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Abstract: Disulfidptosis is a newly discovered cellular programmed cell death mode. Presently,
a considerable number of genes related to disulfidptosis remain undiscovered, and its significance in
hepatocellular carcinoma remains unrevealed. We have developed a powerful analytical method called
RF-GSEA for identifying potential genes associated with disulfidptosis. This method draws inspiration
from gene regulation networks and graph theory, and it is implemented through a combination of
random forest regression model and Gene Set Enrichment Analysis. Subsequently, to validate the
practical application value of this method, we applied it to hepatocellular carcinoma. Based on the
RF-GSEA method, we developed a disulfidptosis-related signature. Lastly, we looked into how the
disulfidptosis-related signature is connected to HCC prognosis, the tumor microenvironment, the
effectiveness of immunotherapy, and the sensitivity of chemotherapy drugs. The RF-GSEA method
identified a total of 220 disulfidptosis-related genes, from which 7 were selected to construct the
disulfidptosis-related signature. The high-disulfidptosis-related score group had a worse prognosis
compared to the low-disulfidptosis-related score group and showed lower infiltration levels of
immune-promoting cells. The high-disulfidptosis-related score group had a higher likelihood of
benefiting from immunotherapy compared to the low-disulfidptosis-related score group. The RF-
GSEA method is a powerful tool for identifying disulfidptosis-related genes. The disulfidptosis-
related signature effectively predicts HCC prognosis, immunotherapy response, and drug sensitivity.
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1. Introduction

Disulfidptosis is a newly identified mode of regulated cell death mediated by the cys-
tine transporter solute carrier family 7 member 11 (SLC7A11). This mode is characterized
by the collapse of cytoskeletal proteins and F-actin due to the accumulation of intracel-
lular disulfide bonds [1]. The previous study further indicates that glucose transporter
inhibitors induce disulfidptosis, subsequently regulating tumor proliferation, highlighting
the significance of disulfidptosis in cancer therapy. SLC7A11, the central gene of disul-
fidptosis, enhances glutathione (GSH) production. This mitigates cell death induced by
oxidative stress, including ferroptosis, by importing cystine [2]. SLC7A11 is a double-edged
sword in redox regulation. Although SLC7A11 is widely acknowledged for its established
role in promoting cell survival by inhibiting ferroptosis, emerging research has uncov-
ered unexpected implications. Under conditions of glucose deficiency, SLC7A11 exerts
a counterintuitive role in facilitating cell death by promoting disulfidptosis [3,4]. Preclinical
study findings indicate that the utilization of glucose transporter (GLUT) inhibitors as part
of metabolic therapy can induce disulfidptosis and impede cancer growth [5]. The research
on disulfidptosis is currently in its early stages, with many genes involved in this process
yet to be identified and the specific biological mechanisms remaining unclear. There is an
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urgent need for the identification of genes associated with disulfidptosis to facilitate further
investigation into this phenomenon.

Liver cancer ranks as the sixth most prevalent malignancy on a global scale and stands
as the fourth primary contributor to cancer-associated mortality, demonstrating a notably
low 5-year survival rate of 18% [6,7]. Hepatocellular carcinoma (HCC) represents the
most predominant histological subtype (90%) of primary liver cancer and concurrently
exhibits the highest mortality rate among all categorizations [8]. Because of the highly
insidious nature of HCC, most patients are already in the middle to late stages of being
diagnosed. It is also highly heterogeneous and progresses rapidly, making clinical treat-
ment extremely difficult. Current treatments for early-stage HCC include surgery (liver
resection or liver transplantation), radiofrequency ablation, radiotherapy, and intra-arterial
therapies [9]. For patients with advanced-stage HCC, various systemic therapies are their
best option. Targeted anti-tumor agents (TKIs), sorafenib and lenvatinib, are the first-line
drugs used clinically for the treatment of advanced-stage HCC [10,11].In recent years,
immune checkpoint inhibitors (ICIs) have brought about a transformative paradigm shift
in cancer treatment and have garnered heightened attention for their application in ad-
dressing HCC. Many studies have shown that the efficacy of ICIs, alone or in combination
with ICIs and TKIs, in the treatment of HCC has surpassed that of traditional first-line
therapeutic drugs [12,13]. Although researchers have made great strides in the field of
immunotherapy, the response rate to immunotherapy in HCC patients is only 15–20% [14].
There is an urgent need to develop a signature to predict prognosis and immunotherapy
response in HCC. Although some studies have demonstrated the value of disulfidptosis
in the development and prognosis of lung adenocarcinoma, breast cancer, and renal cell
carcinoma [15–17], the specific mechanism of disulfidptosis and its actual value in the
development and prognosis of HCC have not yet been clearly revealed.

