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Abstract: Over 100 innovative in vitro transcribed (IVT)-mRNAs are presently undergoing clinical
trials, with a projected substantial impact on the pharmaceutical market in the near future. The
idea behind this is that after the successful cellular internalization of IVT-mRNAs, they are subse-
quently translated into proteins with therapeutic or prophylactic relevance. Simultaneously, cancer
immunotherapy employs diverse strategies to mobilize the immune system in the battle against
cancer. Therefore, in this review, the fundamental principles of IVT-mRNA to its recruitment in cancer
immunotherapy, are discussed and analyzed. More specifically, this review paper focuses on the de-
velopment of mRNA vaccines, the exploitation of neoantigens, as well as Chimeric Antigen Receptor
(CAR) T-Cells, showcasing their clinical applications and the ongoing trials for the development of
next-generation immunotherapeutics. Furthermore, this study investigates the synergistic potential
of combining the CAR immunotherapy and the IVT-mRNAs by introducing our research group novel,
patented delivery method that utilizes the Protein Transduction Domain (PTD) technology to trans-
duce the IVT-mRNAs encoding the CAR of interest into the Natural Killer (NK)-92 cells, highlighting
the potential for enhancing the CAR NK cell potency, efficiency, and bioenergetics. While IVT-mRNA
technology brings exciting progress to cancer immunotherapy, several challenges and limitations
must be acknowledged, such as safety, toxicity, and delivery issues. This comprehensive exploration
of IVT-mRNA technology, in line with its applications in cancer therapeutics, offers valuable insights
into the opportunities and challenges in the evolving landscape of cancer immunotherapy, setting the
stage for future advancements in the field.

Keywords: IVT-mRNA; cancer immunotherapy; IVT-mRNA cancer vaccines; personalized im-
munotherapy; Chimeric Antigen Receptor (CAR); CAR T-cell therapy; Protein Transduction Domain;
PTD-IVT-mRNA; CAR NK-92 cells; bioenergetics

1. IVT-mRNA: A Comprehensive Exploration of the Technology

The field of RNA research has been expanding since RNA was identified as a molecule,
independent of DNA, in the 1930s. Since 1957, 31 Nobel Prizes have been awarded for RNA
biology, with nine Nobel Prizes in Chemistry and 22 Nobel Prizes in Physiology or Medicine,
including the one awarded at the beginning of October 2023, to Katalin Karikó and Drew
Weissman for their discoveries that enabled the development of the mRNA vaccines against
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SARS-CoV-2 during the COVID-19 pandemic. RNA-based therapies have tremendous
potential to treat many diseases that currently lack or have no optimal treatment options [1].
In fact, according to Allied Market Research estimates, the RNA-based therapy sector is
expected to reach a valuation of $25 billion by 2030 [2].

The basic idea behind in vitro transcribed (IVT)-mRNA therapies is to employ mRNA,
synthesized in vitro, to induce the translation of proteins that have pharmacological action
in vivo. Since it is encoded by IVT-mRNA, theoretically, any functional protein or peptide
may be produced-using this method-for protein replacement therapy or immunization.
However, since the discovery of mRNA 60 years ago, it has taken scientists many years and
significant effort to effectively generate a final, efficient and commercial product. Precisely,
IVT-mRNA has come a long way, with the recent approval of two COVID-19 mRNA-based
vaccines (BNT162b2 and mRNA-1273), to finally show its immense potential. Its numerous
uses have made it possible to develop treatments for a wide range of diseases, and in recent
years, the number of clinical studies has exhibited a tremendous increase.

IVT-mRNA chemical alterations and the development of delivery vehicles, as well
as its characteristics and therapeutic goals, are crucial for ensuring clinical success. The
COVID-19 vaccines, the first mRNA-based pharmaceuticals to be authorized and dis-
tributed globally, as well as cancer immunotherapy, are setting the standard for the thera-
peutic application of mRNA. Although it is a novel therapeutic strategy that may be used
to treat a wide range of diseases and there are still many issues that arise for its exploitation,
however, IVT-mRNA is here to stay [3].

IVT-mRNA-based technology is currently thought to fill a discrete gap between gene
therapy and protein therapy. Compared to the other two macromolecule approaches, it
demonstrates a number of outstanding benefits. Therapeutics based on IVT-mRNA have
significant advantages over recombinant proteins, since post-translational modifications,
folding, and localization of exogenously generated proteins are obstacles that IVT-mRNA
overcomes. In the meantime, it may simultaneously encode numerous proteins for im-
munogens (made up of many subunits), which overcomes the difficulty of reassembling
the protein subunits with the right stoichiometry [4,5]. The design methodology for IVT-
mRNA brings notable versatility, as it allows the same platform to be used for various
targets. Additionally, IVT-mRNA can be rapidly designed, and large-scaled generated, it is
highly adaptable, and less costly than those of proteins. On the other hand, unlike DNA
therapeutics, IVT-mRNAs do not need to enter the nucleus in order to function, meaning
that the risk of insertional mutagenesis is eliminated [6,7]. Furthermore, IVT-mRNA is a
transiently active molecule, leading to minimal homeostasis destruction, compared to the
permanent nature of DNA-based approaches. These outstanding benefits make IVT-mRNA
technology the most recent and promising therapeutic approach, attracting a lot of interest
from the scientific community, funding organizations, and the biomedical sector.

Embarking from the beginning, during the year 1961, mRNA was introduced to the
scientific community by two Nature scientific papers, by Brenner et al. and Gros et al. [8,9],
and a review paper by Jacob and Monod [10], and since then, the role of mRNA has
been explored, either for activating or blocking protein expression in the context of ther-
apeutics [11]. When a fledgling San Diego biotech company, named Vical Incorporated,
announced its initial results in 1989, the idea of using mRNA as a potential therapeutic
drug took off. They showed that different eukaryotic cells may effectively be transfected
by mRNA contained within a liposomal nanoparticle. Another crucial finding on the
path to mRNA vaccines was the study of Malone et al. in 1989, showing that exogenous
luciferase-coding mRNA could be introduced into a cell line via liposomes, leading to
enzyme production [12]. A few months later, Wolff et al. published the results of their
studies in which mice were directly intramuscularly (i.m.) administered with naked mRNA
(firstly serving as a control to a lipid-mediated delivery platform), leading to the production
of the encoded protein over the course of a few days [13]. IVT-mRNA was first used in 1992
by Jirikowski et al. to treat diabetes in mice [14]. In 1995, the first IVT-mRNA vaccination
for cancer was applied [15]. In 1996, Gilboa and team proposed the use of IVT-mRNA
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vaccines in patients with microscopic tumors [16]. In the late 1990s, the team of Hoerr and
colleagues discovered that using intradermal injection of IVT-mRNA, skin cells can express
the corresponding proteins encoded by the mRNA, and in parallel, the common belief at
the time that IVT-mRNA was unstable was refuted [17]. In fact, mRNA must overcome
many obstacles to be successfully delivered into target cells, since evolutionary barriers
exist to block intracellular delivery of foreign RNA. Following in vivo administration,
mRNA must also overcome the degradation by harmful RNases present in the tissues and
bloodstream. Furthermore, mRNAs are large and polyanionic molecules; hence passive
diffusion across the cell membrane is not efficient. Therefore, mRNA molecules rely mainly
on active endocytic uptake mechanisms, which may lead to entrapment and degradation
in the endosome [18]. Moreover, immunization can be initiated with a minimal protein
production because the immune system has the capacity to greatly enhance the antigenic
signal through both cell-mediated and antibody-mediated immunity. On the other hand,
mRNA therapeutics necessitate a significantly higher protein production, often up to a
thousand times more, to reach the required therapeutic threshold [19].

Many viruses contain RNA genomes, while the immune system is extremely sensitive
to RNA, and its presence inside cells can be a symptom of viral infection. Toll-like receptors,
which are involved in host immunological recognition of RNA, cause cellular responses
that can block protein synthesis and destroy nucleic acids. Therefore, to avoid inducing
an immune response, it was necessary to figure out a technique to go around the immune
system’s RNA surveillance systems, to facilitate IVT-mRNA therapeutic function.

Katalin Karikó and Drew Weissman were laureated the 2023 Nobel Prize in Physiology
or Medicine for their pioneering research on IVT-mRNA, conducted at the University of
Pennsylvania, demonstrating the possibility of reducing the body’s inflammatory responses
to IVT-mRNAs. This breakthrough paved the way for the development of mRNA-based
vaccines, including those that protect against COVID-19 [20]. In their study, ex vivo human
Dendritic Cells (DCs) were exposed to mRNA derived from several sources. DCs toler-
ated mammalian mRNA, but not mRNA from bacteria and necrotic mammalian cells, nor
IVT-mRNA, which caused severe inflammatory cytokine reactions [21]. Interestingly, they
discovered that the presence of modified nucleotides in the IVT-mRNA construct, such
as methylated nucleosides or pseudouridine (Ψ), might be responsible for the drastically
diminished immune-modulatory potential of the exogenous mRNA. Thus, it was deter-
mined that modified nucleotides shield IVT-mRNA from immune recognition and enable
cells to distinguish it from pathogenic or foreign mRNA [21]. In order to increase cell
survival and protein synthesis, as well as to reduce immunogenicity, methylpseudouridine
(m1Ψ) in conjunction with 5-methylcytidine (5mC) was also suggested to be incorporated
in IVT-mRNA synthesis [22,23]. Over the subsequent years, Karikó’s and Weissman’s
work evolved, showing in 2008 that Ψ could increase protein production in cells that ab-
sorbed the modified mRNA. They also uncovered the cellular mechanisms behind these
findings [24,25].

