bonfer-
roni correction. (Supplementary Table S8). We found five SNPs in the severity analysis of
the COPD-BBS group, four associated with a severe form of COPD and one with a mild
form of the illness. Although four remained associated after the correction by covariates,
no SNP conserves association after Bonferroni adjustment (Supplementary Table S9).
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Table 7. Haplotypes association analysis in BBS comparison.

Haplotypes COPD-BBS
(n = 98) Freq%

BBES
(n = 293) Freq% p OR CI (95%)

rs10741616-rs7126796 (ARNTL)
AT 28.3 20.6 0.023 1.51 (1.05–2.18)

rs1993116-rs12794714 (CYP2R1)
CA 40.1 49.3 0.024 0.69 (0.49–0.95)
CG 18.3 12 0.023 1.65 (1.07–2.54)

rs1913263-rs4149192 (MGST1)
GG 45.5 59.7 5 × 10−4 0.56 (0.41–0.78)
AG 43.1 32.6 0.007 1.56 (1.13–2.17)

rs7312090-rs11875-rs1042669-rs2160512-rs9332959-rs6488842 (MGST1)
GGGGTC 24.8 35.1 0.007 0.61 (0.42–0.87)
GGTAGC 25.5 18.4 0.032 1.53 (1.05–2.23)

rs1037924-rs17497857-rs7138982-rs6487604-rs4964059 (ARNTL2)
ACCCC 9.9 4.6 0.006 2.28 (1.25–4.15)

rs1695-rs4891 (GSTP1)
AC 0.4 0.1 0.007 3.98 (1.37–11.63)

rs2472304-rs2470890 (CYP1A2)
GC 84.7 91.1 0.009 0.54 (0.33–0.87)
AT 15.3 8.9 0.009 1.86 (1.16–2.99)

rs1374213-rs3901896-rs7168908-rs2278709 (ARNT2)
TTGC 68.3 76.5 0.022 0.66 (0.47–0.94)
CCAC 6.9 1.4 3.5 × 10−5 5.38 (2.22–13.02)

rs11856676-rs4238522 (ARNT2)
TT 10.4 5.8 0.027 1.88 (1.07–3.33)

rs2901783-rs76498052-rs1126545-rs2860840-rs1042192-rs1042194-rs7916649-rs4388808-rs4244285-rs12767583-rs4494250-rs1853205-
rs10786172-rs28399505-rs1856908 (CYP2C18,

CYP2C9)
ACCTGGGAGCAGGTT 38.7 49.2 0.01 0.65 (0.46–0.9)
ACCTGGGAGCAGGTG 5.8 0.9 3.9 × 10−5 7.34 (2.55–21.09)
ACCCGGGAGCGGATG 3 0.5 0.005 5.94 (1.47–24.01)

rs1058932-rs11572177-rs1934953-rs1934951-rs11572101-rs11572093-rs3752988-rs1934956 (CYP2C8)
CAAGTGCC 8.9 3.2 0.001 2.92 (1.5–5.68)

rs11807-rs1055259-rs3814309 (GSTM5/GSTM3)
ATT 38.9 28.7 0.007 1.59 (1.14–2.23)

rs1537236-rs7483 (GSTM3)
TT 46.9 55.1 0.044 0.72 (0.52–0.99)
CC 38.6 28.2 0.006 1.61 (1.15–2.25)

rs4147592-rs4147594-rs4147595 (MGST3)
GCC 10.9 5.3 0.006 2.18 (1.23–3.86)

rs9333413-rs957644 (MGST3)
GT 9.9 3.9 0.001 2.69 (1.44–5.01)

rs8133-rs4147611 (MGST3)
GT 63.9 76.8 3 × 10−4 0.53 (0.38–0.75)
GG 21.8 14.3 0.013 1.66 (1.11–2.49)
TG 14.4 8.9 0.027 1.72 (1.06–2.79)

Haplotypes association analysis corrected by covariates (age, sex, and BEI). Data are presented as% frequency.
χ2 was carried out to calculate p-values, OR and CI (95%); we considered significant association when p < 0.05.
Freq%: frequency in percentages; OR: odds ratio; CI: confidence interval.
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4. Discussion

Although multiple GWAS have described associations with COPD, most studies
focus on COPD secondary to tobacco smoking in Caucasian populations from Europe
and the USA; we analyzed SNPs in exome regions in the whole human genome by the
array genotyping technology looking for variants associated with COPD both secondary
to tobacco smoking or biomass-burning smoke in the Mexican mestizo population. The
participants were recruited from different campaigns of COPD early detection in Mexico
City and the highlands of Oaxaca.

In our group, Perez-Rubio et al. had previously described the genetic component of
the population included in this study, demonstrating the contribution of the Amerindian/
Caucasian genetic component [29]. All patients had at least three prior generations born
in Mexico (parents and grandparents) and were considered Mexican mestizos. We have
previously demonstrated that this criterion is a good proxy of Mexican ancestry evaluated
by ancestry-informative markers [30].

We found differences in variables, such as sex, age, BMI, and tobacco index, in com-
paring smokers. Due to these differences, we included these covariates in the association
of alleles and haplotypes analyses to avoid false positive findings. For the BBS group, we
found differences in age and exposure data. We did not find differences in the men/women
ratio, but women are predominantly represented in both groups. Low- to middle-income
countries are the principal users of biomass, and each region worldwide reported the use
of specific kind of biomass; for example, in China, there is a predominance in the use of
charcoal and coal; in Nepal and Kenya, the use of manure from big ruminants is a common
practice; in a large variety of Latin America, African and South Asian countries is predomi-
nant the use of firewood from a great variety of trees and even agriculture waste [18]. The
primary biomass fuel used in Mexico is firewood or mixtures of firewood, manure, and
farming waste, especially in rural or suburban areas. The principal population exposed
are women and children because women are the principal family members in charge of
cooking [18,31].

Rehfuess and collaborators establish that 52% of the world population uses either
biomass or solid fuel. Stratifying six geographic areas, they determined that Africa, South
Asia, and different areas of Latin America are the principal biomass users [32].

The World Health Organization reported that around 2.5 billion people used any
biomass only to cook, and, especially in rural zones, combustion takes place indoors, in
closed or poorly ventilated places using improvised stoves or pipes, resulting in an event
called “indoor pollution”, affecting mainly women and children, and producing 1.3 million
of premature deaths associated with respiratory diseases and infections [31,33].