In this study, we have developed a method based on the random forest regression
model and Gene Set Enrichment Analysis (GSEA) to identify potential disulfidptosis-
related genes. We applied this method to hepatocellular carcinoma to demonstrate its
practical utility and application value. Based on the genes identified using this method,
we performed Consensus Clustering analysis, Lasso-Cox regression, and Gene Set Vari-
ation Analysis (GSVA) to construct a disulfidptosis-related signature. Subsequently, we
conducted an in-depth assessment of the value of this signature in individualized therapy
in HCC patients.

2. Materials and Methods
2.1. Data Sources and Processing

The pan-cancer RNA-seq data and the corresponding clinical information were
downloaded from the UCSC Xena data portal (https://xenabrowser.net/ (accessed on
23 September 2023)). HCC patients’ RNA-seq data and corresponding clinical information
were sourced from the TCGA (https://xenabrowser.net/ (accessed on 23 September 2023)),
GEO (https://www.ncbi.nlm.nih.gov/gds/ (accessed on 23 September 2023)), and ICGC
(https://dcc.icgc.org/ (accessed on 24 September 2023)) databases. After excluding sus-
pected non-HCC samples, duplicate samples, samples lacking clinical information, samples
with a survival time of less than one month, and samples subjected to immunotherapy, the
TCGA-LIHC dataset comprised 322 samples, the GSE116174 dataset comprised 64 samples,
and the LIRI-JP dataset comprised 169 samples (Table 1). In addition, we obtained transcrip-
tomic data and corresponding clinical information from a cohort (IMvigor210) receiving
anti-PD-L1 immune therapy using the “IMvigor210CoreBiologies” package [18]. A total
of 84 disulfidptosis-related genes were obtained from the FerrDb database (http://www.
zhounan.org/ferrdb/current/ (accessed on 28 September 2023)) [19]. Three RNA-seq co-
horts (TCGA-LIHC, LIRI-JP, and IMvigor210) were normalized using log2 (TPM + 1), while
one Affymetrix microarray cohort (GSE116174) was normalized using log2 (RMA + 1).

https://xenabrowser.net/
https://xenabrowser.net/
https://www.ncbi.nlm.nih.gov/gds/
https://dcc.icgc.org/
http://www.zhounan.org/ferrdb/current/
http://www.zhounan.org/ferrdb/current/
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Table 1. Clinical information of three datasets.

Variable TCGA-LIHC
(n = 322)

GSE116174
(n = 64)

LIRI-JP
(n = 169)

Age
≤60 154 (47.8%) 46 (71.9%) 36 (21.3%)
>60 168 (52.2%) 18 (28.1%) 133 (78.7%)

Gender
Female 100 (31.1%) 6 (9.4%) 40 (23.7%)
Male 222 (68.9%) 58 (90.6%) 129 (76.3%)

TNM_Stage
I 170 (52.8%) 7 (10.9%) 30 (17.8%)
II 69 (21.4%) 1 (1.6%) 82 (48.5%)
III 80 (24.8%) 45 (70.3%) 43 (25.4%)
IV 3 (0.9%) 11 (17.2%) 14 (8.3%)

Grade
G1 50 (15.5%) - -
G2 149 (46.3%) - -
G3 111 (34.5%) - -
G4 12 (3.7%) - -

Status
Alive 208 (64.6%) 37 (57.8%) 143 (84.6%)
Dead 114 (35.4%) 27 (42.2%) 26 (15.4%)

Alcohol
No - 51 (79.7%) -
Yes - 13 (20.3%) -

Smoke
No - 33 (51.6%) -
Yes - 31 (48.4%) -

Invasion
No - 35 (54.7%) -
Yes - 29 (45.3%) -

HBV
No - 17 (26.6%) -
Yes - 47 (73.4%) -

2.2. The RF-GSEA Method

The fundamental concept of the RF-GSEA method is to amalgamate machine learning
and enrichment analysis to aid in comprehending the associations among genes within
the gene regulatory network (GRN) and assessing whether they are linked to specific
biological processes or pathways. The mutual regulatory relationships among genes form
a complex GRN that plays a crucial role in biology and medicine. Genes involved in the
same biological process exhibit tighter connections within the GRN [20]. In graph theory,
such a phenomenon can be described as a subgraph within a complex network [21]. From
this, we can infer that if a gene participates in a specific biological process, it should exhibit
regulatory relationships within the gene regulatory network with other genes that are also
involved in the same biological process. Furthermore, the greater the number of regulatory
relationships a gene has with other genes involved in the same biological process, the
higher the probability that it is indeed a participant in that biological process. We assume
that the actual regulatory relationships of some disulfidptosis-related genes are depicted
as shown in Figure 1A. Our method requires some known disulfidptosis-related genes
as prior information genes. The FerrDb database is a specialized database focused on
programmed cell death, gathering a considerable number of related genes [19]. Based on
current research on disulfidptosis, the FerrDb database has compiled a total of 84 genes
related to disulfidptosis (Table S1). The FerrDb team has classified them into three groups
based on their current level of confidence: validated, screened, and deduced (Figure 1B).
These 84 genes are not all definitively disulfidptosis-related genes, and as a result, the
network they form may differ from the actual network. These 84 genes were used as prior
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information genes for the RF-GSEA method. The random forest model is an excellent
machine learning algorithm, and numerous researchers have utilized its importance scores
for the construction of GRN [22,23]. In gene regulatory networks constructed using the
random forest method, if a significant proportion of nodes with a high likelihood of being
connected to gene n consist of pre-defined prior information genes, then gene n is highly
likely to be associated with disulfidptosis (Figure 1C). GSEA is a method that allows for
enrichment analysis based on gene ranking and scores [24]. We employ it to assess whether
a significant proportion of genes with a high likelihood of being connected to gene n are
pre-defined prior information genes.
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after their random replacement. After that, we ranked all genes (N-1) in descending order 
based on their random forest scores and conducted GSEA analysis (Figure 2C). Finally, 
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the gene set for GSEA. If the ranked genes could achieve significant enrichment (p < 0.05), 
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Figure 1. The RF-GSEA method relies on gene regulatory networks and graph theory. (A) GRN of
disulfidptosis-related genes. Pink circles represent disulfidptosis-related genes, while gray circles
represent non-disulfidptosis-related genes. (B) GRN of 84 disulfidptosis-related genes from the
FerrDb database. The red, orange, and green circles, respectively represent three different confi-
dence levels: validated, screened, and deduced. (C) GRN of a disulfidptosis-related gene n and
disulfidptosis-related genes from the FerrDb database.

