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Abstract: Colorectal cancer (CRC) represents the second deadliest malignancy worldwide. Around
75% of CRC patients exhibit high levels of chromosome instability that result in the accumulation of
somatic copy number alterations. These alterations are associated with the amplification of oncogenes
and deletion of tumor-ppressor genes and contribute to the tumoral phenotype in different malignan-
cies. Even though this relationship is well known, much remains to be investigated regarding the
effect of said alterations in long non-coding RNAs (lncRNAs) and, in turn, the impact these alterations
have on the tumor phenotype. The present study aimed to evaluate the role of differentially expressed
lncRNAs coded in regions with copy number alterations in colorectal cancer patient samples. We
downloaded RNA-seq files of the Colorectal Adenocarcinoma Project from the The Cancer Genome
Atlas (TCGA) repository (285 sequenced tumor tissues and 41 non-tumor tissues), evaluated differ-
ential expression, and mapped them over genome sequencing data with regions presenting copy
number alterations. We obtained 78 differentially expressed (LFC > 1|< −1, padj < 0.05) lncRNAs,
410 miRNAs, and 5028 mRNAs and constructed a competing endogenous RNA (ceRNA) network,
predicting significant lncRNA–miRNA–mRNA interactions. Said network consisted of 30 lncRNAs,
19 miRNAs, and 77 mRNAs. To understand the role that our ceRNA network played, we performed
KEGG and GO analysis and found several oncogenic and anti-oncogenic processes enriched by the
molecular players in our network. Finally, to evaluate the clinical relevance of the lncRNA expression,
we performed survival analysis and found that C5orf64, HOTAIR, and RRN3P3 correlated with
overall patient survival. Our results showed that lncRNAs coded in regions affected by SCNAs form
a complex gene regulatory network in CCR.

Keywords: colorectal cancer; somatic copy number alterations; long non-coding RNAs; competitive
endogenous RNA (ceRNA) network
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1. Introduction

Colorectal cancer (CRC) represents the third most common and the second deadliest
malignancy worldwide. In 2020, there were more than 1.9 million new colorectal cancer
cases and more than 900,000 CRC-associated deaths worldwide [1]. The number of CRC
cases is currently rising and is estimated to reach 2.5 million by the year 2035 [2]. Around
75% of CRC cases are associated with high levels of chromosome instability (CIN), which
results in aneuploidies, amplifications or deletions, and even somatic copy number alter-
ations (SCNAs) [3]. CIN leads to tumor growth by increasing the phenotypic variation
upon which natural selection can act, eliciting the acquisition of adaptations that drive
tumor evolution [4].

SCNAs are sub-chromosomal somatic alterations that result in oncogene or tumor-
suppressor copy gains or losses in different types of cancer [5]. SCNAs that confer adapta-
tions occur throughout tumor development from the early stages [6] to favor transformation
from in situ carcinoma to invasive tumors [7] and even metastases development [8].

SCNAs affect not only the coding genome but the non-coding transcriptome as well [9].
One of the most important groups of non-coding RNAs (ncRNAs) is long ncRNAs (lncR-
NAs), transcripts longer than 200 nts that generally lack an open reading frame (ORF) and
thus cannot be translated into proteins [10]. lncRNAs can interact with multiple targets,
acting as regulators of gene expression along the flow of genetic information [11].

Alterations that target lncRNAs can strongly impact the development of multiple
types of cancer. One of the main gene-regulating roles of lncRNAs is acting as miR-sponges,
sequestering multiple miRNAs, preventing their binding to mRNAs, and downregulating
mRNA translation [12]. For example, CDC6 promotes breast cancer progression by spong-
ing miR-215 [13]; another example is DANCR, which promotes lung cancer by sequestering
miR-216a [14]. Several lncRNAs are even potential CRC progression biomarkers, as recent
research shows [15].

Both mRNAs and lncRNAs harbor multiple miRNA-binding sequences, thus compet-
ing for miRNA binding in what are called competing endogenous RNA networks, or cerR-
Nets [16]. These networks are associated with different cancer types, such as esophageal
cancer [17], lung adenocarcinoma [18], and hepatocellular carcinoma [19]. Chromosomal
alterations can affect ceRNnets, as reported in breast and lung cancer [20,21].