Additionally, numerous cellular activities (including translation, splicing, and destruc-
tion) heavily rely on the mRNA 5′ cap structure. More than half of the caps were usually
being put inverted during the transcription of the IVT-mRNA (using a bacteriophage pro-
moter), rendering them invisible to the mRNA-stabilizing cap-binding proteins. In order
to solve this difficulty, to increase translational capacity and enhance capping efficiency,
anti-reverse cap analogs (ARCAs), structured 3′-O-Me-m7G(5)ppp(5)G, were developed.
Methoxy group was used to either substitute or omit the typical 3′-OH of the natural cap to
prevent misalignment [26]. Moreover, the 3′-untranslated regions (UTRs) of most eukary-
otic mRNAs contain Adenylate-Uridylate-rich Elements (AREs), which are indicators of
mRNA degradation, regulating mRNA output from the nucleus and translation efficiency,
as well as subcellular localization and stability. The use of 3′-UTRs of more stable mRNAs,
such as those generated from α- or β-globin mRNAs, as well as the addition of a potent
Kozak sequence, can boost the IVT-mRNA stability and translation. The IVT-mRNA is also
turned into a very stable molecule by the long poly-(A) tail (100–300 nucleotides), since
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removing it makes the IVT-mRNA more susceptible to degradation. Another IVT-mRNA
optimization strategy, known as codon optimization, leverages the more common codons
in the open reading frame of the IVT-mRNA to speed up translation without changing
the final protein sequence [27]. Zhang et al. presented an algorithm, a part of an mRNA
designing tool, aiming to predict the most-stable IVT-mRNA sequence and its respective
structure (not including UTRs sections and modified nucleotides), in just 11 min [28].

Advancements in machine learning have also introduced innovative concepts for opti-
mizing the design of IVT-mRNA sequences [29]. Recent progress in bioinformatics has also
facilitated the development or adaptation of a diverse set of computational tools tailored
for IVT-mRNA design. Among these, machine learning-based epitope prediction models
hold significant promise for enhancing mRNA vaccine design. Integrating epitope-based
design procedures into the rational vaccine development process for mRNA vaccines have
the potential to significantly boost vaccine immunogenicity and practical efficacy [30]. Ad-
ditionally, the structural analysis of broadly neutralizing antibodies generated in response
to SARS-CoV-2 can serve as a guide for designing antigens in mRNA vaccines, with the
aim of providing broad protection against multiple viral variants [31].

Other approaches, such as self-amplifying mRNA (SAM), have the potential to reduce
the need for multiple vaccine doses by significantly increasing antigen expression with
smaller amounts. However, as one of the key features of SAM RNA vaccines is their
ability to replicate within cells, this could potentially lead to a stronger immune response.
Thus, controlling the degree of amplification is critical to prevent excessive or uncontrolled
replication, which could pose risks. As SAM vaccines introduce genetic material into cells,
a concern about potential off-target effects or unintended gene expression changes was
raised [32]. SAM vaccines directed against SARS-CoV-2 exhibited limited reactogenicity
during clinical trials. This method may ultimately prove more potent and cost-efficient
when compared to non-replicating mRNA (NRM) vaccines [33].

The development of liposome and nanoparticle technologies may have made the most
underappreciated contribution to the successful production of the IVT-mRNA technology.
In fact, over the years, the focus has started to shift towards the development of efficient
and protective delivery vehicles, investigating the use of lipids as envelopes for ensuring
the successful delivery of the IVT-mRNA [34]. An efficient delivery vehicle must protect
IVT-mRNA from degradation and enable intracellular delivery. Effective delivery to solid
organs is still difficult, except for the liver, which may be easily targeted through i.v. admin-
istration. Repeated dosage, which is frequently necessary in cases of treatment for chronic
disorders, represents another significant barrier [19]. Bangham et al. investigated the
ability of phospholipids to self-assemble into structures with double-layered membranes
that could enclose cations, which was first demonstrated in a landmark work, published
in 1965 [35]. Liposomes were approved as a drug-distribution delivery system in the
1990s [36]. The phospholipid nanoparticles DOTMA (N-[1-(2,3-dioleyloxy)propyl]-N,N,N-
trimethyl-ammonium chloride), DOTAP (1,2-dioleoyl-3-trimethyl-ammonium-propane),
and DOPE (dioleoyl-phosphatidyl-ethanol-amine) were then applied, offering complex
support and providing highly stable structure (saturated lipids) and endosome desta-
bilization (unsaturated lipids, like DSPC and DPPC). Later, stabilizing pegylated lipids
were developed, like polyethylene glycol (PEG)-DMG (by Moderna, Cambridge, MA,
United States) and ALC-0159 (by BioNTech/Pfizer, Mainz, Germany/New York, United
States), creating lipid nanoparticles (LNPs) with a hydrophilic surface, steric hindrance,
and «stealth» effect [37,38].

On the whole, the emergence of COVID-19 represents a pivotal moment in the his-
tory of IVT-mRNA vaccines. With the onset of the COVID-19 pandemic, a significant
public health crisis has been caused. SARS-CoV-2 caused more than 700 million infec-
tions and 6.9 million fatalities [39]. In 2020, global research endeavors expedited the
creation of a SARS-CoV-2 vaccine to curb the pandemic. Leading vaccine candidates from
BioNTech/Pfizer (Mainz, Germany/ New York, United States) (BNT162b) and Moderna
(Massachusetts, United States) (mRNA-1273) swiftly received emergency authorization
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from the U.S. Food and Drug Administration (FDA) and were manufactured in record
time. Both vaccines are composed of LNP vehicles that contain IVT-mRNA encoding the
SARS-CoV-2 spike protein. These LNP constructs simulate the viral replication process
without the risk of infection and induce an adaptive immune response targeting SARS-
CoV-2. Furthermore, ionizable lipids facilitate nucleic acids complexation and membrane
fusion, with the ALC-0315 (BioNTech/Pfizer, Mainz, Germany/New York, NY, United
States)) and SM-102 (Moderna, Massachusetts, United States), serving as the outer shells of
COVID-19 mRNA vaccines. These vaccines performed exceptionally well in Stage III clini-
cal trials, showing 94–95% efficacy, minimal adverse effects, and high immunogenicity [40].
Consequently, they have been used to immunize billions of people worldwide against
COVID-19. Additional “booster” doses have proven necessary to replenish declining levels
of neutralizing antibodies, but both BNT162b and mRNA-1273 have significantly reduced
the incidence of hospitalizations and fatalities related to COVID-19. Consequently, mRNA
vaccines have emerged as the next generation of vaccines for frontline protection against
infectious diseases, marking a significant development in the evolution of public health
practices [41].

Although LNPs have shown considerable promise in many therapeutic applications
for the delivery of IVT-mRNA, they also face several challenges. The presence of serum, the
size of the lipoplex, the density of the surface charge, the colloidal stability, the endosomal
escape, the various uptake mechanisms, the sensitiveness in degradation, and the absence
of cellular and nuclear targeting have all been suggested to play a role in the efficacy of
transfection via the cationic, lipid nanocarriers [42,43]. Moreover, regardless of the inclusion
of targeting segments, carriers such as polymers or LNPs tend to accumulate in the liver
and spleen. Among the many characteristics, LNPs size had the strongest association with
immunogenicity. In mice, there is a positive association between size and immunogenicity;
as the LNPs size increases (to 100 nm), so does the antibody titer. In nonhuman primates
(NHPs), immunogenicity is independent of LNPs size, and a significant immune response is
induced at all particle sizes investigated [44]. In fact, LNPs activate multiple inflammatory
pathways, inducing IL-1β and IL-6. Designing and developing LNPs is a difficult procedure
that needs careful optimization. It can be difficult and time-consuming to achieve the ideal
balance of lipids, encapsulation effectiveness, and stability [45]. Furthermore, due to their
short half-life, LNPs exhibit in vivo instability, resulting in endosomal escape and clearance
by macrophages is held rather than the expected cellular uptake [46]. In addition, the
instability of LNPs during storage or in physiological settings could result in premature
mRNA release or diminished therapeutic efficacy [47]. The LNPs platform may also deal
with issues of stability, complicated storage, and distribution.