Candidate genes analysis methodologies are strategies for post-genotyping data in
genome-wide studies (GWAS) [34]. In this study, we used genotyping exome array that
includes up to 560 thousand specific sequence probes capable of detecting the SNPs in
exome regions. We included genes whose biological function was related to xenobiotic and
drug metabolism processing.

Xenobiotics are exogenous bodily substances that involve absorption, distribution,
and metabolism [35]. Some genes related to the xenobiotic processing are genes of the
glutathione transferase family (phase 2 metabolizers) [36], cytochrome P450 (phase 1
metabolizing isoenzymes) [37], aryl hydro-carbon receptors and translocators [38], and
ADRB1 genes (β1 adrenergic receptors) [39].

The genes included were CYP4B1, CYP4Z2P, CYP4A11, CYP4 × 1, CYP4Z1, CYP4A22,
CYP2J2, CYP26C1, CYP26A1, CYP2C18, CYP2C19, CYP2C9, CYP2C8, CYP17A1, CYP2E1,
CYP2R1, CYP27B1, ACYP1, CYP46A1, CYP19A1, CYP11A1, CYP1A1, CYP1A2, GSTM4,
GSTM3, GSTM2, GSTM1, MGST3, GSTO1, GSTO2, GSTP1, MGST1, GSTZ1, ADRB1, ARNT2,
ARNT, ARNTL2, and ARNTL, and a total of 750 SNPs were selected.

In smokers’ comparison, we found eight SNPs associated with COPD; six SNPs were
associated with a higher risk of suffering COPD-S; rs11572191 in CYP2J2; rs8133 in MGST3;
rs17497857 and rs4964059 in ARNTL2; and rs3901896 and rs8041826 in ARNT2, all with the
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minor allele. Only two SNPs were found associated with lower risk; rs4147611 in MGST3
and rs3742377 in CYP46A1.

Our is the first study reporting these sets of SNPs with COPD-S, particularly in
a mestizo (admixed) population as the Mexican. Although any polymorphism in our
findings was previously described, the genes associated are reported in different studies as
associated factors to lung diseases. Four SNPs in CYP2J2 were found to be associated with
the Chinese Han population with COPD-S [40], and even in the Russian population, SNPs in
CYP2J2 are associated with bronchitis secondary to smoking [41]. Other investigations have
demonstrated that SNPs in CYP2J2 could be involved in lung ischemia and reperfusion
injury, especially in smokers [42,43]. Although our investigation focuses on COPD, lung
injury and hypertension are common in subjects with COPD. Additionally, CYP2J2 is
related to asthma models and cancer. Refs. [44–46] CYP2C9 has been included in studies
related to adenocarcinoma and other forms of lung cancer [45,47,48].

Even though there are few reports of MGST3 and COPD, some SNPs have been
associated with attenuating smokers’ accelerated decline in FEV1/FVC [49]. No other
reports of lung diseases have been reported.

ARNT genes encode proteins capable of binding to aryl hydro-carbon receptors to
translocate them to the cell nucleus as transcription factors related to gene promoters such
as HIF1α. The principal studies between ARNT genes suggest a possible relation with
small-cell cancer [50–53].

The protein encoded by MGST1 (microsomal glutathione S-transferase 1) is a membrane-
associated protein with peroxidase activity which avoids lipid damage against reactive
oxygen species (ROS), cytotoxic, and drugs. The principal association between MGST1 and
lung diseases includes different types of cancer, such as adenocarcinoma or non-small cell
lung cancer [54,55]. Woldhuis et al. proposed that microsomal glutathione S-transferase 1
could be related to cell senescence and extracellular matrix reorganization [56]. Recently,
ferroptosis has been described as a programmed dead type with a higher lipid peroxide
concentration in other illnesses. MGST1 is differentially expressed in alveolar type 2 cells [57].
In the case of MGST3, sets of polymorphism attenuated lung function decline in European-
American smokers [49].

In genotypes, only higher risk associated SNPs were found associated with the illness;
among these, four were previously described in allele analysis; rs11572191, rs17497857,
rs3901896, and rs8041826. Three more SNPs were found in genotype analysis, the GG of
rs1951576 and CC genotype of rs943881 in gene CYP46A1 and TT of rs6488842 in gene
MGST1. The alleles associated with a low risk of COPD were possibly not found in the
genotype phase due to the low frequency of minor alleles; not enough homozygous minor
allele genotypes were found.

There is limited information regarding the severity data related to the SNPs and genes
associated with xenobiotic metabolism. Studies in emphysema have demonstrated that the
expression of GSTM3 was upregulated in mild illness [58], while other studies describe
SNPs associated with a lower FEV1/FVC ratio [59]. GSTM3 is a gene in which protein
product is related to eliminating electrophilic compounds and carcinogens. We found
rs2234696 in GSTM3 to be associated with the severe form of COPD in smokers, and while
there are no reports regarding the SNP, we can state that the SNP could affect the structure
of the protein codified by the gene, thus preventing its biological function.

Haplotypes analysis is used to elucidate possible associations in groups of SNPs in
different regions of genes [60]. For the comparison with smokers, we found five blocks with
high LD (>85) in ARNTL1, CYP19A1, ARNT2, CYP46A1, and MGST3. Multiple genes have
been associated with complex diseases like COPD but with moderate OR [61]. Including
multiple analyses as polygenic risk scores has demonstrated that a combination of genetic
variants could explain the multiples association and even reach the haplotype analysis [62].
In the haplotype blocks, we found five combinations of SNPs associated with allele analysis,
suggesting a probably critical role in COPD pathophysiology.
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We found more SNPs associated with COPD-BBS than COPD-S; at the allele level,
the principal findings include SNPs in MGST3, CYP2C8, and MGST1. Few studies have
been made in the genetic field about COPD-BBS. Our current study is the first in exome-
wide genotyping.

Principal studies with COPD-BBS in Latin America emphasize clinical description;
other studies include Chinese and Chilean populations but focus on genes such as PRDM15
and CXCL10, respectively [63,64]. Additionally, we found a greater number of SNPs in
COPD-BBS than in COPD-S, which could suggest a possible major complex in developing
COPD-BBS.

In haplotype analysis, we found seven blocks in high LD; among these findings, the
larger haplotype block was found in MGST1, and the leading role of the protein encoded
is related to extracellular matrix reorganization. A clinical characteristic of COPD-BBS is
anthracofibrosis, bronchial caliber diminution, and increased mucus production [65]. This
bronchial remodeling could be related to genes such as MGST1, but we cannot demonstrate
it due to the limited investigation of the cellular effects of the BBS.