There are several reports of ceRNA networks in CRC that control processes such as
tumor phenotype promotion [22], proliferation [23], and autophagy [24]. These ceRNets
are even associated with patient staging [25] and proposed as potential biomarkers [26].
Nevertheless, the effect that SCNAs have in a lncRNA-mediated ceRNA network in CRC
has not been described. Therefore, in this work, we identified differentially expressed
lncRNAs coded in genomic regions affected by SCNAs in CRC and constructed a ceRNA
network to evaluate their possible involvement in CRC. Our ceRNA network comprised
33 differentially expressed lncRNAs and 76 mRNAs partaking in several KEGG pathways
from which proteoglycans in cancer and bladder cancer stood out. Through Kaplan–Meier
analyses, we found that the lncRNAs HOTAIR and RRN3P3 are clinically relevant for
CRC patients due to their association with lower overall survival and a poorer prognosis,
respectively. These results showed the participation of SCNA-associated lncRNAs in the
CRC phenotype, strengthening the importance of ncRNA research.

2. Materials and Methods

To identify the differentially expressed long non-coding RNAs (DElncRNAs) coded in
genomic regions with somatic copy number alterations (SCNAs) that arose during tumor
progression in the colorectal cancer (CRC) patient samples and the effect they had on
gene expression regulation, we proposed a bioinformatics workflow that used several data
mining methods associated with the R programing (4.1.1) language and the Bioconductor
(3.13) environment [27]. This workflow is outlined in Figure 1.
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Figure 1. Graphical summary of the bioinformatic workflow. Microarray, RNA-Seq, and clinical data
were sourced from TCGA, processed, normalized, analyzed, and then cross-referenced to obtain the
proposed ceRNA network. Finally, pathway and survival analyses for said network were performed.

2.1. RNA-Seq

The first goal was to acquire the list of DElncRNAs. We used the TCGAbiolinks pack-
age in R [28], which allowed us to access The Cancer Genome Atlas (TCGA) repository [29]
and download the RNA-seq expression files from the 326 patients (285 primary tumors,
41 healthy samples) available for the Colorectal Adenocarcinoma Project.

2.2. BiomaRt

The next goal was to determine which of the transcripts were lncRNAs. We used the
BiomaRt package [30] to obtain the external gene name and the biotype of the genes. We
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selected all biotypes that fulfilled the lncRNA description (an RNA transcript with a length
of more than 200 nt and no coding potential), which were the following: “lncRNA”, “poly-
morphic pseudogene”, “transcribed processed pseudogene”, “transcribed unprocessed
pseudogene”, “unprocessed pseudogene”, “processed pseudogene”, “transcribed unitary
pseudogene”, and “unitary pseudogene”.

2.3. Differential Expression

Once we had the expression matrix with the lncRNAs, the next step was finding
which transcripts were differentially expressed in the tumor samples. To achieve this, we
employed the DESeq package [31] and fed the expression matrix and the sample metadata
(i.e., whether samples were healthy or tumoral) into this package. We used log2 fold
change (LFC) > 1 as an indicator of positive alteration and LFC < −1 as an indicator of
negative alteration. In both cases, we filtered lncRNAs by padj < 0.05 (two-sided) for
statistical significance.

2.4. Hierarchical Clustering

Next, we wanted to study the patterns of differentially expressed genes between the
tumor and healthy samples. For this purpose, we took the raw-count lncRNA matrix and
used the variance stabilizing transformation from the DESeq package to normalize our
dataset. Afterward, we calculated the Z score per gene and used the Complex Heatmap
package [32] to draw the expression heatmaps.

2.5. Somatic Copy Number Alterations

Once we distinguished which lncRNAs were differentially expressed, the next step was
to determine which ones modified their expression because they were coded in a genomic
region with somatic copy number alterations. To achieve this, using the TCGAbiolinks
package, we downloaded the genomic sequencing data of the Colorectal Adenocarcinoma
Project. The files contained sequencing experiments from 545 patients (536 primary tumors,
8 healthy samples). The sequencing files were uploaded to CNApp [33], a free web-based
software coded in R, which re-segmented the samples and returned a map of the regions
that were amplified or deleted in the dataset, indicating the frequency of each alteration.
This platform also returned a list of genes coded in each region. The criteria for selecting
the DElncRNAs were presenting an LFC > 1 and being coded in a region that was altered
in at least 10% of the samples [34].