To summarize, the RF-GSEA method determines if a gene n is associated with disul-
fidptosis by following four specific procedures. Firstly, we obtained RNA-seq data of
HCC patients from the TCGA database and performed log2 (TPM + 1) transformation.
Subsequently, we used gene n (n ∈ N) as the dependent variable and all other N-1 genes as
independent variables in a random forest regression model (Figure 2A). Secondly, for each
random forest regression model, we constructed 500 Classification and Regression Trees
(CART). Each tree was built by examining

√
N − 1 features at each node, without applying

any pruning techniques, thus allowing them to expand without restrictions (Figure 2B).
Thirdly, the random forest scores of the independent genes are defined as the increase
in mean squared error (%IncMSE) or increase in node purity (IncNodePurity) after their
random replacement. After that, we ranked all genes (N-1) in descending order based on
their random forest scores and conducted GSEA analysis (Figure 2C). Finally, we down-
loaded 84 disulfide death-related genes from the FerrDb database to construct the gene set
for GSEA. If the ranked genes could achieve significant enrichment (p < 0.05), then gene
n could be considered a candidate disulfidptosis-related gene (Figure 2D). Repeating the
previous four steps, iterate through all N genes to identify disulfidptosis-related genes.
To enhance the robustness of our results, we intersected the enrichment results from the
two random forest score methods (%IncMSE and IncNodePurity) with the DEGs identified
by “limma” analysis. This intersection served as the set of disulfidptosis-related genes for
subsequent analyses.
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(A) Obtain RNA-seq data for HCC from the TCGA database. (B) Construct a random forest regression
model. (C) Obtain random forest scores based on the variable importance of genes. (D) GSEA
identifies candidate disulfidptosis-related gene.

2.3. Consensus Clustering Analysis

Based on the expression of disulfidptosis-related genes, we performed consensus
cluster analysis to identify different disulfidptosis-related clusters. By using the “Consen-
susClusterPlus” package, we chose the K-means algorithm as the clustering algorithm and
Euclidean distance as the distance calculation method. We sampled 80% of the samples
1000 times in each algorithm. The optimal number of clusters is determined based on the
area under the cumulative distribution function (CDF) curve and the Delta Area Plot. The
“Limma” package was used to identify differentially expressed genes (DEGs) between
disulfidptosis-related clusters with a |log2FC| > 1 and p-adj < 0.05.

2.4. Functional Enrichment Analysis

We employed the “clusterProfiler” package for conducting Gene Ontology (GO) (in-
cluding Biological Process, Molecular Function, and Cellular Component) functional en-
richment analysis. This was performed to elucidate the biological functions of differentially
expressed genes between distinct clusters associated with disulfide death. Functional
enrichments with a false discovery rate (FDR) less than 0.05, corrected using the Benjamini–
Hochberg (BH) method, were considered significantly enriched.



Curr. Issues Mol. Biol. 2023, 45 9455

2.5. Identify a Disulfidptosis-Related Gene Signature

Lasso Cox regression analysis was employed to identify disulfidptosis-related genes
associated with the overall survival (OS) of HCC patients. Based on these genes, we con-
structed a gene set for Gene Set Variation Analysis (GSVA) to obtain disulfidptosis-related
scores. Subsequently, we conducted a time-dependent Receiver Operating Characteristic
(ROC) analysis for the disulfidptosis-related score (DR score). Using the 12-month ROC
curve, the optimal cutoff was selected according to Youden’s index, and the samples were
categorized into high- and low-DR score groups.