Due to the versatility that peptides can provide, peptide-based delivery systems are
becoming more popular. The peptides have distinct biological features, such as cell and
nuclear surface targeting, high cell permeability efficiency, and low molecular weight when
compared to cationic polymers [48]. Peptide-based carriers and hybrids are proposed
as intriguing alternatives to the different known non-viral vectors for IVT-mRNA deliv-
ery, either by non-covalent or covalent binding. A representative example is the Protein
Transduction Domains (PTDs) or Cell Penetrating Peptides (CPPs). Exploiting PTDs for
IVT-mRNA delivery, our unique, cutting-edge PTD-IVT-mRNA technology seems promis-
ing for being effective in delivering therapeutic IVT-mRNA payloads to target cells. This
novel strategy combines the adaptability of peptides with the accuracy of IVT-mRNA,
opening a viable path for the development of a next-generation non-viral delivery platform
in the area of IVT-mRNA therapeutics. PTD-IVT-mRNAs showed encouraging results
for two protein-disease-models, including the mitochondrial disorder fatal infantile car-
dioencephalomyopathy and COX deficiency (attributed to SCO2 gene mutations) and
β-thalassemia [49], as well as in a Chimeric Antigen Receptor (CAR) Immunotherapy of
ErbB(+) solid tumor neoplastic cells [50], which are explained thoroughly in the follow-
ing chapters.
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Prophylactic vaccines against infectious diseases, the protein replacement therapy
(PRT), and the therapeutic vaccines against cancer as well the cancer immunotherapy are
the main applications of IVT-mRNA technology, with outstanding research being made
in these areas. Regarding the prophylactic use of IVT-mRNA for immunization against
harmful microorganisms, the main strategy includes an antigen-encoded IVT-mRNA to
be translated into the corresponding antigen in vivo, that can activate the host’s immune
system against the infectious pathogen. Before COVID-19, several attempts had been made
to develop IVT-mRNA prophylactic vaccines to fend against various infectious viruses, such
as the influenza virus [51], Ebola virus, Zika virus [52], rabies virus, and HIV, while some
of the above have proceeded to clinical evaluation [5]. The second application considers
monogenic diseases, where essential proteins are expressed abnormally or not at all, and
Protein Replacement Therapy (PRT) attempts to replace those defective proteins. The
clinical assessment of IVT-mRNA technology in the context of PRT includes the IVT-mRNA
of the vascular endothelial growth factor (VEGF, NCT03370887) and the IVT-mRNA of
CFTR (NCT03375047) [53], as well as IVT-mRNAs for myocardial infarction and heart
failure (NCT03370887) [54] and for genetic lung disorders [55]. In the preclinical stage,
there are studies for hemophilia A (factor VIII deficiency) and hemophilia B (factor IX
deficiency) [56].

This review emphasizes in the third application category, the recruitment of IVT-mRNA
technology against cancer. One of the main features of cancer research for a long time has
been using the immune system to combat cancer, as demonstrated by the many immunother-
apeutic strategies. The combination of cancer immunotherapy with IVT-mRNA technology
has gained attention, amidst the challenges posed by the COVID-19 pandemic, and mRNA
vaccines have surfaced to address the demand and boost researchers, academics, and industry
to the direction of IVT-mRNA immunotherapy tactics, discussed in the following sections.

2. IVT-mRNA Innovations against Cancer: A Leap in Cancer Immunotherapy

According to https://clinicaltrials.gov/ (accessed on 15 September 2023), over 100 clin-
ical trials based on RNA technology are currently underway, for Amyotrophic Lateral
Sclerosis, Huntington’s disease, Hereditary Angioedema and other disorders. Currently,
there are already 18 clinically approved RNA-based therapies, including the vaccines that
made mRNA well-known during the COVID-19 pandemic (BioNTech/Pfizer, Mainz, Ger-
many/New York, United States and Moderna, Massachusetts, United States). RNA-based
therapies have already been approved for both Spinal Muscular Atrophy and Duchenne
Muscular Dystrophy.

The first conceptualization of an mRNA vaccine for cancer was made in 1995 [57],
and the implementation of the idea was first reported by Boczkowski et al. in 1996, where
they examined the feasibility of inducing cytotoxic T-cell (CTL) and tumor immunity
by pulsing DCs with tumor-derived RNA. DCs pulsed with in vitro-produced chicken
ovalbumin (OVA) RNA were more successful in inducing primary, OVA-specific CTL
responses in vitro, than DCs pulsed with OVA protein. Mice immunized with DCs pulsed
with tumor-derived RNA showed a substantial reduction in lung metastases in the low
immunogenic, highly metastatic B16/F10.9 tumor model [15].

In fact, DCs, a type of antigen-presenting cells (APCs), play a vital role in the immune
system. Through the processing of antigens, DCs activate the adaptive immune response,
processing antigens presented to T-cells (CD8+ or CD4+) through Major Histocompatibility
Complex (MHC) molecules (MHC class I or MHC class II molecules). CD8+ T-cells and
CD4+ T-cells interact through MHC class I and class II molecules, respectively. Additionally,
in order to stimulate an immune response, DCs may process antigens. As a result, DCs are
an important target for the ex vivo and in vivo transfection delivery of mRNA vaccines.
Ex vivo DC loading is being researched for cancer vaccination to promote cell-mediated
immunity [58]. In various stages of clinical studies, DC-based mRNA vaccines against
cancer have demonstrated encouraging outcomes [59]. Ary et al. recently developed
mRNA-lipid nanocomplexes that trigger potent immune responses to stop the growth of

https://clinicaltrials.gov/
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the B16-OVA tumor. In tissue culture and mice, the mRNA vaccination was examined and
found to improve mouse survival [60].

Lai et al. showed encouraging results for the delivery of the LNP-IVT-mRNA of
IL-12 in MYC-oncogene-driven hepatocellular carcinoma, resulting in activation of CD44+

immune cells, thus reducing tumor size and increasing survival in mice [61]. Moreover,
cKK-E12 IVT-mRNA (trastuzumab mRNA), also delivered through LNPs, exhibited higher
serum levels of trastuzumab, compared to the biologic drug trastuzumab (Herceptin®), in
mice with breast cancer [62]. Islam et al. also showed restoration of prostate cancer tumor-
growth inhibition in vivo, via systemic IVT-mRNA of PTEN (Phosphatase and Tensin
homolog deleted on chromosome ten), delivered by a PEG-coated hybrid cationic lipid-like
compound (G0-C14) and poly lactic-co-glycolic acid (PLGA) [63].

mRNA-based vaccination aims to stimulate or activate an efficient anti-tumor immune
response, triggered in two different ways. After vaccination, mRNAs first enter the cyto-
plasm, via endocytosis, join ribosomes in the host cell, and undergo effective translation.
The proteasome breaks down the antigens into antigenic peptides in the cytoplasm, and
these short antigenic peptides are then presented to CTLs by the MHC. As an alternative
pathway, the host cell may release antigenic proteins, which are then captured by DCs,
broken down, and presented to helper T-cells and B-cells via MHC. Finally, B-cells produce
antibodies that are capable of recognizing antigenic proteins [64].

Patients are being enrolled in several clinical trials, such as NCT04534205, NCT03313778,
and NCT04503278, for various mRNA-based cancer vaccine therapy studies in an effort to
trigger an mRNA-based anti-tumor response [65]. A few clinical studies involve naked,
unformulated mRNA vaccines (in a non-recruiting stage), being administered intrader-
mally or intranodally. The limited number of such clinical studies is interpreted by the
sensitivity of the naked mRNA to degradation by harmful, extracellular RNases. Thus,
several nanocarriers have been included, such as protamine (RNActive vaccine, CV9104,
CV9201, CV9202), cationic lipids (BNT111/112/113/114/115, FixVac), lipid nanoparticles
(mRNA-4157), etc.

Recently, results were reported by Breda et al. of successful delivery of mRNA into
bone marrow stem cells by intravenous injection, loaded into lipid nanoparticles, facilitating
both gene editing and bone marrow transplantation. The ability to modify bone marrow
cells in vivo, in a patient’s body without the need for traditional transplantation approaches
could hold great promise for a range of genetic disorders [66].

3. Empowering the Immune System: The IVT-mRNA Vaccines and Neoantigens in
Cancer Immunotherapy

Ever since Georg Klein’s pioneering discovery of Tumor-Specific Antigens (TSAs) in
1967 [67], there has been significant research into developing cancer vaccines for therapeutic
purposes. Currently, there are numerous cancer vaccines under development [68]. Despite
these efforts, achieving clinical success has proven challenging, with only a small fraction
of clinical trials showing more than 10% of objective clinical responses. Additionally, a
very limited number of trials have demonstrated an overall therapeutic benefit exceeding
25% [69–71].

Utilizing short or long peptides, generated from tumor antigens, together with the ap-
propriate adjuvant, was one of the early methods for antigen-specific immunotherapy [72].
Although it is technically possible to synthesize these peptides, immunological responses
to peptide vaccines are confined to a small number of individuals, who have the right
Human Leukocyte Antigen (HLA) haplotype, which restricts their use to larger patient
groups [71]. Additionally, the restricted immunogenicity of recombinant proteins and their
difficult, costly, and time-consuming manufacturing for vaccine-grade purposes make this
technique difficult. At present, there are only two FDA-approved cancer-related prophy-
lactic subunit vaccines, both of which are against viruses known to be associated with
cancer, the human papillomavirus (HPV) and the hepatitis B virus (HBV). The PROVENGE
(Sipuleucel-T) for prostate cancer vaccine was the first to be licensed by the FDA, after
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decades of research [73,74]. Patient’s derived APCs are cultured in vitro with Prostatic Acid
Phosphatase (PAP) (present in 95% of prostate cancer cells), as the target antigen, which is
taken up and presented. These APCs are re-infused back into the patient to activate the
CTLs, thus stimulating the T-cell immunity directed against the target antigen, PAP [75].