2.6. DElncRNA–DEmiRNA Interactions

To understand the role of the DElncRNAs in regulating gene expression, we generated
a ceRNet. The first step towards constructing the network was to identify the DElncRNA–
DEmiRNA interactions from the interactions predicted in the MiRCode database [35].

2.7. DEmiRNA–DEmRNA Interactions

The next step was determining which mRNAs were targeted by our DEmiRNAs
to find interactions with a greater impact on CRC progression. We used three different
databases to filter them: (1) MiRTarBase [36]; (2) MiRDB [37]; and (3) TargetScan [38].

We downloaded and searched for the DEmiRNA–DEmRNA interactions in each of
the three databases. Next, we contrasted the shared interactions among all three databases
using the VennDiagram package [39], which allowed us to find the overlap in the databases
and thus generate DElncRNA–DEmiRNA–DEmRNA interactions.

2.8. Statistical Significance

To validate the DElncRNA–DEmiRNA–DEmRNA interactions, we assessed whether
the lncRNA expression level was correlated with the mRNA expression level, following the
rationale that a given lncRNA sequesters a miRNA that downregulates an mRNA, releasing
the mRNA from the negative regulation, effectively upregulating it. For the correlations,



Curr. Issues Mol. Biol. 2023, 45 9553

we used the Hmisc package [40], which allowed us to perform, in a single step, Pearson’s
correlations among all the possible interactions in the matrix.

Once we obtained the matrix with all correlations, we filtered only those that con-
tained our DElncRNAs and DEmRNAs. We considered a p value < 0.05 as statistically
significant and, since we assumed that our DElncRNAs downregulated the miRNAs to up-
regulate the DEmRNA expression, we only considered positive correlations for subsequent
analysis (R > 0).

2.9. ceRNA Network

Once we had all positive and statistically significant interactions, we uploaded the
resulting interaction matrix to Cytoscape v.3.9.1 software [41] to visualize the network.

2.10. Gene Ontology and KEGG

To analyze the effect that the network had on the CRC phenotype, we evaluated the
enriched pathways and biological processes. To perform both the KEGG and GO analyses,
we employed the R package pathfindR [42] using a list of the gene names of the mRNAs
present in the ceRNA network, their LFCs, and the padj obtained from the DESeq2 package.

2.11. Survival Curves

To assess the relationship between the lncRNA expression and the clinical outcome
of the patients, we performed a survival analysis with the Survival package in R [43].
First, we divided the expression of each ceRNet-associated lncRNA by the median and
ran Kaplan–Meier analyses for each half of the sample. We assessed statistical significance
using a log-rank and cumulative hazard test with Cox regression, and all patient data were
followed-up at five and eleven years.

3. Results

We investigated the role of lncRNAs coded in genomic regions affected by somatic
copy number alterations (SCNsA) in gene expression regulation through a bioinformatic
approach using different tools from R software (4.1.1) and the Bioconductor environment.

We first distinguished which lncRNAs were expressed in CRC samples from the
TCGA repository. Using the BiomaRt package and Deseq2 we obtained 135 upregulated
lncRNAs and 133 downregulated lncRNAs, for a total of 268 DElncRNAs (LFC > 1 for a
positive change, LFC <−1 for a negative change, and padj < 0.05 in both cases for statistical
significance; Figure 2).

To identify which SCNA-associated lncRNAs altered their expression, we used ge-
nomic sequencing uploaded to the CNApp platform. We found several amplifications
and deletions with a frequency in >10% of patients (Figure 3) and multiple alterations that
affected >50% of patients. We identified 78 lncRNAs coded in a region altered in at least
10% of patients and with a corresponding LFC < −1 or LFC >1 (Table S1).

We evaluated the role of the SCNA-associated DElncRNAs in regulating genetic ex-
pression in CRC by constructing a competing endogenous RNA network (ceRNet, Figure 4,
Table S2). First, we identified 410 DEmiRNAs, from which 187 were upregulated (LFC > 1,
padj < 0.05) and 223 downregulated (LFC < −1, padj < 0.05; Figure S1). We repeated the
procedure for mRNAs and found 5028 DEmRNAs, of which 2294 were upregulated and
2734 downregulated (Figure S2). Using different databases, we predicted interactions be-
tween DElncRNAs and DEmiRNAs and between DEmiRNAs and DEmRNAs, constructing
a ceRNet with 30 DElncRNAs, 19 DEmiRNAs, and 77 DEmRNAs (Figure 4).
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Figure 4. ceRNA network (blue = downregulated; red = upregulated; diamonds = lncRNAs;
ellipses = miRNAs; rectangles = mRNAs).