Additionally, we found two different haplotypes in ARNT2 associated higher risk
of COPD-BBS. Previous reports about COPD focus on tobacco smoking, and some of the
most significant results involve AHR and ARNT family genes. The evidence demonstrates
an important role of AHR in attenuating inflammation related to neutrophils [66] and in
lung remodeling by different genes such as MMP9 [67]. Studies in animal models have
demonstrated a possible relationship between the aryl hydrocarbon receptors and CYP
genes, especially in asthma, which control inflammatory processes [68]. We found many
haplotypes in CYP and ARNT genes, which could support the biological relation.

Even though we found SNPs associated specifically with COPD-S or COPD-BBS, we
also found similar SNPs and haplotypes, such as ARNT2 and MGST3. This result could
suggest the participation of a molecular shared component. Using in silico databases,
such as GTEx, we found four SNPs (rs6681 and rs9333378 in MGST3, rs10789501 in
CYP4A22, rs117987520 in CYP11A1) that affect the expression levels in the genes where they
are located.

With the MCA, we included the SNPs associated with each subtype of COPD, but we
did not find clear subgroups. Some studies have demonstrated that multivariate analysis
as MCA and polygenic risk score calculation could give more information regarding the
effect of exposure/clinical variables and genetic variants as SNPs [69].

Other phenomena reported in our investigation are the SNPs associated with a lower
risk of COPD. In previous investigations, we have described similar associations with
other SNPs in different genes [70,71]. This effect is described in different illnesses, called
the “Hispanic Paradox”, a theory that describes the role of the genetic background of
Amerindians which could lead to lower severity or better prognosis in illnesses, including
COPD [72,73].

Our is the first exome-wide association study in Mexican mestizos with COPD, clas-
sified by tobacco smoking and biomass burning-smoke exposition. We demonstrated
the highly conserved composition of the Mexican Amerindian population. Although we
found differences in demographics and exposure, we corrected data by logistic regres-
sion. Nevertheless, our study is not exempt from limitations; first of all, we need more
clinical data, such as the number of exacerbations or predominant phenotypes (bronchitis
or emphysema). We also require other auxiliary tools, for instance, expression-related or
immunohistochemical. Additionally, we need to include more COPD patients to strengthen
the severity analysis.

5. Conclusions

Single-nucleotide variants in CYP2C8, CYP2C9, and MGST3 genes are associated with
the risk of COPD secondary to biomass-burning smoke exposure. In addition, shared
haplotype blocks in MGST3 and ARNT2 were found in both tobacco smokers and biomass-
burning smoke-exposed subjects.



Curr. Issues Mol. Biol. 2023, 45 815

Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/
article/10.3390/cimb45020053/s1. Supplementary Figure S1. Sample selection criteria for both com-
parison groups, Supplementary Figure S2. Sample selection flowchart for both comparison groups,
Supplementary Figure S3. SNPs filtering flowchart for SNPs association analysis, Supplementary
Figure S4. Multiple Correspondence Analysis (MCA), Supplementary Figure S5. Multiple correspon-
dence analysis (MCA) for smokers’ comparison, Supplementary Figure S6. Multiple correspondence
analysis (MCA) for biomass’ comparison, Supplementary Figure S7. Gene schemes with the SNPs
associated in haplotype analysis in smokers’ comparison, Supplementary Figure S8. Gene schemes
with the SNPs associated with haplotype analysis in biomass comparison, Supplementary Table S1.
List of SNPs included in the analysis, Supplementary Table S2. Molecular data for SNPs associated in
the smokers’ comparison, Supplementary Table S3. Molecular data for SNPs associated in exposed
biomass-burning smoke comparison, Supplementary Table S4. Alleles data for smokers’ compari-
son with no correction, Supplementary Table S5. Genotype data for smokers’ comparison with no
correction, Supplementary Table S6. Alleles data in exposed biomass-burning smoke comparison
with no correction, Supplementary Table S7. Genotype data in exposed biomass-burning smoke com-
parison with no correction, Supplementary Table S8. Analysis by severity in patients with COPD-S,
Supplementary Table S9. Analysis by severity in patients with COPD-BBES.

Author Contributions: Conceptualization, G.P.-R., A.R.-V., R.S., J.P.-R. and R.F.-V.; Data curation,
G.P.-R., J.C.F.-L. and R.S.; Formal analysis, E.A.-O., G.P.-R., A.R.-V. and J.C.F.-L.; Funding acquisition,
R.S. and R.F.-V.; Investigation, E.A.-O., A.R.-V., F.C.-V. and J.P.-R.; Methodology, E.A.-O., M.E.R.-D.,
M.d.L.M.-G. and R.F.-V.; Project administration, R.d.J.H.-Z., R.S., J.P.-R. and R.F.-V.; Resources, A.R.-V.,
R.d.J.H.-Z., M.E.R.-D., F.C.-V., M.d.L.M.-G. and R.F.-V.; Software, E.A.-O., G.P.-R., J.C.F.-L. and R.S.;
Supervision, A.R.-V., M.d.L.M.-G. and R.F.-V.; Validation, E.A.-O., G.P.-R., R.d.J.H.-Z., R.S., J.P.-R. and
R.F.-V.; Visualization, E.A.-O. and J.C.F.-L.; Writing—original draft, E.A.-O., G.P.-R., J.P.-R. and R.F.-V.;
Writing—review and editing, E.A.-O. and R.F.-V. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the budget allocated to research (RFV-HLA Laboratory) from
the Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Ethics Committee of Instituto Nacional de
Enfermedades Respiratorias Ismael Cosío Villegas (protocol numbers C35-19).

Informed Consent Statement: Informed consent was obtained from all subjects involved in
the study.

Data Availability Statement: Data analyzed in this study are available in ClinVar under the
submission code SUB11745124 (SCV002540796–SCV002540803) and SUB11745177 (SCV002540844–
SCV002540866).