IVT-mRNA technology started to be exploited in cancer immunotherapy and vaccine
research, with encouraging findings [68]. The intrinsic immunostimulatory properties of
the mRNA molecule and its capacity to serve also as an immunoadjuvant are considered
to be crucial benefits for the use of vaccines. The IVT-mRNA cancer vaccines strategy
aims to immunize patients with Tumor-Associated Antigens (TAAs), which are mostly
produced from isolated tumor cells that have been removed from patients (autologous
tumor cells). IVT-mRNA technology is being tested in various clinical studies for oncologic
reasons, since it promotes balanced humoral and cellular immune responses in animal
models [68]. Prophylactic cancer vaccines are still a possibility. IVT-mRNA vaccines for
cancer and IVT-mRNA COVID-19 vaccines share the commonality of recruiting IVT-mRNA
technology to stimulate the immune system, but they have key differences, as shown in
Table 1.

Table 1. The differences between IVT-mRNA vaccines for cancer vs. IVT-mRNA COVID-19 vaccines.

mRNA COVID-19 Vaccines mRNA Vaccines for Cancer

Purpose To trigger an immune response against a virus. To stimulate the immune system to target and
destroy cancer cells.

Antigen target Spike protein of the SARS-CoV-2 virus.

Target tumor-specific/tumor-associated antigens
unique to cancer cells or overexpressed in cancer
antigens.
Would be patient-specific or common among
certain cancer types.

Immuneresponse
To generate neutralizing antibodies and activate the
immune system to recognize and attack the
SARS-CoV-2 virus.

To stimulate a robust T-cell-mediated immune
response to target and eliminate cancer cells.
Focus is on cytotoxic T cells.

Personalization Not personalized.
The same for everyone receiving the vaccine.

Could be designed to be personalized based on
the patient’s specific tumor antigens
(neoantigens), making them unique to each
patient.

Immunogenicity Spike protein is highly immunogenic vaccines
induce a strong and rapid immune response.

Tumor antigens might not be very immunogenic,
Additional strategies might be required to
enhance their immunogenicity.

Clinical development

Been developed in a remarkably short timeframe
due to the urgency of the COVID-19 pandemic.
Enrollment of thousands healthy individuals in
clinical trials.

Still in various stages of clinical development
and face a longer and more complex path to
approval,
Clinical trials with a limited patient pool.

Manufacturing and
distribution

Manufactured and distributed globally on a large
scale to address the pandemic,
They require distribution chains.

Manufacturing and distribution would be
patient-specific or limited to specific cancer types,
A different logistical challenge.

Clinical outcome Significant efficacy in preventing COVID-19
infection and severe disease in large clinical trials.

Efficacy and clinical outcome vary by the type of
cancer, patient-specific factors, and the stage of
development.

TAAs and TSAs are the two main categories of tumor antigens. TAAs can be further
subdivided into overexpressed antigens, cancer testis antigens, differentiation antigens,
oncoviral antigens, and oncofetal antigens based on expression levels and tissue expression
features. TAAs are commonly the target of cancer vaccines because they are overexpressed
in cancer cells and may be common targets among individuals with the same malignancy.
TAAs have been shown to be present in normal tissues as well, and vaccinations against
them may cause central and peripheral tolerance reactions, resulting in poor vaccination
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efficacy or autoimmune disease against healthy tissues. Additionally, their poor distribution
in vivo is a crucial factor in the failure of earlier cancer vaccines [76]. Finally, a major
challenge is the suppressive tumor microenvironment, which also impedes T-cell infiltration
into tumors and resulting in T-cell exhaustion. Therefore, it may be necessary to provide
therapeutic vaccines with immune checkpoint inhibitors, as has been suggested for BNT111,
a cancer vaccine combining four melanoma-associated antigens and a checkpoint inhibitor
(NCT02410733) [77].

TSAs can be divided into two categories: those derived from abnormal regulation of
gene expression and those derived from genetic mutations. Neoantigens, also known as
TSAs or neoepitopes, are unique epitopes that are produced as a consequence of mutational
alterations in the protein sequence and are not subject to central tolerance mechanisms. As a
result, they may be used to develop personalized vaccines, coding for mutant neoantigens.

Advances in sequencing technology have not only sped up the collection of genomic
and transcriptional data from cancer patients, but also exposed the enormous variety of
disease-specific alterations in tumors. In fact, tumors from various patients share fewer
than 5% of mutations.

Therapeutic vaccines based on IVT-mRNAs have become a viable option for the
exploitation of the potential of the patient-specific genomic data due to their simple design
and scalable Good Manufacturing Practice (GMP) [78]. Particularly, IVT-mRNA stands
out from other vaccines, such as those based on proteins or peptides, viral vectors, or
DNA vaccines: IVT-mRNA has a strong safety profile, without the risk of infection or
insertional mutagenesis since the vehicle is non-infectious and does not integrate into the
host genome. IVT-mRNA is also only transiently available to transfected cells because of
its sensitive nature and the harmful RNases, although by optimizing the molecule chemical
composition and sequence, its lifespan may be adjusted as necessary [7].

Standard methods are used to develop IVT-mRNA cancer vaccines, which may be
utilized to swiftly target patient-specific neoantigens found by investigating the tumor
exome. The comprehensive identification and assessment of the neoantigens were only
possible using massive parallel sequencing, which recognizes all coding alterations in
malignancies. As tumor cells multiply, they develop mutations that give rise to distinct,
new, or changed peptide sequences. The neoantigens are HLA-bound peptides that es-
cape the central thymic tolerance, exhibit high immunogenicity because of their lack in
normal tissues, and attract T-cells. Personalized IVT-mRNA mutanome vaccines enable the
«mobilization of immunity» by setting the immune system up to target any subsequently
emerging cancer cells, while protecting healthy tissues [79].

Compared to protein- and DC-based vaccinations, mRNA is unique for a number
of reasons: (1) A complete protein containing MHCI and MHCII binding epitopes, or
several antigens encoded simultaneously by IVT-mRNA, might support the humoral and
cellular adaptive immune responses, resulting in heightened anti-tumor immunity; (2) IVT-
mRNA vaccines have minimized insertional mutagenesis potential, when compared to
DNA vaccinations, and are very degradable. The IVT-mRNA manufacturing process is
devoid of harmful viral components and cellular elements, making it less susceptible to
infection than protein- or cell-mediated vaccines. In current clinical trials, the majority
of IVT-mRNA vaccines have been shown to be well tolerated, with very few instances of
injection site responses; (3) The quick and scalable production of mRNA cancer vaccines is
another benefit [80].

The personalized tumor mutanome «signature» of each patient may be quickly and
affordably mapped, using high-throughput investigation of the genome and peptidome
via advanced computational techniques and specific algorithms. Cancer patients undergo
surgical resection of the tumor, followed by genomic or whole-exome sequencing and
comparison of tumor- and normal-cell DNA from specific patients. Furthermore, RNA se-
quencing is conducted to confirm the actual expression of the identified variants within the
tumor, and high throughput immunologic screening is used to find the specific mutations,
leading to immunogenic neoantigens. Following the sequencing, up to 15–20 predicted
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neoantigens are properly selected, based on the sequencing procedure and their affinity to
the patient’s HLA molecules, and they are subjected to computational prediction analysis.
A customized therapeutic IVT-mRNA vaccine is designed and produced specifically for
each patient and provided as a cGMP product. The mRNA vaccine is injected i.m. for four
cycles every two weeks. As a result, the patient may develop T-cell responses to several
neoantigen vaccines, exhibiting high levels of T-cell infiltration and targeting tumor cells
that express certain neoantigens [81]. Blood samples will be obtained every two weeks
(during the vaccination period) for circulating neoantigen-specific T-cells [82].

In this context, BioNTech (Mainz, Germany) has developed a number of clinical
neoantigen vaccine candidates. Repeated injection of BNT121 was evaluated in a Phase II
clinical trial for metastatic melanoma (NCT03815058), in combination with pembrolizumab,
with strong immune responses. Currently, BNT122 (RO7198457), containing up to 20 unique
patient neoepitopes, has an acceptable safety profile with mostly transient side effects [5].
BNT122 is also being evaluated in a Phase II for colorectal cancer (NCT04486378), pancreatic
cancer research (NCT04161755), while a study for non-small cell lung cancer (NCT04267237)
was withdrawn. Another personalized cancer vaccine by Moderna (Massachusetts, United
States) mRNA-4157, exploiting LNPs, has the potential to include up to 34 neoantigens
encoded on a single mRNA strand (also known as a neoantigen concatemer). Phase I
and II clinical studies are taking place to evaluate the safety, tolerability, and immuno-
genicity of mRNA-4157, in combination with pembrolizumab, in participants with unre-
sectable solid tumors (NCT03313778), and to assess its efficacy in participants with high-risk
melanoma (NCT03897881).

4. Exploration of Cancer Immunotherapy: From mAbs to Adoptive Cell Therapy

Cancer immunotherapy was originated by William B. Coley, an American bone sur-
geon and cancer researcher, now known as the Father of Immunotherapy, who in 1893
used preparations of the bacterium Streptococcus erysipelas to inoculate them in situ in
skin sarcomas, observing significant regression of tumors [83]. The fact that the immune
system imposes continuous control over tumor initiation and promotion through tumor
immune surveillance mechanisms was introduced in 1957 by M. Burnet [84]. One of these
involves the recognition of MHC-presented TAAs of malignant cells by CD8+T-cells [85,86].
However, cancer cells employ several ways to evade immune surveillance (such as T-cell
tolerance and exhaustion, direct inhibition, limitation of growth factors of immune cells,
and restriction of immunogenic antigens) and build their tumor microenvironment [87].