To determine the involvement of the proposed ceRNA network in gene expression reg-
ulation, we performed a KEGG pathways analysis. The pathway with the most upregulated
genes—10 genes—was proteoglycans in cancer; meanwhile, the pathways associated with
bladder cancer were most enriched—almost 15-fold—when analyzing upregulated mRNAs
(Figure 5A). Interestingly, the proteoglycans in the cancer pathway also had the most down-
regulated genes (eight genes), while renal cell carcinoma-associated pathways were the
most enriched (more than 12-fold) when analyzing downregulated genes (Figure 5B). When
analyzing up- and downregulated mRNAs together, proteoglycans in cancer remained
the pathway with the highest number of DEmRNAs, while bladder cancer was the most
enriched (Figure 5C).

The genes associated with the enriched pathways interacted with each other. The
proteoglycans in the cancer pathway were closely connected with the calcium signaling
pathway and the chemical carcinogenesis pathway and indirectly connected with the
RAS signaling pathway and even the ERbB4 signaling pathways, among other important
interactions shown in Figure 5D.

Regarding the GO analysis, we found upregulated mRNAs in multiple processes, mainly
DNA-binding transcription activator activity (seven genes) and RNA polymerase II cis-
regulatory region sequence-specific DNA (five genes). Two processes were enriched >30-fold:
DNA-binding transcription activator activity and the PcG protein complex (Figure 6A).
The GO analysis of downregulated mRNAs showed that cell migration (three genes), the
mitochondrial outer membrane, delayed rectifier potassium channel activity, and cellular
response to estradiol stimulus (two genes) had the most downregulated genes. Similarly,
delayed rectifier potassium channel activity and cellular response to estradiol stimulus were
enriched >50-fold (Figure 6B). The GO analysis using both up- and downregulated mRNAs
together did not resemble either. The positive regulation of the apoptotic process had the
most DEmRNAs (six genes), followed by cell migration and the positive regulation of the
release of cytochrome c from mitochondria—both with five genes; in addition, this last
process was the most enriched pathway (Figure 6C).
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The term–gene interaction from the GO analysis showed a particularly close relation-
ship between two processes: DNA-binding transcription activator activity and transcription
factor binding. On the other hand, three processes were enriched but not interconnected:
the PcG protein complex, protein tyrosine kinase activity, and stress fibers (Figure 6D).
Furthermore, we could see that two of the most enriched processes were involved in the
activity of transcription factors such as MYCN, MYBL2, and SOX2, as well as cell cycle
regulators such as E2F1/5.

Finally, we estimated the possible clinical relevance of our DElncRNAs through
Kaplan–Meier analyses, where overall survival was associated with the expression of
the lncRNAs divided by the median (Figures 7 and S3–S6) with a follow-up at five and
eleven years. We obtained two lncRNAs presenting a significant association with patient
survival in both the 5-year and 11-year intervals: high HOTAIR (Figure 7A) expression was
associated with lower overall survival (5 years p = 0.0052; 11 years p = 0.039) and a higher
HR (5 years p = 0.006, 11 years p = 0.0041) and a lower RRN3P3 (Figure 7B) were associated
with a poorer prognosis for the patients (5 years p = 0.019; 11 years p = 0.053) and a higher
HR (5 years = 0.021; 11 years = 0.056). We also found three lncRNAs associated with patient
prognosis at five years—CCDC144NL, LINC00479, and TSPY26P (Figures S3–S5)—and one
lncRNA at the eleven-year mark—C5orf64 (Figure S5).
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(chr7, 8, 13, 20) and deletion (chr14, 15, 17, 18) peaks, both with several cases above 50%. 
Previous reports of SCNAs occurring frequently and in genomic locations associated with 
genes related to tumor progression in CRC corroborate our findings [53]; in turn, these 
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and show the relevance of validating the presence and effect of alterations in the non-
coding transcriptome. 
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Figure 7. DElncRNA-associated survival curves up to 5 and 11 years. High HOTAIR expression
(A) was associated with lower overall survival (p = 0.0052, p = 0.039) and a higher hazard ratio
(p = 0.006, p = 0.0041). Lower RRN3P3 expression (B) was associated with lower overall survival
(p = 0.019, p = 0.053) and a higher HR (p = 0.021; p = 0.056).
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4. Discussion