Acknowledgments: The authors acknowledge the support received from physicians and technicians
from the COPD clinic at INER to confirm the diagnosis, the acquisition of data on lung function, and
the clinical care of the study participants.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Global Inititiative for Chronic Obstructive Lung Disease (GOLD). Global Inititiative for Chronic Obstructive Lung Disease; GOLD:

Deer Park, IL, USA, 2017; pp. 1–139.
2. de Oca, M.M.; López Varela, M.V.; Acuña, A.; Schiavi, E.; Rey, M.A.; Jardim, J.; Casas, A.; Tokumoto, A.; Torres Duque, C.A.;

Ramírez-Venegas, A.; et al. ALAT-2014 Chronic Obstructive Pulmonary Disease (COPD) Clinical Practice Guidelines: Questions
and Answers. Arch. Bronconeumol. 2015, 51, 403–416. [CrossRef]

3. OMS | Enfermedad Pulmonar Obstructiva Crónica (EPOC). World Health Organization. 2015. Available online: http://www.
who.int/mediacentre/factsheets/fs315/es/ (accessed on 18 August 2016).

4. Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3, 2011–2030.
[CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/cimb45020053/s1
https://www.mdpi.com/article/10.3390/cimb45020053/s1
http://doi.org/10.1016/j.arbr.2015.05.024
http://www.who.int/mediacentre/factsheets/fs315/es/
http://www.who.int/mediacentre/factsheets/fs315/es/
http://doi.org/10.1371/journal.pmed.0030442
http://www.ncbi.nlm.nih.gov/pubmed/17132052


Curr. Issues Mol. Biol. 2023, 45 816

5. Alvar Agusti, R.B.; Chen, R.; Gerard, C.; Frith, P.; Halpin, D. Global Initiative for Chronic Obstructive Lung Disease Global
Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (2018 Report). 2018,
p. 142. Available online: https://goldcopd.org/wp-content/uploads/2018/11/GOLD-2019-v1.7-FINAL-14Nov2018-WMS.pdf
(accessed on 14 July 2019).

6. Mukherjee, S.; Roychoudhury, S.; Siddique, S.; Banerjee, M.; Bhattacharya, P.; Lahiri, T.; Ray, M.R. Respiratory symptoms, lung
function decrement and chronic obstructive pulmonary disease in pre-menopausal Indian women exposed to biomass smoke.
Inhal. Toxicol. 2014, 26, 866–872. [CrossRef] [PubMed]

7. Golpe, R.; Mengual-Macenlle, N.; Sanjuán-López, P.; Cano-Jiménez, E.; Castro-Añón, O.; Pérez-De-Llano, L.A. Prognostic Indices
and Mortality Prediction in COPD Caused by Biomass Smoke Exposure. Lung 2015, 193, 497–503. [CrossRef]

8. Shaikh, M.; Sood, R.G.; Sarkar, M.; Thakur, V. Quantitative Computed Tomography (CT) Assessment of Emphysema in Patients
with Severe Chronic Obstructive Pulmonary Disease (COPD) and its Correlation with Age, Sex, Pulmonary Function Tests, BMI,
Smoking, and Biomass Exposure. Pol. J. Radiol. 2017, 82, 760–766. [CrossRef]

9. Ghosh, B.; Gaike, A.H.; Pyasi, K.; Brashier, B.; Das, V.V.; Londhe, J.D.; Juvekar, S.; Shouche, Y.S.; Donnelly, L.E.; Salvi, S.S.; et al.
Bacterial load and defective monocyte-derived macrophage bacterial phagocytosis in biomass smoke-related COPD. Eur. Respir. J.
2018, 53, 1702273. [CrossRef]

10. Stoller, J.K.; Aboussouan, L.S. Alpha1-antitrypsin deficiency. Lancet 2005, 365, 2225–2236. [CrossRef]
11. Wan, E.S.; Cho, M.H.; Boutaoui, N.; Klanderman, B.J.; Sylvia, J.S.; Ziniti, J.P.; Won, S.; Lange, C.; Pillai, S.G.; Anderson, W.H.; et al.

Genome-wide association analysis of body mass in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 2011, 45,
304–310. [CrossRef]

12. Kim, D.K.; Hersh, C.P.; Washko, G.R.; Hokanson, J.E.; Lynch, D.A.; Newell, J.D.; Murphy, J.R.; Crapo, J.D.; Silverman, E.K.
Epidemiology, radiology, and genetics of nicotine dependence in COPD. Respir. Res. 2011, 12, 9. [CrossRef]

13. Thorgeirsson, T.E.; Gudbjartsson, D.F.; Surakka, I.; Vink, J.M.; Amin, N.; Geller, F.; Sulem, P.; Rafnar, T.; Esko, T.; Walter, S.; et al.
Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat. Genet. 2010, 42, 448–453. [CrossRef]

14. Teramoto, S. Recent progress in genetic background of chronic obstructive pulmonary disease (COPD). Nihon Rinsho 2016, 74,
733–742.

15. Jackson, V.E.; Ntalla, I.; Sayers, I.; Morris, R.; Whincup, P.; Casas, J.P.; Amuzu, A.; Choi, M.; Dale, C.; Kumari, M.; et al. Exome-
wide analysis of rare coding variation identifies novel associations with COPD and airflow limitation in MOCS3, IFIT3 and
SERPINA12. Thorax 2016, 71, 501–509. [CrossRef]

16. Cha, S.I.; Kang, H.-G.; Choi, J.E.; Kim, M.J.; Park, J.; Lee, W.K.; Kim, C.H.; Jung, T.H.; Park, J.Y. SERPINE2 polymorphisms and
chronic obstructive pulmonary disease. J. Korean Med Sci. 2009, 24, 1119–1125. [CrossRef] [PubMed]

17. Yanbaeva, D.G.; Dentener, M.A.; Spruit, M.A.; Houwing-Duistermaat, J.J.; Kotz, D.; Passos, V.L.; Wouters, E.F. IL6 and CRP
haplotypes are associated with COPD risk and systemic inflammation: A case-control study. BMC Med. Genet. 2009, 10, 23.
[CrossRef]

18. Ramírez-Venegas, A.; Velázquez-Uncal, M.; Pérez-Hernández, R.; Guzmán-Bouilloud, N.E.; Falfán-Valencia, R.; Mayar-Maya,
M.E.; Aranda-Chávez, A.; Sansores, R.H. Prevalence of COPD and respiratory symptoms associated with biomass smoke exposure
in a suburban area. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 1727–1734. [CrossRef] [PubMed]

19. GOLD 2021. Global Initiative for Chronic Obstructive Lung Disease: Pocket Guide To COPD Diagnosis, Management, and
Prevention, A Guide for Health Care Professionals. Gold 2021. pp. 1–33. Available online: https://goldcopd.org/wp-content/
uploads/2020/11/GOLD-2021-POCKET-GUIDE-v1.0-16Nov20_WMV.pdf (accessed on 27 April 2021).