2.6. The Protein Expression Levels of Disulfidptosis-Related Signature Genes

To further validate the protein expression levels of disulfidptosis-related signature
genes in HCC tumors and normal tissues, immunohistochemistry (IHC) data can be
downloaded from the Human Protein Atlas database (HPA, http://www.Proteinatlas.org
(accessed on 1 October 2023)). HPA provides a variety of IHC results for numerous proteins
based on proteomics in both tumor and normal tissues.

2.7. Evaluation of the Prognostic Value of Disulfidptosis-Related Signature

Kaplan–Meier analysis was employed to assess the prognostic value of the disulfidptosis-
related signature in three datasets (TCGA-LIHC, GSE116174, and LIRI-JP). We incorporated
the disulfidptosis-related score along with other clinical factors (including Age, Gender,
TNM_Stage, Grade, Alcohol, Smoking, Invasion, and HBV) into Cox regression analysis to
evaluate whether it serves as an independent prognostic indicator for HCC.

2.8. Assessment of the Tumor Immune Microenvironment

We obtained a set of 28 immune cell gene signatures from the study by Barbie et al. [25]
Subsequently, we used ssGSEA analysis to investigate whether there were differences in
the immune infiltration levels among different DR score groups. In order for the anti-tumor
immune response to effectively eliminate tumor cells, the organism must initiate a series
of sequential events and allow for their iterative expansion. This process is referred to
as the Cancer–Immunity Cycle. In cancer patients, the Cancer–Immunity Cycle is not
always optimal, and various factors can impede its progression, leading to the immune
evasion of tumor cells [26]. We analyzed the Cancer Immunity Cycle in different DR groups
using the Tracking Tumor Immunophenotype (TIP) database (http://biocc.hrbmu.edu.
cn/TIP/index.jsp (accessed on 4 October 2023)) to examine the key factors contributing to
differential prognoses between the two groups.

2.9. Prediction of Immunotherapy Response

We assessed the correlation between the expression levels of four representative
immune checkpoint molecules (LAG3, PDCD1, CTLA4, and CD274) and the DR score.
The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm is an effective tool
for predicting immunotherapy responses. Using the TIDE algorithm, we compared the
TIDE score, Dysfunction score, and Exclusion score between high- and low-DR score
groups. Finally, we employed a real-world cohort (IMvigor210) undergoing anti-PD-
L1 immunotherapy to assess the potential predictive value of the disulfidptosis-related
signature in immunotherapy response.

2.10. Drug Sensitivity Analysis

In addition to immunotherapy, the primary treatment modality for HCC remains
chemotherapy. We downloaded the training dataset for the ridge regression model from the
Genomics of Drug Sensitivity in Cancer (GDSC) database (https://www.cancerrxgene.org/
((accessed on 7 October 2023))) and calculated drug IC50 values for HCC samples using the
“oncoPredict” package. By comparing the IC50 values between the high- and low-DR score
groups, we assessed the potential value of the disulfidptosis-related signature in predicting
chemotherapeutic drug sensitivity.

http://www.Proteinatlas.org
http://biocc.hrbmu.edu.cn/TIP/index.jsp
http://biocc.hrbmu.edu.cn/TIP/index.jsp
https://www.cancerrxgene.org/
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2.11. Statistical Analysis

Survival analysis was performed using the Log-rank test; comparisons of two groups
with continuous variables were conducted using Wilcoxon tests; comparisons of two groups
with categorical variables were assessed using the Chi-square test; and correlations between
two groups with continuous variables were evaluated using Spearman correlation analysis.
All tests were two-tailed, with statistical significance defined as p < 0.05. All analyses were
conducted using R 4.2.1 software.