With less than 5% of the human genome coding for proteins and another ~85% actively
transcribed into different types of RNA [44], a myriad of questions arises regarding the
complex gene regulation of cancer development. In the last 10 years, our understanding of
lncRNA biology and functions has deepened and broadened, up to the point of recognizing
lncRNAs as central players in cancer phenotype, progression, and even metastasis. Our
findings (Figure 2) correspond to what has previously been reported: that tumorigenesis
and cancer progression alter lncRNA expression, which, in turn, participates and regulates
said processes [45]. Additionally, the magnitude of the differences in expression patterns
between tumor and healthy samples was ample enough to show up in the unsupervised
clustering algorithms.

This is supported by the growing body of literature showing the different oncogenic
and anti-oncogenic roles that lncRNAs play in CRC progression, such as lncRNA-cCSC1,
which promotes proliferation [46]; TINCR, which regulates apoptosis [47]; and lnc-RI,
which mediates radio-resistance [48]. lncRNA regulation occurs throughout tumor devel-
opment, during the early stages such as SNGH11 [49]; in advanced stages, for example,
MFI2-AS1 [50]; and even in metastatic tumors with both pro- and anti-tumoral effects,
such as FTX and NBR2, respectively [51,52]. Thus, our results highlight the importance of
researching lncRNAs in CRC because of their potential role as gene master regulators.

We found SCNAs with varying frequencies in all chromosomes with amplification
(chr7, 8, 13, 20) and deletion (chr14, 15, 17, 18) peaks, both with several cases above
50%. Previous reports of SCNAs occurring frequently and in genomic locations associated
with genes related to tumor progression in CRC corroborate our findings [53]; in turn,
these results highlight the importance and occurrence of chromosome instability (CIN)
in CRC and show the relevance of validating the presence and effect of alterations in the
non-coding transcriptome.

Several of the 78 DElncRNAs we found have documented roles in other cancers, such
as EXOC3-AS1, which has been reported to be upregulated in lung cancer patients [54,55];
INHBA-AS1, proposed to be part of a diagnostic marker in gastric cancer [56] and proven
to promote CRC via sponging miR-422a [57]; and CRYM-AS1, associated with the overall
survival of thyroid cancer patients [58] and identified as a potential tumor suppressor in
gastric cancer, due to its negative regulation of CRYM [59]. The fact that, to our understand-
ing, there are no previous reports of said lncRNAs in CRC underscores the necessity of
continuing research into the effect of SCNAs on non-coding genomic regions and lncRNAs,
especially since other groups have analyzed TCGA datasets in search of DElncRNAs and
found very different results. For instance, Liu and collaborators [60] found a completely
different set comprising 22 upregulated and eight downregulated lncRNAs. Yuan and
colleagues [61] found a correlation between tumor progression and eight upregulated
lncRNAs, none of which were in our list.