20. Ambrocio-Ortiz, E.; Pérez-Rubio, G.; Abarca-Rojano, E.; Montaño, M.; Ramos, C.; Hernández-Zenteno, R.D.; Del Angel-
Pablo, A.D.; Reséndiz-Hernández, J.M.; Ramírez-Venegas, A.; Falfán-Valencia, R. Influence of proinflammatory cytokine gene
polymorphisms on the risk of COPD and the levels of plasma protein. Cytokine 2018, 111, 364–370. [CrossRef]

21. Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.;
et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81,
559–575. [CrossRef] [PubMed]

22. R Core Team. European Environment Agency. 2020. Available online: https://www.eea.europa.eu/data-and-maps/indicators/
oxygen-consuming-substances-in-rivers/r-development-core-team-2006 (accessed on 5 February 2022).

23. R Studio Team. Available online: http://www.rstudio.com/ (accessed on 4 February 2022).
24. Huerta-Chagoya, A.; Moreno-Macías, H.; Fernández-López, J.C.; Ordóñez-Sánchez, M.L.; Rodríguez-Guillén, R.; Contreras, A.V.;

Hidalgo-Miranda, A.; Alfaro-Ruíz, L.A.; Salazar-Fernandez, E.P.; Moreno-Estrada, A.; et al. A Panel of 32 AIMs Suitable for
Population Stratification Correction and Global Ancestry Estimation in Mexican Mestizos 06 Biological Sciences 0604 Genetics.
BMC Genet. 2019, 20, 5. Available online: https://bmcgenomdata.biomedcentral.com/articles/10.1186/s12863-018-0707-7
(accessed on 8 January 2023). [CrossRef] [PubMed]

25. Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. Available online:
https://cran.r-project.org/package=FactoMineR (accessed on 19 September 2022). [CrossRef]

26. Kassambara, A.; Mundt, F. Factoextra: Extract and visualize the results of multivariate data analyses. 2017, pp. 1–76. Available
online: http//www.sthda.com/english/rpkgs/factoextraBugReports; https://cran.r-project.org/package=factoextra (accessed
on 19 September 2022).

https://goldcopd.org/wp-content/uploads/2018/11/GOLD-2019-v1.7-FINAL-14Nov2018-WMS.pdf
http://doi.org/10.3109/08958378.2014.965560
http://www.ncbi.nlm.nih.gov/pubmed/25472477
http://doi.org/10.1007/s00408-015-9731-9
http://doi.org/10.12659/PJR.903278
http://doi.org/10.1183/13993003.02273-2017
http://doi.org/10.1016/S0140-6736(05)66781-5
http://doi.org/10.1165/rcmb.2010-0294OC
http://doi.org/10.1186/1465-9921-12-9
http://doi.org/10.1038/ng.573
http://doi.org/10.1136/thoraxjnl-2015-207876
http://doi.org/10.3346/jkms.2009.24.6.1119
http://www.ncbi.nlm.nih.gov/pubmed/19949669
http://doi.org/10.1186/1471-2350-10-23
http://doi.org/10.2147/COPD.S156409
http://www.ncbi.nlm.nih.gov/pubmed/29872290
https://goldcopd.org/wp-content/uploads/2020/11/GOLD-2021-POCKET-GUIDE-v1.0-16Nov20_WMV.pdf
https://goldcopd.org/wp-content/uploads/2020/11/GOLD-2021-POCKET-GUIDE-v1.0-16Nov20_WMV.pdf
http://doi.org/10.1016/j.cyto.2018.09.017
http://doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pubmed/17701901
https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006
https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006
http://www.rstudio.com/
https://bmcgenomdata.biomedcentral.com/articles/10.1186/s12863-018-0707-7
http://doi.org/10.1186/s12863-018-0707-7
http://www.ncbi.nlm.nih.gov/pubmed/30621578
https://cran.r-project.org/package=FactoMineR
http://doi.org/10.18637/jss.v025.i01
http//www.sthda.com/english/rpkgs/factoextraBugReports
https://cran.r-project.org/package=factoextra


Curr. Issues Mol. Biol. 2023, 45 817

27. Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005,
21, 263–265. [CrossRef]

28. Gabriel, S.B.; Schaffner, S.F.; Nguyen, H.; Moore, J.M.; Roy, J.; Blumenstiel, B.; Higgins, J.; DeFelice, M.; Lochner, A.; Faggart,
M.; et al. The structure of haplotype blocks in the human genome. Science 2002, 296, 2225–2229. Available online: http:
//www.sciencemag.org/cgi/doi/10.1126/science.1069424 (accessed on 4 September 2019). [CrossRef]

29. Pérez-Rubio, G.; Falfán-Valencia, R.; Fernández-López, J.; Ramírez-Venegas, A.; Hernández-Zenteno, R.; Flores-Trujillo, F.;
Silva-Zolezzi, I. Genetic Factors Associated with COPD Depend on the Ancestral Caucasian/Amerindian Component in the
Mexican Population. Diagnostics 2021, 11, 599. [CrossRef]

30. Pérez-Rubio, G.; Silva-Zolezzi, I.; Fernández-López, J.C.; Camarena, Á.; Velázquez-Uncal, M.; Morales-Mandujano, F.; Hernández-
Zenteno, R.D.J.; Flores-Trujillo, F.; Sánchez-Romero, C.; Velázquez-Montero, A.; et al. Genetic Variants in IL6R and ADAM19 are
Associated with COPD Severity in a Mexican Mestizo Population. COPD 2016, 13, 610–615. [CrossRef] [PubMed]

31. OMS. Contaminación del aire de Interiores y Salud; OMS: Geneva, Switzerland, 2018. [CrossRef]
32. Rehfuess, E.A.; Puzzolo, E.; Stanistreet, D.; Pope, D.; Bruce, N.G. Enablers and Barriers to Large-Scale Uptake of Improved Solid