3. Results
3.1. Identification of Disulfidptosis-Related Genes Using RF-GSEA

We utilized RF-GSEA to identify two candidate disulfidptosis gene sets based on
%IncMSE (3856 genes) and IncNodePurity (5490 genes) (Figure 3A,B, Tables S2–S4). The
84 disulfidptosis-related genes as prior information genes were identified 31 (1 validated
gene, 4 screened genes, and 26 deduced genes) in the %IncMSE gene set and 39 (4 validated
gene, 6 screened genes, and 29 deduced genes) in the IncNodePurity gene set (Figure 3C).
Based on the Delta Area Plot and CDF curve (Figure S1A,B), we determined the optimal
number of clusters to be two (Figure 3D, Table S5). In comparison to Cluster 2, Cluster
1 exhibited poorer prognoses in terms of OS, PFI, DFI, and DSS (Figure S1C–F). “limma”
analysis identified a total of 1412 DEGs between the two clusters, with 1302 genes upreg-
ulated and 110 genes downregulated (Figure 3E, Table S6). Theoretically, in the random
forest model, the use of %IncMSE as variable importance scores can lead to negative values.
GSEA might successfully enrich due to these negative values. This situation indicates
that gene n is highly unlikely to be associated with disulfidptosis. Therefore, we further
divided the %IncMSE gene set into two subsets, namely, %IncMSE-Positive (3436 genes)
and %IncMSE-Negative (420 genes). The %IncMSE-Positive gene set includes genes en-
riched in the positive direction in GSEA, indicating a high likelihood that these genes
are associated with disulfidptosis. The %IncMSE-Negative gene set, on the other hand,
includes genes enriched in the negative direction in GSEA, indicating that these genes are
unlikely to be associated with disulfide death. As anticipated, in the Venn diagram, the
%IncMSE-Negative gene set has only 20 genes overlap with the IncNodePurity gene set
and with no gene overlap observed with the DEGs. This demonstrates the robustness of the
RF-GSEA method. Due to the segregation of the %IncMSE-Negative gene set from the %In-
cMSE gene set, the four conditions do not overlap. Subsequent analysis only requires the
genes overlapping among the %IncMSE-Positive gene set, the IncNodePurity gene set, and
the DEGs (Figure 3F). In the end, we identified a total of 220 disulfidptosis-related genes
(Table S7). Using Lasso Cox regression analysis, we ultimately identified a disulfidptosis-
related signature comprising seven genes (GAS2L3, SPINDOC, CCT5, CCDC34, G6PD,
MARCKSL1, and STC2) (Figure 4A, Table S8). The IHC results obtained from the HPA
database revealed that the expression levels of all seven proteins are higher in HCC tumor
tissues compared to normal liver tissues (Figure 5).
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smaller than 1 × 10−10 were plotted with a uniform p-value of 1 × 10−10 for visualization purposes.
(C) The status of the 84 genes identified in the %IncMSE gene set and the IncNodePurity gene
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dataset. (E) A volcano plot illustrating the Differentially Expressed Genes (DEGs) of “limma” analysis.
(F) A Venn diagram depicting the final selection of 220 disulfidptosis-related genes.
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3.2. Pan-Cancer Expression Pattern, Prognostic Significance, and Immunological Correlation
of SLC7A11

Before applying the RF-GSEA method to HCC, it is essential to determine whether
disulfidptosis plays a significant role in HCC. Researchers who have discovered disulfidpto-
sis believe that SLC7A11 plays a pivotal role in this process. We conducted a comprehensive
pan-cancer analysis of SLC7A11 to unveil the potential involvement of disulfidptosis in
cancer. We observed that in nearly all types of cancers, the expression level of SLC7A11
in tumor tissues is significantly higher than that in normal tissues (Figure S2). In HCC,
the expression of SLC7A11 is also higher in patients at later stages (Stage III + IV, Grade
G3 + G4) compared to those at earlier stages (Stage I + II, Grade G1 + G2). Furthermore,
single-cell sequencing analysis revealed a significant expression of SLC7A11 in malignant
cells of HCC (Figure S3). In many cancers, high expression of SLC7A11 is indicative of
a poorer prognosis. In HCC, SLC7A11 serves as an independent prognostic factor, surpass-
ing other clinical characteristics (Figure S4). ssGSEA was used to assess the relationship
between SLC7A11 and 28 types of immune cells. We observed significant variations in the
relationship between SLC7A11 and immune cell infiltration levels across different tumors.
In PCPG, KIRP, and KIRC, SLC7A11 exhibited a positive correlation with the infiltration
levels of nearly all immune cells. In contrast, in THCA, LUSC, and LUAD, SLC7A11
showed a negative correlation with the infiltration levels of nearly all immune cells. In
our study of the correlation between the Cancer–Immunity Cycle and SLC7A11, we also
observed similar phenomena (Figure S5). These findings suggest that disulfidptosis may
play a significant role in various cancers, including HCC.
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3.3. Construction of Disulfidptosis-Related Clusters

Consensus clustering analysis was utilized to construct two disulfidptosis-related
clusters (Figure 4B and Figures S6A–D, Table S9). Compared to Cluster 2, Cluster 1
exhibited poorer prognoses in terms of OS (Figure 4C), PFI, DFI, and DSS (Figure S6E–G).
Between Cluster 1 and Cluster 2, the “limma” analysis identified a total of 1264 DEGs,
comprising 263 downregulated genes and 1001 upregulated genes (Table S10). These
genes were subjected to GO enrichment analysis, revealing their primary involvement
in immune regulatory functions. These functions included immune response-activating
signal transduction, lymphocyte-mediated immunity, immunological synapse formation,
and immunoglobulin receptor binding (Figure 4D). Furthermore, we explored the tumor
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microenvironment differences between the two clusters. In Cluster 1, the infiltration levels
of immune cells such as activated CD4 T cells, activated dendritic cells, central memory
CD4 T cells, central memory CD8 T cells, and effector memory CD4 T cells were higher than
in Cluster 2. However, the infiltration level of eosinophils was lower in Cluster 1 compared
to Cluster 2 (Figure S7A). Comparing the Cancer–Immunity Cycle status between the
two clusters, we observed that while Cluster 1 outperformed Cluster 2 in the earlier steps
(Step 1: release of cancer cell antigens; Step 2: neutrophil recruiting, Th17 cell recruiting, and
Treg cell recruiting), it exhibited poorer performance in the later steps (Step 5: infiltration of
immune cells into tumors; Step 6: recognition of cancer cells by T cells; and Step 7: killing of
cancer cells) compared to Cluster 2 (Figure S7B). The poorer performance in the later steps
of the Cancer–Immunity Cycle explains why Cluster 1 has a worse prognosis compared
to Cluster 2.