When we constructed the term–gene graph for the GO analyses, we found several
enriched transcription factors (TFs): SOX4, MYCN, and MYBL2, among others. Increased
SOX4 expression is associated with CRC in the tissue samples of patients, inhibiting both
proliferation and invasive potential in CRC cell lines [62]. SOX4 directly interacts with
HDAC1, which, in turn, maintains stemness in HCT-116 cells via the Wnt and Notch path-
ways [63]; downregulated SOX4 inhibits CRC progression [64] and metastasis [65]. MYCN
has been amply described in central nervous system malignancies like neuroblastoma [66]
and ependymoma [67]. In CRC, it has been reported that the MYCN pathway is upregu-
lated [68], and even though its role has not been established, it might resemble that in other
malignancies. MYBL2 has been proposed as a prognostic biomarker in CRC due to its role
in proliferation, cell cycle progression, apoptosis, and overall poorer disease-free survival
in patients [69]. MYBL2 is a key oncogenic TF for cell proliferation, DNA synthesis, and cell
cycle progression. It binds to the promoter of a ribonucleotide reductase subunit, actively
promoting its transcription through the S-phase of the cell cycle in CRC cell lines [70].
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The network reported herein modulated the cell cycle via E2F1 and E2F5. E2F1 has
been reported as oncogenic, because it promotes the cell proliferation of CRC cell lines [71],
and upregulated in CRC patients, acting as an oncogene regulated by miR-326 [72]. Like-
wise, E2F5 is regulated by a competing endogenous lncRNA, SNHG6, via sponging miR-
181a-5p [73] or downregulated by miR-34a [74], in both cases suppressing CRC progression.
Upregulated E2F5 is associated with the positive regulation of TGF-β signaling in prostate
cancer [75], which might also occur in CRC. On the other hand, there are also plenty of
reports of TFs acting as tumor suppressors in CRC; among them is FOXO3, whose down-
regulation correlates with a better prognosis in CRC patients [76,77]. Another example is
RUNX3—this TF is a target of the TGF-β pathway and is downregulated in CRC patient
samples [78]. It has been reported that RUNX3 can induce apoptosis [79] and inhibit
metastasis and angiogenesis [80]. The role of deregulated TFs in CRC is very well described
elsewhere [81].

Overall, our results showed that one of the most important roles of our ceRNet was
mediating transcriptional regulation through increased TF activity; nonetheless, this is not
the only potential mechanism through which lncRNAs regulate transcriptional activity.

The GO analysis with the downregulated mRNAs in the described ceRNet (Figure 6B)
showed that the most enriched process was the delayed rectifier potassium channel (cKv)
activity. CKvs have been associated with tumoral processes. In stomach cancer cell lines,
cKvs are upregulated and involved in proliferation via regulating Ca2+ entry [82]. CKvs
are also involved with the migratory and invasive capabilities of tumoral cells [83,84].
There are two particular cKvs with tumor-suppressor capabilities, Kv1.1 and Kv1.3; their
upregulation is associated with tumor sensitization to different cytotoxins and lower cell
survival [85]. Another relevant cKv, KCNA1, favors oncogene-induced senescence and
lower aggressiveness in breast cancer cells [86]. The role of KCNA1 as a potential early-
stage CRC biomarker suggested by the TCGA data has been validated in a 200-patient
independent cohort [87].

HOTAIR is perhaps the most studied and reported lncRNA; from our DElncRNAs,
only HOTAIR and LINC00461 have been reported in a similar ceRNA network [88]. In con-
cordance with previous reports, high HOTAIR expression levels showed a poorer outcome.
HOTAIR has been described as an onco-lncRNA because of its differential expression in
several types of malignancies and its role in proliferation, migration, resistance to apoptosis,
and pharmacological resistance [89–92]. HOTAIR can exert regulatory functions through
multiple interactions with PRC2 [93] and through lncRNA–miRNA–mRNA axes, such
as mir-326, mir-197, and mir-203a-3p [94–96]. Conversely, we found that low RRN3P3
expression was associated with lower overall survival. RRN3P3 has been reported as an
oncogenic pseudogene in breast cancer due to its correlation with lower overall survival
in high-risk patients in combination with other pseudogenes, especially in patients with
the basal-like subtype [97]. This discrepancy might arise due to the high degree of tissue-
specificity of lncRNA expression, which leads to closer expression patterns in related tissues
(e.g., stomach, colon, and small intestine) than in unrelated tissues [98]. Thus, our results
highlight the importance of HOTAIR as an onco-lncRNA that can act through diverse
mechanisms, not only through endogenous competition for miRNA expression.

Proteoglycans in cancer have been detected as both oncogenic and anti-oncogenic.
For example, Syndecan1 (a membrane proteoglycan, SDC1) loss is associated with CRC
development and clinical stage [99]. Previous work showed that SDC1 overexpression
regulates cell proliferation in CRC cell lines via suppressing CyclinD1. Furthermore,
SDC1 inhibits cell migration, hindering MMP-9 and even blocking the JAK1/STAT and
Ras/Raf/Mek/Erk pathways [100]. A report showed that low SDC1 expression was
associated with metastatic potential, tumor recurrence, and shortened overall survival in
CRC patients [101]. Since proteoglycans possess high structural heterogeneity, research
focused on them is usually challenging [102].