Fuel Stoves: A Systematic Review. Environ. Health Perspect. 2014, 122, 120–130. [CrossRef] [PubMed]
33. Pérez-Padilla, J.R.; Regalado-Pineda, J.; Morán-Mendoza, A.O. The domestic inhalation of the smoke from firewood and of other

biological materials. A risk for the development of respiratory diseases. Gac. Med. de Mex. 1999, 135, 19–29.
34. Espin-Garcia, O.; Craiu, R.V.; Bull, S.B. Two-phase sample selection strategies for design and analysis in post-genome-wide

association fine-mapping studies. Stat. Med. 2021, 40, 6792–6817. [CrossRef]
35. Los Xenobióticos. Available online: https://centrosconacyt.mx/noticia/los-xenobioticos/ (accessed on 9 October 2021).
36. Hayes, J.D.; Flanagan, J.U.; Jowsey, I.R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 51–88. [CrossRef]
37. van Schaik, R.H.N. CYP450 pharmacogenetics for personalizing cancer therapy. Drug Resist. Updates 2008, 11, 77–98. [CrossRef]
38. Shinde, R.; McGaha, T.L. The Aryl Hydrocarbon Receptor: Connecting Immunity to the Microenvironment. Trends Immunol. 2018,

39, 1005–1020. [CrossRef]
39. Strosberg, A.D. Structure, function, and regulation of adrenergic receptors. Protein Sci. 1993, 2, 1198–1209. [CrossRef]
40. Lu, H.; Yang, Y.; Chen, X.; Wu, C.; Zhao, J.; Feng, Q.; Zhou, X.; Xu, D.; Li, Q.; Niu, H.; et al. Influence of the CYP2J2 Gene

Polymorphisms on Chronic Obstructive Pulmonary Disease Risk in the Chinese Han Population. Arch. Bronconeumol. 2020, 56,
697–703. [CrossRef]

41. Akhmadishina, L.A.; Korytina, G.F.; Victorova, T.V. Polymorphic markers of the CYP1B1 (4326C > G), CYP2F1 (c.14_15insC),
CYP2J2 (-76G > T), and CYP2S1 (13106C > T and 13255A > G) genes and genetic predisposition to chronic respiratory diseases
induced by smoking and occupational factors. Genetika 2011, 47, 1402–1410. [PubMed]

42. Kamata, S.; Fujino, N.; Yamada, M.; Grime, K.; Suzuki, S.; Ota, C.; Tando, Y.; Okada, Y.; Sakurada, A.; Noda, M.; et al. Expression
of cytochrome P450 mRNAs in Type II alveolar cells from subjects with chronic obstructive pulmonary disease. Pharmacol. Res.
Perspect. 2018, 6, e00405. [CrossRef]

43. Yang, Y.; Wang, J.; Peng, W.; Shu, Y.; Mo, X. Cytochrome P450 Epoxygenase 2J2 Protects Against Lung Ischemia/Reperfusion
Injury by Activating the P13K/Akt/GSK-3-β/NF-kB Signaling Pathway During Deep Hypothermic Low Flow in Mice. J. Surg.
Res. 2020, 253, 8–17. [CrossRef]

44. Hukkanen, J.; Pelkonen, O.; Hakkola, J.; Raunio, H. Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP)
enzymes in human lung. Crit. Rev. Toxicol. 2002, 32, 391–411. [CrossRef] [PubMed]

45. Rubin, K.; Ewing, P.; Bäckström, E.; Abrahamsson, A.; Bonn, B.; Kamata, S.; Grime, K. Pulmonary metabolism of substrates for
key drug-metabolizing enzymes by human alveolar type ii cells, human and rat lung microsomes, and the isolated perfused rat
lung model. Pharmaceutics 2020, 12, 117. [CrossRef] [PubMed]

46. Chen, W.; Zheng, G.; Yang, S.; Ping, W.; Fu, X.; Zhang, N.; Wang, D.W.; Wang, J. CYP2J2 and EETs protect against oxidative stress
and apoptosis in vivo and in vitro following lung ischemia/reperfusion. Cell. Physiol. Biochem. 2014, 35, 1663–1680. [CrossRef]
[PubMed]

47. London, S.J.; Daly, A.K.; Leathart, J.B.; Navidi, W.C.; Idle, J.R. Lung cancer risk in relation to the CYP2C9*1/CYP2C9*2 genetic
polymorphism among African-Americans and Caucasians in Los Angeles County, California. Pharmacogenetics 1996, 6, 527–533.
[CrossRef] [PubMed]

48. Sausville, L.N.; Gangadhariah, M.H.; Chiusa, M.; Mei, S.; Wei, S.; Zent, R.; Luther, J.M.; Shuey, M.M.; Capdevila, J.H.; Falck,
J.R.; et al. The cytochrome P450 slow metabolizers CYP2C92 and CYP2C93 directly regulate tumorigenesis via reduced
epoxyeicosatrienoic acid production. Cancer Res. 2018, 78, 4865–4877. [CrossRef] [PubMed]

49. Tang, W.; Bentley, A.R.; Kritchevsky, S.B.; Harris, T.B.; Newman, A.B.; Bauer, D.C.; Meibohm, B.; Cassano, P.A. Genetic variation
in antioxidant enzymes, cigarette smoking, and longitudinal change in lung function. Free Radic. Biol. Med. 2013, 63, 304–312.
[CrossRef] [PubMed]

50. Awji, E.G.; Chand, H.; Bruse, S.; Smith, K.R.; Colby, J.K.; Mebratu, Y.; Levy, B.D.; Tesfaigzi, Y. Wood smoke enhances cigarette
smoke-induced inflammation by inducing the aryl hydrocarbon receptor repressor in airway epithelial cells. Am. J. Respir. Cell
Mol. Biol. 2015, 52, 377–386. [CrossRef] [PubMed]

51. Chen, Z.; Ji, N.; Wang, Z.; Wu, C.; Sun, Z.; Li, Y.; Hu, F.; Wang, Z.; Huang, M.; Zhang, M. Fine particulate matter (PM25) promoted
the invasion of lung cancer cells via an ARNT2/PP2A/STAT3/MMP2 Pathway. J. Biomed. Nanotechnol. 2018, 14, 2172–2184.
[CrossRef] [PubMed]