3.4. Identification and Validation of Disulfidptosis-Related Score

The final set of seven genes was utilized as the gene set, and GSVA was employed to
identify the DR score. Time-dependent ROC analysis was employed to assess the prognostic
value of the DR score in three cohorts (TCGA-LIHC, GSE116174, and LIRI-JP). We observed
that the DR score exhibited significant predictive value in all three cohorts (Figure S8).
Based on the 12-month time-dependent ROC curve in TCGA-LIHC, we chose a cutoff
score of 0.381, which corresponded to the maximum Youden index, to classify all cohorts
into high- and low-DR score groups (Figure S8A). In all three cohorts, we consistently
observed that the OS prognosis was worse in the high-DR score group compared to the low-
DR score group (Figure 6A,E,I). Furthermore, the distribution plots, survival status plots,
and gene expression heatmaps provided additional evidence of the robust discriminative
capacity of the disulfidptosis-related signature for HCC patients (Figure 6B–D,F–H,J,K).
The results of univariate Cox regression analysis indicated that in the TCGA-LIHC cohort,
the disulfidptosis-related signature and stage were risk factors for OS (Figure 7A). In the
GSE116174 cohort, the disulfidptosis-related signature and invasion were risk factors for
OS (Figure 7C). In the LIRI-JP cohort, the disulfidptosis-related signature and stage were
risk factors for OS (Figure 7E). Subsequently, we conducted multivariate Cox regression
analysis and found that in all three cohorts, the disulfidptosis-related signature remained an
independent risk factor for OS (Figure 7B,D,F). These results indicate that the disulfidptosis-
related signature holds significant prognostic value in HCC patients.
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3.5. The Relationship with Tumor Microenvironment

We further investigated the role of the disulfidptosis-related signature in the tumor
microenvironment of HCC. ssGSEA revealed that among the 28 immune-related cell types,
the high-DR score group exhibited higher levels of infiltration for activated CD4 T cells,
activated dendritic cells, central memory CD4 T cells, effector memory CD4 T cells, regula-
tory T cells, and type 2 T helper cells compared to the low-DR score group. Conversely, the
high-DR score group displayed lower infiltration levels for activated CD8 T cells, CD56
bright natural killer cells, and eosinophils compared to the low-DR score group (Figure 8A).
Comparing the Cancer–Immunity Cycle status between the two groups, we observed that
the high-DR score group exhibited higher levels in Step 1 (release of cancer cell antigens),
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Step 4 (neutrophil recruiting), Step 4 (Th17 cell recruiting), and Step 4 (MDSC recruiting
compared to the low-DR score group). On the contrary, the high-DR score group displayed
lower levels in Step 3 (priming and activation), Step 4 (CD4 T cell recruiting), Step 5 (infil-
tration of immune cells into tumors), and Step 7 (killing of cancer cells) compared to the
low-DR score group (Figure 8B).
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3.6. Prediction of the Efficacy of Immunotherapy and Targeted Anti-Tumor Agents

We investigated the relationship between four representative immune checkpoint
genes (LAG3, PDCD1, CTLA4, and CD274) and the disulfidptosis-related signature. We
found a significant positive correlation between disulfidptosis-related signatures and their
expression level (Figure 9A–D). We also explored the correlation between the disulfidptosis-
related signature and 91 immunomodulators [27], and we were surprised to find that
the disulfidptosis-related signature exhibited significant correlations with the expression
levels of almost all of these genes (Table S11). Furthermore, using the TIDE algorithm,
we found that the high-DR score group had significantly lower TIDE, Dysfunction, and
Exclusion scores compared to the low-DR score group (Figure 9E–G). A higher TIDE score
indicates a higher likelihood of immune evasion and a lower likelihood of benefiting from
immunotherapy. The relationship between the DR score and immune checkpoint, as well
as TIDE scores, indicates that the higher the DR score, the more likely to benefit from
immunotherapy. In our previous pan-cancer analysis of SLC7A11, we found that the
expression pattern, prognostic value, and its correlation with immune regulation genes,
tumor microenvironment, and RNA modification genes in BLCA were highly similar to
those in HCC. Based on this discovery, we believe that the role of disulfidptosis in BLCA is
similar to its role in HCC. Due to the lack of authoritative real-world immunotherapy co-
horts for HCC, we chose the reputable BLCA immunotherapy cohort IMvigor210 to further
investigated the relationship between the disulfidptosis-related signature and the response
to immunotherapy. Consistent with our previous findings, the higher the disulfidptosis-
related score, the more likely to benefit from immunotherapy (Figure 9H,I). The diversity
of HCC treatment highlights that we should prioritize more than just immunotherapy,
given that a wide array of targeted anti-tumor agents continues to play a crucial role in
HCC treatment. We compared the differences in IC50 values for eight chemotherapy drugs,
including the first-line treatment drug Sorafenib, between different DR score groups. We
were surprised to find that the IC50 values for these eight chemotherapy drugs were all
lower in the high-DR score group compared to the low-DR score group (Figure 10A–H).
This indicates that, relative to the low group, the high group exhibits higher sensitivity to
these eight drugs.
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4. Discussion