Modern cancer immunotherapy includes a wide umbrella of therapeutics aimed at
enhancing and/or altering the immune response of the organism to potentially treat cancer.
The types of cancer immunotherapy are: (a) the cancer vaccines (analyzed in Section 3);
(b) the Immune System Modulators; (c) the monoclonal antibodies (mAbs); (d) the Immune
Checkpoints Inhibitors; (e) the T-cell transfer therapy; and (f) the Oncolytic Viruses.

The Immune System Modulators are a class of compounds or proteins able to en-
hance the immune system’s ability. The cytokines used in the clinical practice of tumor
therapeutics are Interferon alfa (IFNα), Interleukin-2 (IL-2), and Granulocyte-Macrophage
Colony Stimulating Factor (GM-CSF), mainly acting as growth promoters of White Blood
Cells [88,89]. The administration of Bacillus Calmette-Guérin (BCG) microbial preparation
in advanced-stage bladder cancer patients yields encouraging results [90]. Moreover, mi-
cromolecular modulators of the immune system are already in clinical practice, such as
lenalidomide, pomalidomide, and others.

On the other hand, modern neoadjuvants are being exploited [87], such as the mAb-
agonists of CD40 (selicrelumab) that lead to T-cell enrichment in the tumor area of pan-
creatic adenocarcinoma [91]. More than 100 mAbs have been approached for medical
use until now, while those targeting cancer-specific antigens are a separate class of cancer
immunotherapy drugs [92]. It is generally accepted that these mAbs act via more than one
mechanism, involving the blocking of signals for proliferation, migration, and survival
signaling. However, in most cases of IgG antibodies, the Antibody-Dependent Cellular Cy-
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totoxicity (ADCC) and Complement-Dependent Cytotoxicity (CDC) are also involved [93].
Murine monoclonal antibodies were the first antibodies ever to be produced, and to reduce
the undesired immune responses, chimeric, humanized, and finally, human mAbs have
been constructed [94,95].

Anti-CD20 is the first monoclonal antibody approved by the FDA in 1997 for cancer
immunotherapy (rituximab) for non-Hodgkin’s lymphoma [96]. Rituximab (IDEC-C2B8)
is a chimeric monoclonal antibody produced in Chinese hamster ovary cells, containing
human IgG1 heavy chains and mouse antigen-recognizing variable regions. Rituximab has
direct anti-proliferative actions and promotes apoptosis in B lymphoma cells [97] via both
ADCC and CDC mechanisms [98]. It is administered in relapsed, low grade or follicular
non-Hodgkin’s lymphoma, alone or in combination with chemotherapy, with high response
rates (>46%). Among its side effects is peripheral B cell depletion. Two versions of rituximab
radio-conjugates were approved in early 2000: yttrium-90 Ibritumomab tiuxetan and
iodine-131 tositumomab for non-Hodgkin’s lymphoma [99]. The Epidermal Growth Factor
Receptor (EGFR) pathway is important in the body’s homeostasis [100]. It is over-activated
in many cancer types, attributed to gene amplification, over-expression of ligands, and
mutated pathway partners. Mutations in its extracellular region led to aberrant activation
and increased proliferation and invasion. EGF serum levels are proposed as a prognostic
marker for lymph node metastasis in head and neck cancer patients [101]. Inhibition by
mAb includes cell growth inhibition via upregulation of cycle inhibitors (p27) in human
prostate cancer cells [102,103]. Anti-EGFR mAbs have already been in clinical practice for
many years in different malignancies (cetuximab and panitumumab for colorectal cancer,
cetuximab for head and neck squamous cell carcinoma, and necitumumab for non-small
cell cancer). Human epidermal growth factor receptor 2 (HER2/EGFR2) is a frequently
overexpressed oncogene, mainly due to gene amplification, in both breast and ovarian
cancer [104]. HER2 already resides in the clinical classification of breast cancer cases, and it
is estimated that around 25% of these cases are HER2+ [105]. Transtuzumab was approved
in 1998 in order to inhibit the ligand binding to HER2, yielding satisfactory results in
both early and advanced metastatic breast cancer [106]. Pertuzumab, another anti-HER2
mAb, increases the overall survival of breast cancer patients from 40.8 to 50.6 months [107].
Tumor environment targeting mAbs, mainly anti-VEGF (Bevacizumab) and anti-VEGFR
(Ramucirumab and Tanibirumab) are already approved for many types of cancer (colorectal,
ovarian, renal, glioblastoma, and others) [108]. Major drawbacks are serious side-effects
(stroke, proteinuria, bleeding, etc.), as well as the cancer cells’ resistance, through up-
regulation of alternative angiogenic pathways. mAbs targeting alternative partners are
both in development and clinical use. The field of the development of highly potent mAbs
is emerging, and novel methodologies are being introduced. Among them are the bispecific
antibodies (bsAbs), containing two separate scFvs. The Bispecific T-Cell Engagers (BiTEs)
recognize a TAA in cancer cells and, in parallel, recruit T-cells in the tumor area to kill
the recognized cancer cells through perforins and granzymes [109]. The most common
BiTEs are designed to target CD3, such as Blinatumomab (CD3/CD19 BiTE), which is the
first BiTE approved for relapsed or refractory B-ALL. Its administration is characterized
by a 43% complete or partial remission and an increase in overall survival compared to
conventional chemotherapy. The AMG420 BiTE (CD3/BSMA) succeeded in a 70% response
rate in multiple melanoma patients (NCT02514239).

Immune checkpoint inhibitors aim to dismiss the burdens of the immune system and
enhance the anticancer response [110]. CTLA-4 (a Cytotoxic T Lymphocyte Antigen-4) is
expressed after activation of T-cells (mainly the CD4+ T-cells) to replace a CD28 (a T-cell
protein) in its interaction with the B7 family members on the surface of APCs, playing a critical
co-stimulatory role in inducing T-cell activation. The interaction of CTLA-4 with the B7 leads
to T-cell downregulation and functional inactivation. Furthermore, the PD1 (Programmed
Death 1) protein at the cell surface of T-cells interacts with the PDL-1 (Programmed Death
Ligand 1, belonging in the B7 family) on the surface of cancer cells, leading to T-cell exhaustion
and their death. These two immune «brakes» were discovered by two independent research
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groups in the 1990′s by T. Honzo (for PD1) [111] and J.P. Allison (for CTLA-4) [112], who were
awarded the Nobel prize in Physiology or Medicine in 2018. mAbs acting as PD-1 inhibitors
(as Nivolumab), PDL-1 inhibitors (as Atezolimumab), and CTLA-4 inhibitors (as Ipilimumab)
are routinely administered, and it is estimated that around 20–40% of cancer patients benefit
from this administration. Molecular tests are proposed to be introduced, while studies
with combinations of these antibodies and chemotherapeutics are already under way. Co-
administration of anti-PD1 and anti-CTLA-4 mAbs to enhance effectiveness, has already
been approved for metastatic melanoma, advanced renal carcinoma and metastatic colorectal
cancer [113]. In addition, it is highly rationale to use a combination of chemotherapeutics
and immune checkpoint inhibitors in order to increase the anti-tumor immune response
since neoantigens are released due to tumor destruction. In 2017, the FDA approved the
co-administration of pembrolizumab (anti-PD1 mAb) with pemetrexed and carboplatin [114].

T-cell transfer therapy, or adoptive cell therapy, is a highly promiscuous therapeutic
approach based mainly on patients’ extracted T-cells, ex vivo selected, activated, and/or
transduced, followed by proliferation and re-infusion back to the patient. There are two
different approaches to T-cell transfer therapy: either exploiting the tumor infiltrating
lymphocytes (TILs) or the adoptive T-cell Therapy (ACT) via the lentivirus transduced
target specific TCR [115], as well as the Chimeric Antigen Receptor (CAR) T-cell ther-
apy [116]. The latter is the topic of interest in the following sections. TILs (highly desirable
are the CD8+), after their extraction from the patient’s tumor, are selected based on their
ability to recognize the TAAs on the cancer cell surface being presented via the MHC
class molecules [117]. The selected TILs are expanded in the lab and re-introduced into the
patient, along with high quantities of IL-2 for their activation. In 1986, the co-administration
of TILs with chemotherapeutics in mice was able to diminish metastatic tumors in organs
such as the liver and lungs [118]. After that, the same group of Rosenberg et al. applied
this protocol to 20 patients with metastatic melanoma and found that the administered
TILs were able to halt tumor growth for 60% of them for up to two years [119]. Similar
encouraging results have been obtained in other studies in melanoma [120], but also, via
the proper selection of TILs, specific to TAAs, in cholangiocarcinoma [121], cervical cancer
(for human papilloma virus-TILs) [122], ovarian cancer [123] and lung cancer [124]. The
first TIL product is the Lifileucel (LN-144), intended for use in metastatic or unresectable
melanoma and designated for duration in response for more than 2 years.

Finally, Oncolytic Viruses (OVs) are an alternative approach, gaining worldwide inter-
est in cancer immunotherapy. The idea behind this is to guide the virus via its intratumoral
injection to destroy part of the tumor and then induce the inflammatory response in the
area of the tumor via molecular recognition pattern release. This approach offers the
advantage of targeted guidance of the virus and avoids the side effects of systemic admin-
istration. Talimogene Laherparepvec (T-VEC), a modified Herpes Simplex Virus (HSV) to
express human GC-CSF, has been approved for certain types of melanoma (unresectable,
metastatic) [125,126]. OVs armed into their genome with the scFv for a particular TAA is
being tested as in the case of the recombinant HSV type 1, armed with the scFv against PD-1,
in order for the OV to be guided in the tumor immunosuppressive microenvironment [127].
Increases in effector and memory CD8+ T lymphocytes were recorded in the tumor area of
xenograft tumor mouse models.