http://doi.org/10.1093/bioinformatics/bth457
http://www.sciencemag.org/cgi/doi/10.1126/science.1069424
http://www.sciencemag.org/cgi/doi/10.1126/science.1069424
http://doi.org/10.1126/science.1069424
http://doi.org/10.3390/diagnostics11040599
http://doi.org/10.3109/15412555.2016.1161017
http://www.ncbi.nlm.nih.gov/pubmed/27078193
http://doi.org/10.1002/glia.20961
http://doi.org/10.1289/ehp.1306639
http://www.ncbi.nlm.nih.gov/pubmed/24300100
http://doi.org/10.1002/sim.9211
https://centrosconacyt.mx/noticia/los-xenobioticos/
http://doi.org/10.1146/annurev.pharmtox.45.120403.095857
http://doi.org/10.1016/j.drup.2008.03.002
http://doi.org/10.1016/j.it.2018.10.010
http://doi.org/10.1002/pro.5560020802
http://doi.org/10.1016/j.arbres.2019.11.026
http://www.ncbi.nlm.nih.gov/pubmed/22232929
http://doi.org/10.1002/prp2.405
http://doi.org/10.1016/j.jss.2019.12.052
http://doi.org/10.1080/20024091064273
http://www.ncbi.nlm.nih.gov/pubmed/12389869
http://doi.org/10.3390/pharmaceutics12020117
http://www.ncbi.nlm.nih.gov/pubmed/32024122
http://doi.org/10.1159/000362950
http://www.ncbi.nlm.nih.gov/pubmed/24903033
http://doi.org/10.1097/00008571-199612000-00006
http://www.ncbi.nlm.nih.gov/pubmed/9014202
http://doi.org/10.1158/0008-5472.CAN-17-3977
http://www.ncbi.nlm.nih.gov/pubmed/30012669
http://doi.org/10.1016/j.freeradbiomed.2013.05.016
http://www.ncbi.nlm.nih.gov/pubmed/23688726
http://doi.org/10.1165/rcmb.2014-0142OC
http://www.ncbi.nlm.nih.gov/pubmed/25137396
http://doi.org/10.1166/jbn.2018.2645
http://www.ncbi.nlm.nih.gov/pubmed/30305224


Curr. Issues Mol. Biol. 2023, 45 818

52. Yang, B.; Yang, E.; Liao, H.; Wang, Z.; Den, Z.; Ren, H. ARNT2 is downregulated and serves as a potential tumor suppressor gene
in non-small cell lung cancer. Tumor Biol. 2015, 36, 2111–2119. [CrossRef]

53. Drutel, G.; Kathmann, M.; Héron, A.; Gros, C.; Macé, S.; Schwartz, J.; Arrang, J. Two splice variants of the hypoxia-inducible
factor HIF-1α as potential dimerization partners of ARNT2 in neurons. Eur. J. Neurosci. 2000, 12, 3701–3708. [CrossRef] [PubMed]

54. Zhang, J.; Xu, C.; Gao, Y.; Wang, Y.; Ding, Z.; Zhang, Y.; Shen, W.; Zheng, Y.; Wan, Y. A Novel Long Non-coding RNA,
MSTRG.51053.2 Regulates Cisplatin Resistance by Sponging the miR-432-5p in Non-small Cell Lung Cancer Cells. Front. Oncol.
2020, 10, 215. [CrossRef] [PubMed]

55. Zeng, B.; Ge, C.; Li, R.; Zhang, Z.; Fu, Q.; Li, Z.; Lin, Z.; Liu, L.; Xue, Y.; Xu, Y.; et al. Knockdown of microsomal glutathione
S-transferase 1 inhibits lung adenocarcinoma cell proliferation and induces apoptosis. Biomed. Pharmacother. 2019, 121, 109562.
[CrossRef]

56. Woldhuis, R.R.; De Vries, M.; Timens, W.; van den Berge, M.; DeMaria, M.; Oliver, B.G.G.; Heijink, I.H.; Brandsma, C.-A. Link
between increased cellular senescence and extracellular matrix changes in COPD. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2020,
319, L48–L60. [CrossRef]

57. Sauler, M.; McDonough, J.E.; Adams, T.S.; Kothapalli, N.; Barnthaler, T.; Werder, R.B.; Schupp, J.C.; Nouws, J.; Robertson, M.J.;
Coarfa, C.; et al. Characterization of the COPD Alveolar Niche Using Single-Cell RNA Sequencing. Nat. Commun. 2022, 13, 394.
Available online: https://www.nature.com/articles/s41467-022-28062-9 (accessed on 20 March 2020). [CrossRef]

58. Francis, S.M.S.; Larsen, J.E.; Pavey, S.J.; Bowman, R.V.; Hayward, N.K.; Fong, K.M.; Yang, I.A. Expression Profiling Identifies
Genes Involved in Emphysema Severity. Respir. Res. 2009, 10, 81. Available online: http://respiratory-research.biomedcentral.
com/articles/10.1186/1465-9921-10-81 (accessed on 9 January 2023). [CrossRef]

59. Kukkonen, M.K.; Hämäläinen, S.; Kaleva, S.; Vehmas, T.; Huuskonen, M.S.; Oksa, P.; Vainio, H.; Piirilä, P.; Hirvonen, A. Genetic
Polymorphisms of Xenobiotic-Metabolizing Enzymes Influence the Risk of Pulmonary Emphysema. Pharm. Genom. 2011, 21,
876–883. Available online: https://journals.lww.com/01213011-201112000-00012 (accessed on 9 January 2023). [CrossRef]
[PubMed]

60. D’Amelio, A.M.; Monroy, C.; El-Zein, R.; Etzel, C.J. Using haplotype analysis to elucidate significant associations between genes
and Hodgkin lymphoma. Leuk. Res. 2012, 36, 1359–1364. [CrossRef]

61. Hou, Z.F.; Yuan, Z.H.; Chang, K.; Cao, Y.H.; Guan, F.X.; Gao, Y. NLRP3 rs1539019 is significantly associated with chronic
obstructive pulmonary disease in a Chinese Han population: A case-control study. Eur. Rev. Med. Pharmacol. Sci. 2022, 26,
5821–5828. [PubMed]

62. Mahesworo, B.; Budiarto, A.; Hidayat, A.A.; Pardamean, B. Cancer Risk Score Prediction Based on a Single-Nucleotide Polymor-
phism Network. Healthc. Inform. Res. 2022, 28, 247–255. [CrossRef] [PubMed]

63. Wang, Y.; Zhou, Q.; Dong, L.; Xiong, M.; Jiang, H.; Guo, M.; Zhao, L.; Yuan, L.; Li, Z.; Liu, H.; et al. The effects of CXCL10
polymorphisms on COPD susceptibility. Mol. Genet. Genom. 2017, 293, 649–655. [CrossRef]