In this study, we developed a method that combines machine learning with enrich-
ment analysis based on gene regulatory networks and graph theory to identify potential
disulfidptosis-related genes. This method demonstrates a robust capability for the identi-
fication of disulfidptosis-related genes, thereby reducing the number of candidate genes
to be experimentally validated. As expected, there was minimal overlap of only 20 genes
between the %IncMSE-Negative gene set and the IncNodePurity gene set, with no overlap
observed with the EDGs. This underscores the rationality and robustness of our method-
ology. The RF-GSEA method identified a total of 220 disulfidptosis-related genes. These
genes are predominantly associated with actin and cytoskeletal proteins, as well as the
synthesis of glucose metabolites, suggesting their potential involvement in the regulation
of disulfidptosis [28–30]. The biological functions of these genes further validate the robust-
ness of the RF-GSEA pipeline. As a newly discovered mode of programmed cell death, the
value of disulfidptosis in HCC has not yet been fully elucidated [31]. To validate the practi-
cal utility of the RF-GSEA method, we applied it to investigate the role of disulfidptosis
in HCC.

We conducted a comprehensive pan-cancer analysis of SLC7A11, a gene that plays
a significant role in disulfidptosis. We found that, although the expression levels of
SLC7A11 in tumor tissues were elevated compared to normal tissues in almost all types of
cancer, its relationship with the tumor microenvironment varied greatly across different
cancer types. This phenomenon may be attributed to two potential reasons. Firstly, tumors
are complex systems, and the tumor microenvironment may exhibit significant variations
depending on the organ where the cancer originates [32]. Secondly, SLC7A11’s role in
programmed cell death serves as a double-edged sword [2–4]. It can both inhibit ferrop-
tosis and initiate disulfidptosis. In different tumors, its primary function may undergo
distinct alterations. This discovery suggests that disulfidptosis indeed plays a significant
role in cancer, but its role may vary across different cancer types. Subsequently, lasso
Cox analysis ultimately screened seven genes for constructing the disulfidptosis-related
signature. Two clusters were identified based on these seven genes. Compared to Clus-
ter 2, Cluster 1 exhibited a worse prognosis and higher infiltration of MDSCs and Tregs.
Previous research has already indicated that high infiltration of MDSCs and Tregs leads to
a poor prognosis in HCC, aligning with our study findings [33,34]. Furthermore, Cluster 1
exhibited higher scores in the neutrophil, Treg cell, and MDSC recruiting steps of the cancer
immune cycle compared to Cluster 2. In addition to MDSCs and Tregs, neutrophils have
also been confirmed to play a significant role in immune suppression in HCC [34]. In the
final three steps of killing tumor cells, Cluster 1 performed less effectively than Cluster 2.
This may be a direct contributing factor to the poorer prognosis observed in Cluster 1 [26].
The functional enrichment analysis of the EDGs between the two clusters revealed their
primary enrichment in immune responses. This suggests a close association between the
disulfidptosis-related signature and tumor immunity.