5. Chimeric Antigen Receptor (CAR) T-Cells: Clinical Applications and Ongoing
Trials in Cancer Immunotherapy
5.1. Clinical Implementation of CAR T-Cell Therapy

CAR T-cell therapies revolutionized the therapeutic options for patients suffering
from hematological malignancies [128]. Ten years were celebrated in 2022, after the first
clinical studies were conducted with CAR T-cells on leukemia patients [129]. The general
concept behind this innovative therapy is the acquisition of autologous T-cells, through
leukapheresis, to be virus-induced genetically modified to express the desired CAR receptor,
and then to be expanded ex vivo. Until now, six (6) therapies have been approved by the
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FDA and EMA, targeting two TAAs, either CD19 or B-cell Maturation Antigen (BCMA),
with the indication to treat hematological cancers. These therapies will be summarized
thereafter. Patients receive the genetically modified CAR T-cells after lymphodepleting
treatments (with cyclophosphamide and fludarabine) to increase the lifespan of the infused
modified T-cells. Patients are hospitalized for several days thereafter to be monitored for
emergent side effects.

CAR is a hybrid, artificial receptor that extracellularly has the scFv of a mAb, selected
to recognize the desired TAA. In this way, a CAR receptor acts independently of MHC I or
II antigen presentation, recognizing both processed and unprocessed epitopes, in contrast
to the regular T-cell receptors (TCRs) [130]. Moreover, intracellular sequences, like the
most common one, CD3ζ, and the co-stimulatory domains, CD28 or 4-1BB, guarantee the
expansion and activation of T-cells. The transmembrane sequence (mostly the hinge region
of IgG1) [131] secures the membranous localization of CAR. Upon cancer cell recognition,
CAR T-cells act via multiple cytotoxic mechanisms, involving the release of perforins and
granzymes, Fas ligand signaling, and secretion of inflammatory cytokines, such as the
Tumor Necrosis Factor α (TNFα) and Interferon γ (IFNγ) [132].

CAR T therapy was developed in the late 1980’s by pioneering studies that deciphered
the minimum sequences for constructing a CAR receptor, able to recognize the target
epitope via antibody-targeted specificity and through its intracellular regions to elicit T-
cell activation [130,133,134]. CD3ζ was determined as an independent signal to couple
the necessary intracellular signal for T-cell activation [135,136]. Thereafter, significant
output from ACT targeting cancer cells was gained by Carl June at the Perelman School
of Medicine at the University of Pennsylvania. The production process was then estab-
lished [137], and highly encouraging results were gained in pre-clinical studies with CAR T
immunotherapy. Academia and industry (Novartis) began in 2012 the clinical studies with
Tisagenlecleucel (CTL019), containing the scFv specific for CD19, along with CD3ζ and
4-1BB sequences [138]. Treatment of 79 children with refractory to rest anticancer therapies
and/or relapsed B-ALL with Tisagenlecleucel led to an 82% overall response rate (ORR)
(complete response or response with incomplete hematologic recovery) (NCT02435849,
ELIANA study), with 49% of the responders having at least five years’ relapse-free survival
(RFS). In another parallel study, Tisagenlecleucel was administered to adults’ patients with
diffuse large B-cell lymphoma (NCT02445248, JULIET) with 53% ORR and progression
free survival at 2.9 months. The aforementioned clinical studies along with many more
conducted, led Tisagenlecleucel (Kymriah®) to be the first CAR T therapy approved in 2017
for pediatric and young patients with refractory and/or relapsed (r/r) B-ALL, diffuse large
B cell lymphoma, and follicular lymphoma [138]. It is estimated that Kymriah® has been
administered to at least 7000 patients worldwide until now, and real-world data have been
collected all over, confirming the clinical studies’ data [139,140]. Even more interestingly,
a CAR-modified CD4+ T-cell clone was detected in patients’ blood 10 years after their
initial treatment with CTL019, living a relapse-free life [141]. In a recent review, CAR T-cell
therapy is called a living drug that has come to reform modern therapeutics beyond even
anticancer strategies [142].

Axicabtageneciloleucel (Yescarta®) (Kite Pharma Inc., Los Angeles, California, United
States) was approved in the EU (2018) and by the FDA (2022) for use in patients with r/r
B cell lymphomas [143]. The CAR construct again the scFv for CD19, consisting of the
CD3ζ activation domain and a CD28 costimulatory domain, transduced by retrovirus to
patients’ T-cells [144]. ZUMA-1 (NCT02348216) is the first large-cohort study with axicab-
tageneciloleucel, including 111 patients with refractory large B lymphoma. The patients
received a target dose of 2× 106 CAR T-cells/kg, resulting in a 40% complete response [145].
Brexucabtageneautoleucel (Tecartus®) (Kite Pharma Inc., Los Angeles, California, United
States) employs the same manufacturer as Yescarta® and similar construction details. In
this product, in the manufacturing process, the removal of malignant cells from the isolated
T-cells has been introduced in order to decrease the ex vivo exhaustion of CAR-engineered
T-cells [146]. Tecartus® was approved in 2019 and received a conditional authorization,
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waiting until 2025 for safety data. It refers to adults’ patients with recurrent cancer after
2–3 therapies, suffering from either mantle cell lymphoma (a subtype of non-Hodgkins’s
lymphoma) or B-ALL. KTE-X19 or Brexucabtageneautoleucel performed a 56% complete
response (NCT02614066, ZUMA-3), and long-term safety-associated data are waiting for
authorization [147]. Idecabtagenevicleucel (Abecma®) (Bristol Myers Squibb, Tokyo, Japan)
gained conditional authorization valid through August 2021. This product contains pa-
tients’ own lymphocytes engineered with a CAR receptor construct, employing the scFv
for BCMA along with CD3ζ and 4-1BB costimulatory signals. BCMA is a promising TAA,
already a marker for the identification of multiple myeloma cancer cells, since BCMA is
present only in normal plasma cells [148–150]. The Idecabtagenevicleucel patients’ group
concerns those with r/r multiple myeloma and is associated with 69% ORR, but it provokes
severe cytokine release syndrome (at 94%), concluding by the authors that optimization
in CAR T technologies is needed [151]. Ciltacabtageneautoleucel (Carvykti™) (Janssen
Biotech, Inc., Titusville, New Jersey, United States) targets adults’ patients with r/r multiple
myeloma who have followed three (3) previous treatments and failed (co-treatment with
either an immunomodulatory agent, proteasome inhibitor, or anti-CD38 mAb). It is a
unique product based on the generation of a CAR receptor with two (2) scFvs, targeting
two different epitopes for BCMA (plus CD3ζ along with 4-1BB), thus performing with
greater avidity. There is data about a superior performance to Abecma®, but further studies
are needed (CARTITUDE-1, NCT03548207). Finally, lisocabtagenemaraleucel (Breyanzi®)
(Bristol-Myers Squibb, Tokyo, Japan was authorized in 2022 to treat patients with r/r B cell
lymphomas. This product offers the advantage of separating the CD4+ and CD8+ T-cells
prior to their transduction with CAR (anti-CD19 CAR, CD3ζ, 4-1BB) [152]. The modified
T-cells are administered separately (at a 1:1 ratio) to patients offering synergistic results,
as proved in NOD/SCID/γc−/− (NSG) mice [153]. Breyanzi® achieved 53% complete
response rates in patients [154].

CAR T technology has come to stay in modern therapeutics, and as such, any pitfalls
related to side effects, medical feasibility issues, manufacturing, and cost have all to be
assessed. Concerning the side effects of CAR T therapy, the most severe is Cytokine Release
Syndrome (CRS), caused by the aberrant production of inflammatory molecules [marked
by interleukin-6 (IL-6)] and observed in the first days of drug administration. As CRS can
turn into a life-threatening condition, every hospital that administers a CAR T product has to
be equipped with tocilizumab (an IL-6 receptor antagonist). Mice models partially failed to
recapitulate this particular side effect, and medical and scientific communities should face this
fact [155]. Among other side effects are allergic reactions, neurological problems, neutropenias
associated with susceptibility to infections, and hypogammaglobinemia [138,156]. Although
the risk of CAR T therapy-induced oncogenesis is low, it still exists, and the patients receiving
this therapy are evaluated on a long-term basis [138]. In addition, CAR T therapy implements
a risk for cardiovascular complications [157]. CAR T therapies are provided in certified
hospitals and centers throughout the world, employing personnel trained in CRS syndrome
and able to fulfill the CAR T Risk Evaluation and Mitigation Strategy (REMS) management
plan. There are step-by-step approaches for the assessment and management of toxicities,
including the different grades (1-4) of the CRS [158].