64. Hosgood, H.D., III; Díaz-Peña, R.; Blansky, D.; Jaime, S.; Parra, V.; Boekstegers, F.; Bermejo, J.L.; García-Valero, J.; Montes, J.F.;
Valdivia, G.; et al. PRDM15 Is Associated with Risk of Chronic Obstructive Pulmonary Disease in a Rural Population in Chile.
Respiration 2020, 99, 307–315. [CrossRef]

65. Ramírez-Venegas, A.; Torres-Duque, C.A.; Guzmán-Bouilloud, N.E.; González-García, M.; Sansores, R.H. Small Airway Disease
in COPD Associated to Biomass Exposure. Rev. Investig. Clin. 2019, 71, 70–78. [CrossRef]

66. Rico de Souza, A.; Traboulsi, H.; Wang, X.; Fritz, J.H.; Eidelman, D.H.; Baglole, C.J. The Aryl Hydrocarbon Receptor Attenuates
Acute Cigarette Smoke-Induced Airway Neutrophilia Independent of the Dioxin Response Element. Front. Immunol. 2021,
12, 630427. [CrossRef]

67. Guerrina, N.; Traboulsi, H.; de Souza, A.R.; Bossé, Y.; Thatcher, T.H.; Robichaud, A.; Ding, J.; Li, P.Z.; Simon, L.; Pareek, S.; et al.
Aryl hydrocarbon receptor deficiency causes the development of chronic obstructive pulmonary disease through the integration
of multiple pathogenic mechanisms. FASEB J. 2021, 35, e21376. [CrossRef]

68. Alessandrini, F.; de Jong, R.; Wimmer, M.; Maier, A.-M.; Fernandez, I.; Hils, M.; Buters, J.T.; Biedermann, T.; Zissler, U.M.; Hoff-
mann, C.; et al. Lung Epithelial CYP1 Activity Regulates Aryl Hydrocarbon Receptor Dependent Allergic Airway Inflammation.
Front. Immunol. 2022, 13, 901194. [CrossRef]

69. Park, H.A.; Edelmann, D.; Canzian, F.; Harrison, T.A.; Hua, X.; Shi, Q.; Silverman, A.; Schneider, M.; Goldberg, R.M.; Alberts, S.R.;
et al. Predictive Polygenic Score for Outcome after First-Line Oxaliplatin-Based Chemotherapy in Colorectal Cancer Patients
Using Supervised Principal Component Analysis. Cancer Epidemiol. Biomark. Prev. 2022, 31, 2087–2091. [CrossRef]

70. Ortega-Martínez, A.; Pérez-Rubio, G.; Ambrocio-Ortiz, E.; Nava-Quiroz, K.J.; Hernández-Zenteno, R.D.J.; Abarca-Rojano, E.;
Rodríguez-Llamazares, S.; Hernández-Pérez, A.; García-Gómez, L.; Ramírez-Venegas, A.; et al. The SNP rs13147758 in the
HHIP Gene Is Associated With COPD Susceptibility, Serum, and Sputum Protein Levels in Smokers. Front. Genet. 2020, 11, 882.
[CrossRef]

71. Ambrocio-Ortiz, E.; Pérez-Rubio, G.; Ramírez-Venegas, A.; Hernández-Zenteno, R.; Paredes-López, A.; Sansores, R.; Ramírez-Díaz,
M.; Cruz-Vicente, F.; Martínez-Gómez, M.; Falfán-Valencia, R. Protective Role of Genetic Variants in HSP90 Genes-Complex in
COPD Secondary to Biomass-Burning Smoke Exposure and Non-Severe COPD Forms in Tobacco Smoking Subjects. Curr. Issues
Mol. Biol. 2021, 43, 887–899. [CrossRef] [PubMed]

http://doi.org/10.1007/s13277-014-2820-1
http://doi.org/10.1046/j.1460-9568.2000.00266.x
http://www.ncbi.nlm.nih.gov/pubmed/11029639
http://doi.org/10.3389/fonc.2020.00215
http://www.ncbi.nlm.nih.gov/pubmed/32158694
http://doi.org/10.1016/j.biopha.2019.109562
http://doi.org/10.1152/ajplung.00028.2020
https://www.nature.com/articles/s41467-022-28062-9
http://doi.org/10.1038/s41467-022-28062-9
http://respiratory-research.biomedcentral.com/articles/10.1186/1465-9921-10-81
http://respiratory-research.biomedcentral.com/articles/10.1186/1465-9921-10-81
http://doi.org/10.1186/1465-9921-10-81
https://journals.lww.com/01213011-201112000-00012
http://doi.org/10.1097/FPC.0b013e32834d597f
http://www.ncbi.nlm.nih.gov/pubmed/22027651
http://doi.org/10.1016/j.leukres.2012.07.014
http://www.ncbi.nlm.nih.gov/pubmed/36066157
http://doi.org/10.4258/hir.2022.28.3.247
http://www.ncbi.nlm.nih.gov/pubmed/35982599
http://doi.org/10.1007/s00438-017-1408-z
http://doi.org/10.1159/000506649
http://doi.org/10.24875/RIC.18002652
http://doi.org/10.3389/fimmu.2021.630427
http://doi.org/10.1096/fj.202002350R
http://doi.org/10.3389/fimmu.2022.901194
http://doi.org/10.1158/1055-9965.EPI-22-0320
http://doi.org/10.3389/fgene.2020.00882
http://doi.org/10.3390/cimb43020063
http://www.ncbi.nlm.nih.gov/pubmed/34449539


Curr. Issues Mol. Biol. 2023, 45 819

72. Powell, R.; Barr, R.G. Response letter to: The Hispanic paradox further unraveled? Thorax 2014, 69, 185–186. [CrossRef] [PubMed]
73. Mroziewicz, M.; Tyndale, R.F. Pharmacogenetics: A tool for identifying genetic factors in drug dependence and response to

treatment. Addict. Sci. Clin. Pract. 2010, 5, 17–29. [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1136/thoraxjnl-2013-204408
http://www.ncbi.nlm.nih.gov/pubmed/24064439
http://www.ncbi.nlm.nih.gov/pubmed/22002450

	Introduction 
	Materials and Methods 
	Population Included 
	Biological Samples 
	Whole Exome Genotyping 
	Data Analysis 
	Severity Analysis 
	Multiple Correspondence Analysis 
	Calculation of Haplotype Blocks 

	Results 
	Population Studied 
	Association Analysis in the Group of Smokers 
	Severity Analysis 
	Association Analysis in the Group Exposed to BBS 

	Discussion 
	Conclusions 
	References