We developed a disulfidptosis-related scoring system using GSVA and categorized
HCC samples into high- and low-DR score groups based on a cutoff. In both TCGA-LIHC
and two external validation cohorts (GSE116174 and LIRI-JP), we consistently observed
a poorer prognosis in the high-DR score group compared to the low-DR score group. The
results of the Cox regression analysis further underscore that the disulfidptosis-related
signature is an independent risk factor for HCC prognosis. The high-DR score group
exhibited lower infiltration levels of activated CD8 T cells, CD56 bright natural killer cells,
and eosinophils compared to the low-DR score group. In cancer, activated CD8 T cells
play a primary role in killing cancer cells [35]. The low level of activated CD8 T cells in the
high-DR score group suggests an inadequate ability to eliminate cancer cells. The primary
function of CD56 bright natural killer cells is to initiate innate immune responses against
cancer cells [36]. Abundant infiltration of CD56 bright natural killer cells is indicative of
a better prognosis in HCC and is positively correlated with the apoptosis of tumor cells
in HCC [37]. Furthermore, previous research has also indicated a positive correlation
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between eosinophils and the prognosis of HCC [38,39]. In contrast, the high-DR score
group exhibited higher levels of infiltration of activated CD4 T cells, activated dendritic
cells, central memory CD4 T cells, effector memory CD4 T cells, regulatory T cells, and
type 2 T helper cells compared to the low-DR score group. Current research has found that
CD4 T cells can both promote and inhibit the generation of CD8+ cytotoxic T cells. This
complex role has led to an ongoing debate regarding the impact of CD4 T cells on tumor
prognosis [40]. In our study, many CD4 T cells in the high-DR score group, associated with
poorer survival, exhibited high levels of infiltration. This observation may suggest that
in HCC, CD4 T cells play an immunosuppressive role. In the cancer immune cycle, the
high-DR score group displayed higher levels of release of cancer cell antigens, neutrophil
recruiting, Th17 cell recruiting, and MDSCs recruiting compared to the low-DR score group.
The higher level of release of cancer cell antigens in the high-DR score group suggests an
increased production of new antigens due to tumor occurrence, which are subsequently
released and captured by dendritic cells for processing. However, this represents only
the initial step in the entire process of killing tumor cells. In the subsequent steps, the
high-DR score group appears to transition toward immune suppression, ultimately leading
to their unfavorable prognosis [26]. The relevance of Th17 cells in promoting autoimmunity,
carcinogenesis, and anti-tumor immunity has been established [41]. Although the high-
DR score group recruited more Th17 cells, their ability to function effectively requires
infiltration into the tumor tissue. However, in the ssGSEA analysis, we did not observe
a higher level of Th17 cell infiltration in the high-DR score group. This suggests that the
process of tumor-inhibitory Th17 cell infiltration into HCC tumor tissue is hindered, leading
to the immunosuppressive state and poorer prognosis observed in the high-DR score group.
Moreover, the excessive recruitment of cells such as neutrophils and MDSCs, which have
been shown to play an immunosuppressive role in hepatocellular carcinoma [42] in the
high-DR score group, also contributes to the unfavorable prognosis. In contrast, the high-
DR score group exhibited lower levels of priming and activation, infiltration of immune
cells into tumors, and killing of cancer cells compared to the low-DR score group. The poor
performance of the high-DR score group in these steps directly explains its worse prognosis
and immunosuppressive state.

Previous studies have already demonstrated that the high expression of these four
immune checkpoint molecules (LAG3, PDCD1, CTLA4, and CD274) promotes T cell
exhaustion, leading to immune evasion and an unfavorable prognosis in HCC [43,44].
The significant positive correlation between the DR score and these molecules further
validates the value of the DR score for immune evasion and prognosis in HCC. In HCC,
the higher the expression of immune checkpoint molecules, the more likely for patients
to benefit from immunotherapy [45]. The TIDE score in the high-DR score group was
lower than in the low-DR score group. A lower TIDE score indicates a higher likelihood
of benefiting from immunotherapy [46]. Both the Spearman correlation analysis and the
TIDE analysis suggest that the higher the DR score, the more likely patients are to benefit
from immunotherapy. This discovery was further validated in real immunotherapy cohorts.
Lastly, drug sensitivity analysis revealed that the IC50 values for eight chemotherapeutic
drugs were all lower in the high-DR score group compared to the low-DR score group.
This suggests that the high-DR score group exhibits greater sensitivity to these eight
chemotherapeutic drugs. The combination of immunotherapy and targeted chemotherapy
drugs has been approved for the treatment of HCC [47,48]. Understanding the potential
response of patients to treatment aids in devising personalized treatment regimens. Our
study suggests that immunotherapy and targeted chemotherapy drugs may have better
efficacy in the high-DR score group.

Strengths and Weaknesses

This work presents the development of the RF-GSEA method, which possesses nu-
merous advantageous features. The RF-GSEA method is an innovative approach for
discovering genes linked to a certain biological process. The RF-GSEA method is valu-
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able for the study of biological processes as well as gene function. The RF-GSEA method
demonstrates a partial capacity to address the issue of mixed expression pattern genes.
Genes with mixed expression patterns can be considered as outliers in machine learning.
The random forest model employs multiple decision trees, each utilizing only a subset of
features from the data; thus, outliers do not significantly impact the model. The RF-GSEA
method also has some weaknesses that need to be addressed. The RF-GSEA method does
not fully address the mixed expression pattern genes. In the current study, we had an insuf-
ficient sample size (TCGA-LIHC cohort, 322 samples) when using the RF-GSEA method.
Despite our efforts to utilize existing data for model validation, it is crucial to note that the
evidence provided by protein expression levels is limited. Further experimental validation
is required to further validate our model.

5. Conclusions

The RF-GSEA method is a powerful tool for identifying potential disulfidptosis-
related genes. In-depth research into the genes identified in this study can reveal the
underlying mechanisms of disulfidptosis. To validate its practical utility, we applied it to
HCC, leading to the development of a disulfidptosis signature. This signature accurately
predicts HCC prognosis and unveils its underlying mechanisms. Furthermore, it can
stratify individuals sensitive to immunotherapy and chemotherapy, offering guidance
for personalized treatment strategies. Additionally, RF-GSEA is not only limited to the
identification of potential disulfidptosis-related genes but also is equally applicable to other
biological processes.
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