5.2. Next-Generation and Alternative TAA-Targeting CAR T Therapies in Clinical Studies

As a result, researchers focus their attention on several directions: the enhancement
of the efficacy of CAR T therapies, the reduction of off-target consequences and T-cell
exhaustion, as well as overriding the antigen escape. There is a gradient of co-stimulatory
signals added to CAR receptors in order to potentially increase the antitumor responses:
1st generation CAR harbors only the CD3ζ co-stimulatory signal, while the 2nd genera-
tion ones, like those of the six (6) CAR T products already approved by the regulatory
mechanisms, employ a supplementary co-stimulatory signal (CD28 or 4-1BB). The 3rd
generation of CAR takes advantage of the simultaneous presence of multiple co-stimulatory
signals (CD28, 4-1BB, CD27, OX40, and others) [159]. There are more than 1100 clinical
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studies [registered on the respective database of the National Institute of Health (NIH),
https://clinicaltrials.gov/], assessed on 15 October 2023, under the term “CAR T-cells”. Dif-
ferent strategies of CAR T constructs are employed in several types of cancer; around 100 of
them have been recorded as completed, and indicative studies will be presented thereafter.

T-cells of the 3rd generation of CAR for CD19 reached higher and more persistent lev-
els in the plasma of non-Hodgkin’s lymphoma compared to the respective 2nd generation
of CAR [160]. These classes of constructs undoubtedly need further research, specifically in
larger cohorts of patients. Furthermore, there are a variety of next- generation CAR thera-
pies, among them CAR T-cells redirected for universal cytokine-mediated killing (TRUCKs).
In this approach, engineered CAR T-cells co-express cytokines (IL-7 and IL-18 supporting T-
cell survival, and CCL19 acting as a chemo-attractant for mainly DCs) [129] (clinical results
can be found at Table 2). The production of universal CAR T-cells via genetic engineering
processes renders CAR T-cells capable of allogeneic use, which is undeniably a hallmark of
the progress of this technology. Both CRISPR/Cas9 and transcription activator-like effector
nuclease (TALEN) technology have already been employed to eliminate TCR and MHC in
a first pilot study (NCT03399448). The feasibility of allogeneic administration in universal
CAR T-cells was proven in the anti-NY-ESO-1 construct in B-ALL patients [161]. Another
approach, designed to potentially halt the adverse side effects of CAR T therapy is the con-
struction of switch adaptors (switchable CAR T-cells), employing drugs (like lenalidomide)
as an on-switch of CAR activation [162], or UV exposure as an off-switch [163]. A construct
of CAR, composed of an inducible form of caspase-9 by rimiducid, permits the induction
of apoptosis of CAR T-cells, thus alleviating the CAR T-cells-induced side effects, e.g., the
neurological syndrome [164]. Biphasic CAR (TanCAR) recognizes two different antigens,
aiming to override antigen loss, frequently seen in highly proliferated cancer cells. TanCAR
is designed in such a way that distinct activation of CAR T-cells occurs when one antigen
of the pair exists, while a synergistic boost takes place when both of them are located in the
tumor [165].

The success achieved by CAR T therapy in hematological malignancies is still waiting
to be recapitulated in solid tumors [166]. Various parameters contribute to solid tumors’
resistance to CAR T therapy, and among them are: (a) the physical parameters, as solid
tumors are frequently surrounded by scars of collagen; (b) the solid tumors’ heterogeneous
population, thus expressing different antigens rendering difficult the identification of TAAs;
(c) the impairment in homing of CAR T-cells in the anatomical spaces of solid tumors; as
well as (d) the immunosuppressive tumor microenvironment. Some of the most frequent
TAAs in CAR T therapy are mesothelin, Glypican-3 (GPC3), mucin-1 (MUC1), HER2, and
EGFR, which are highly expressed in solid tumors [166]. The first such clinical trial was for
patients with hepatocellular carcinoma with CAR T-cells targeting GPC3 [167]. In Table 2,
indicative studies can be found for glioblastoma (where engraftment of CAR T clones in
blood has been recorded for up to 29 months) as well as breast cancer. The results of the
clinical studies of the next generation of CAR T therapies in solid tumors are anticipated to
shed more light on the success stories in cancer therapeutics.

Table 2. Indicative clinical studies of the different next generation CAR T therapies.

Code of CAR T
Therapy Construct Malignancy Transduction

Method Clinical Study-Result

Hematological Malignancies

NCT01853631 [160] CD19-CD3ζ-CD28-4-1BB (3rd
generation)

non-Hodgkin’s
lymphoma retrovirus Higher expansion and persistence of

the 3rd generation CAR

NCT04381741 [168] CD19-CD8-
4-1BB-CD3ζ-IL-7-CCL19 (TRUCK)

Large B cell
lymphoma lentivirus ORR: 5/7 patients

NCT04557436 [169] CD19 (Universal) Pediatric, refractory B-
ALL lentivirus

Expansion of engineered CAR
T-cells, but with serious side effects

(Phase I)

https://clinicaltrials.gov/
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Table 2. Cont.

Code of CAR T
Therapy Construct Malignancy Transduction

Method Clinical Study-Result

NCT03016377 [164] CD19-CD3ζ-4-1BB, Inducible
caspase 9 (switchable) Adult B-ALL virus-induced

Improvement in CAR T
therapy-induced side effects (Phase

I)

NCT03233854 [170]
CD19vH-CD22vL-hinge-

CD22vH-CD19vL-4-1BB-CD3ζ
(Biphasic)

Adults B-ALL, Large
B cell lymphoma lentivirus 100% response with 88% CR (B-ALL)

(Phase I)

Solid Tumors

NCT03980288 [167] GPC3-4-1BB-CD3ζ-Runt-related
transcription factor 3 (RUNX3)

Hepatocellular
carcinoma lentivirus Safety evaluation-Phase I

NCT02209376 [171] EGFRvIII Glioblastoma lentivirus Case report-prolongation in life
expectancy in

NCT03740256 HER2 CAR T therapy and
oncolytic virus Breast Cancer lentivirus Recruiting

NCT05681650 HypoSti.CAR-HER2 T-cell therapy
(Switchable)

Breast and other
HER2+ Cancers retrovirus Not yet recruiting

6. Exploring the Synergy of CAR T-Cells and mRNA in Cancer Immunotherapy

As previously mentioned, most of the IVT-mRNA-based adoptive T-cell treatment has
focused on producing CAR T-cells. CAR T-cell therapy generally entails the permanent
genetic alteration of T-cells using viral vectors, such as retroviruses or lentiviruses, to
introduce the CAR construct into the cells. In 1999, Clay et al. presented the first report on
the successful transfer of a TCR into T-cells using a retroviral vector [172].

Several years later, in 2017, virally transduced CAR T-cells directed against CD19
were licensed by the FDA for the treatment of relapsed and refractory acute lymphoblastic
leukemia and large B-cell lymphoma. While effective, concerns about off-target, on-target
side effects, insertional mutagenesis, and issues managing CAR T-cell persistence in the
body have inspired research on safer alternatives, with IVT-mRNA showing promising re-
sults and currently leading to numerous active clinical trials [173]. Furthermore, the capsid
diameter of viral vectors (roughly 100 nm) limits their capacity to transduce lengthy gene
cassettes, reducing transgene length up to 8–9 kb [174]. Additionally, the procedure of viral
CAR T-cell engineering is carried out in GMP facilities, under biosafety level 2, takes time
(2–3 weeks), requires skilled staff resources, hampering complexity in manufacturing, high
costs, scarcity of manufacturing facilities around the world, and lot size restrictions [175].
Thus, genetic engineering technologies will need to face the above challenges and com-
plexity while improving efficiency, safety, pricing and availability, cargo restrictions, and
flexibility in the future.

In 2006, Zhao et al. [176], and Schaft et al. [177], were the first to describe the exploita-
tion of IVT-mRNA to develop the approach of cancer T-cell receptor (TCR) immunotherapy,
mainly using electroporation of primary T-cells, isolated from blood, with TCR targeting the
gp100, resulting in functional CTLs against gp100+ melanoma cells. Additionally, from 2001
to 2005, it was shown that when IVT-mRNA was electroporated instead of DNA plasmids,
DCs, and macrophages, CD40-activated B-cells and T-cells survivability increased (>80%
viability) as well as transgenic expression efficiency (>90% efficiency) [176,178–181]. Those
reports included the electroporation of TCRs against NY-ESO-1, MART-1, and p53 [173].
Pioneering immunotherapy research groups began to investigate an alternative strategy in
2009, employing IVT-mRNA to express CARs transiently in T-cells, ensuring high-quality
and regulated generation of CAR-encoding mRNA against ErbB2, Her2/neu and carci-
noembryonic antigen (CEA) [182,183]. In fact, IVT-mRNA-based CAR immunotherapy is a
novel and quickly developing area of cancer therapy [184,185].

Recently, Reinhard et al. developed a strategy using the IVT-mRNA to direct CAR cells
against the developmentally regulated tight junction protein claudin 6 (CLDN6) for treating
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CLDN6+ lung tumor without CRS that was effective at enhancing CAR-T cell persistence
and in vivo proliferation [186]. Despite challenges such as the high tumor heterogeneity
and the persistence of T-cell immune responses, the ongoing clinical trial (EudraCT No.
2019-004323-20) holds great promise for the future of CAR-T cell immunotherapy in head
and neck cancer treatment.