Transcriptional alterations during tumor progression via oncogenic addiction are
essential to maintain mutations arising in the early stages through to the advanced stages
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due to their central roles in transcriptional programs that regulate key cell functions [103].
These results point out the relevance of lncRNAs as master regulators of gene expression,
as here we found bioinformatic evidence of their involvement in major transcriptional
regulation pathways.

The enrichment in the cellular response to estradiol pathway was explained by the fact
that, in CRC, estradiol-17β (E2) interacts with its receptor and acts as a TF modulating the
expression of multiples genes bearing estradiol response elements [104]. Estradiol receptors
(ERs) can be oncogenic or tumor-suppressive depending on the receptor expressed. If E2
interacts with ERα, it has tumorigenic potential via the activation of the Wnt/β-catenin
pathway [105]; conversely, interaction with ERβ has a tumor-suppressing role [106]. Whilst
these results suggest the importance of E2 in CCR, it is still necessary to establish which
receptor mediates this interaction and, therefore, the effect it elicits in CRC.

Another important molecular player affected by our ceRNA network (Figure 6D) was
ERbB4, which has been reported to be downregulated in CRC tissue samples such as ours.
Its loss might correlate with CRC progression [107]; nevertheless, ErbB4 has been reported
as overexpressed in differentiated CRC cell lines and correlates with increased survival and
growth [108].

When repeating the analysis including the full DEmRNA set, we found enriched
3′-UTR-mediated mRNA destabilization. mRNA destabilization occurs when an miRNA
binds to the 5′ mRNA region [109]. It is estimated that 3′ UTR destabilization represents the
majority of miRNA-mediated repression (60–90%), independently of the translational state;
this has been observed in a variety of cell culture systems [110]. There are multiple reports
of a tumorigenic effect due to miRNA-mediated 3′-UTR destabilization, with the main
focus on constructing ceRNets [60,111–113]. Furthermore, we find it relevant to emphasize
that this is the mechanism underlying the ceRNA network hypothesis, and so these results
contribute to the main narrative of this work, i.e., that lncRNAs act as central players in
transcriptional regulation.

This work opens several avenues for further research. First, we foresee the deepening
relevance of proteoglycans in cancer thanks to their involvement in many biological pro-
cesses. Second, the reports of lncRNAs with both oncogenic and tumor-suppressor roles
depending on the context [114–116] imply that RRN3P3 can act as an oncogene in breast
cancer and as a tumor suppressor in CCR; this would require experimental validation to
better understand the role of this lncRNA in determining tumor phenotype. Moreover,
there are reports of lncRNAs with double [117,118] and complex transcription sites, i.e.,
inside the loci of other ncRNAs, which require more experimental validation to shed light
on their role in general and in CRC.

Overall, our results showed the relevance of SCNA-associated lncRNAs for colon
cancer phenotype and several novel potentially oncogenic and tumor-suppressing lncRNAs.
The completely bioinformatic nature of this approach represents its main limitation; our
results should be validated in the future with experimental approaches such as microarray
analyses for detecting both the SCNAs and SCNAs-associated lncRNAs, qPCR for lncRNA
expression, RNA-pulldown for lncRNA-miRNA interactions, and CLIP assays for miRNA–
mRNA interactions. These experiments could be complemented with functional assays
(evaluating proliferation, migration, apoptosis, etc.) to shed light on the effect of the
expression exerted by the SCNA-associated lncRNAs in the CRC phenotype.
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www.mdpi.com/article/10.3390/cimb45120597/s1, Figure S1. Profile of deregulated miRNAs in CRC.
Figure S2. Profile of mRNAs deregulated in CRC. Figure S3. CCDC144NL is associated with five-year
outcome in patients with CRC. Figure S4. LINC00479 is associated with 5-year outcome in CRC patients.
Figure S5. TSPY26P is associated with 5-year outcome in CRC patients. Figure S6. C5orf64 is associated
with 11-year prognosis in CRC patients. Table S1. List of lncRNAs encoded in altered regions in CRC
patients. Table S2. List of mRNAs and miRNAs regulated by lncRNAs in the competing endogenous
RNA network (ceRNet).
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