Mesothelin is a highly selected target for CAR IVT-mRNA engineered cells, trans-
lated into the clinical phase [173]. In fact, all the completed clinical trials involving IVT-
mRNA CAR cells were developed against mesothelin for malignant pleural mesothe-
lioma (NCT01355965), metastatic pancreatic ductal adenocarcinoma (NCT01897415) and
metastatic triple-negative breast cancer (NCT01837602). Ongoing/unknown status clinical
trials explore the potential of the clinical translation of autologous T-cell IVT-mRNA en-
gineered to express CARs against relapsed or refractory CD19+ leukemia and lymphoma
(NCT03166878) and CD20+ B-cell malignancies (NCT02315118). Although no clinical
updates have been given, a few additional clinical trials are still being conducted with
individuals who have colorectal and breast cancer [187].

A recurrent requirement was the need for repeated dosing with 3–6 large doses, even
though the studies reported that the adoptive IVT-mRNA CAR therapies were safe and
typically free of major adverse events. In order to increase the duration of the in vivo
activity in these individuals, numerous high-dose infusions of IVT-mRNA CAR T-cells
are required, although repetitive dosing may result in severe side effects (e.g., severe
anaphylactic shock [188]), due to the absence of genetically modified cell persistence [175].

IVT-mRNA CAR therapy shows a promising and safer therapeutic ability in hemato-
logic and solid malignancies, according to a sizable amount of preclinical research [187].
However, additional preclinical and clinical research is needed to examine the efficiency
in vivo and the intracellular delivery of the CAR IVT-mRNA, the cytotoxic and tumor-
reducing efficacies of novel IVT-mRNA-engineered CAR cells against novel tumor antigens,
inducing an effective antitumor response. Future research is necessary to overcome the
IVT-mRNA’s lack of long-term activity and effectiveness. There is also a need for additional
clinical trials to examine the therapeutic effectiveness of this alternative strategy.

7. Recruitment of Our Novel, Patented Delivery Method of IVT-mRNAs via PTD
Technology to Transduce CAR into NK-92 Cells

Current research on adoptive immunotherapy aims to potentiate efficacy, decrease the
cost, and minimize severe side-effects, particularly those associated with CAR T therapy.
Thus, the use of Natural Killer (NK) cells seems to be an attractive alternative to be exploited.
CAR T-cells and CAR NK cells are both promising immunotherapies, but they differ in
their cell origin, target antigens, antigen recognition and specificity, potential for GvHD,
persistence, CRS generation, and manufacturing complexity. Table 3 summarizes the key
differences between CAR T-cells and CAR NK cells. NK cells were discovered in 1975 by
two independent research studies based on the NK cells ability to recognize and exert their
cytolytic action on malignant, transformed cells [189,190]. NK cells are a major part of
both innate and adaptive immunity, protecting against pathogens (mainly viruses, but also
bacteria and fungi) through target recognition receptors [191]. Their killing mechanisms are
mainly based on the granule exocytosis pathway, including perforins and granzymes that
induce apoptotic cell death in target cells [192]. In addition, NK cells are indeed a major
part of the immunosurveillance of cancer, as has been shown by numerous chemically
induced tumors in mice, reviewed in a study by Markus et al. [193]. As a result, adoptive
immunotherapy for equipping NK cells has gained worldwide interest [194]. To achieve
an NK-dependent adoptive therapeutic approach, high quantities of NK cells are needed;
however, they represent only a subpopulation of lymphocytes, thus restricting the ability for
their acquisition from patients’ peripheral blood. Different sources of NK are being tested,
such as umbilical cord, induced pluripotent stem cells (iPSCs), and stable cell lines [195].
NK-92 cells, the most commonly used NK cell line, derived from a non-Hodgkin lymphoma
patient, are mainly characterized by a lack of allogeneic response [196,197]. NK-92 cells, as
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analyzed below, have already been administered to cancer patients, and must be irradiated
before use in humans to inhibit their proliferation while at the same time maintaining their
cytotoxic capability. Moreover, NK-92 cells are considered not to provoke GvHD, a major
concern in CAR T therapy [198].

Table 3. Key differences between CAR T-cells and CAR NK cells, as cell-based immunotherapies.

CAR T-Cells CAR NK-Cells

Cell Origin

- Usually derived from the patient’s own T-cells
(autologous)
- Universal T-cells via genetic engineering (in
clinical trials)

- Derived from various sources, including patient,
healthy donors, induced pluripotent stem cells
(iPSCs), and cell lines
- They are often allogeneic, making them an
off-the-shelf treatment option

Target antigens

- Specific antigens expressed on the surface of
cancer cells
- Target antigen is predetermined
- Usually, a protein associated with the cancer
(TAAs/TSAs)

- NK cells have the inherent ability to recognize a
broad spectrum of antigens on target cells
- This makes them potentially suitable for a wider
range of cancer types and other diseases

Specificity
- Highly specific to the chosen target antigen
- They may not have the same natural ability to
recognize and kill cancer cells as NK cells

- They combine the specificity of CARs with the
natural cytotoxicity of NK cells, allowing them to
target and kill cancer cells both specifically and
through their innate mechanisms

Graft-vs-Host Disease
(GvHD)

- Risk of GvHD when using allogeneic CAR T-cells,
as they are derived from a donor and can
recognize normal host tissues as foreign

-Less likely to cause GvHD due to their natural
ability to distinguish between healthy and
abnormal cells

Manufacturing
Complexity

- Manufacturing could be complex and
time-consuming, often requiring genetic
modification, expansion, as well as selection of
T-cells, cryopreservation, and transport facilities

- Manufacturing is generally simpler and faster,
making them more accessible for patients

Cytokine Release
Syndrome (CRS)

- CAR T-cell therapy is associated with a higher
risk of CRS, a potentially severe immune reaction
-Specialized personnel in hospital is needed to
counteract the CRS

- CAR NK cells have a significant lower risk of
causing CRS, which is a major advantage in terms
of safety

Persistence - CAR T-cells tend to persist in the body

- CAR NK cells may exhibit exhaustion
- Trials to enhance their persistence via 3rd
generation CAR NK cells and adjustment of their
bioenergetics needs

The first clinical trial with NK-92 cells in patients with either advanced renal carcinoma
or melanoma concluded that their administration was well-tolerated, with mild side effects
like fever, and there was a participant remaining alive 4 years later [199]. Moreover, it is
highly important to mention that lymphodepleting chemotherapy, as in the case of CAR
T-cell therapy, is not needed in NK-92 cells’ administration. Complementary, the infusion
of a high number of cells (108–1010/m2) to patients with both solid tumors and leukemia
gave encouraging results, especially with the patients suffering from lung cancer [200]. The
scale-up of production of NK-92 cells in bioreactors along with standardized manufacturing
procedures helped a lot in the creation of «off-the-shelf» products. To increase their cytolytic
performance, genetically engineered NK-92 cells to express Fc receptors (haNKR) have
been constructed. These modified NK-92 cells are planned to be administered along with
mAbs to enhance ADCC, as has already been done in the case of the anti-PDL-1 mAb [201].

Numerous preclinical studies highlight the success of CAR NK-92 or else targeted
NK-92 (taNK) cells for treatment of hematological and solid tumors [202].CAR NK-92 cells
targeted HER2 through lentivirus-mediated transduction, successfully restricting advanced
neuroblastoma cells’ growth after their injection into the brains of mice [203]. The first
clinical trial with lentivirus-transduced CAR NK-92 cells (anti-CD33, 3rd generation CAR)
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was conducted in 2018 with r/r AML patients [204]. This treatment caused mild side effects,
and a complete hematological recovery, but it did not last. The short-term action of these
engineered CAR NK-92 cells has been proposed by the authors as a cause of the irradiation,
and the insertion of suicide genes should be exploited as an alternative to keep the func-
tionality of NK-92 cells in vivo for as long as needed. Intracranial injection of anti-HER2
CAR NK-92 cells has been conducted recently in nine (9) patients with glioblastoma after
their surgery, leading to disease stabilization in 55% of them (NCT03383978) [205]. Efforts
have been made to enhance the durability and persistence of CAR NK-92 cells in tumor
sites [194] via reprogramming the immune metabolism to halt functional exhaustion [202].
Currently, several clinical trials are underway by ImmunityBio Inc. (California, United
States), the original proprietor of NK-92 cells and their variants, using non-viral methods
of transfection, mainly electroporation, to transduce plasmids or IVT-mRNAs. In fact, the
highly transducing property of NK-92 cells, in contrast to peripheral blood-derived NK
cells, is another advantage offered by this cell line. Electroporation is correlated with high
rates of cell death and a decrease in the functionality of the cells, while recently an efficient
electroporation-based transduction protocol of plasmids for NK-92 cells has been presented
by the group of L. Moretta [206]. The IVT-mRNA platform has the crucial advantage of
facilitating adjustment to particular TAAs, among many other benefits, as analyzed in
Section 6. Anti-CD19 CAR NK-92 cells were efficiently constructed via electroporation of
the respective IVT-mRNA, targeting CLL cells, in culture [207].

In our recent work published in 2022, a novel technology has been presented based on
PTDs for the transduction of the IVT-mRNAs for anti-ErbB CAR in NK-92 cells [50]. PTDs
or CPPs are small-length peptides (usually less than 30 amino acids), with the prototype
TAT basic domain (as PTD) derived from HIV-1, able to transverse cellular membranes and
at the same time transfer many cargos [208]. PTDs have been exploited, via electrostatic
self-assembly and no covalent conjugation, or fusion, as transporters inside cells of pro-
teins, plasmids, siRNAs and IVT-mRNAs [27]. Over time, protein replacement therapy for
monogenic/metabolic diseases [such as thalassemia and SCO2 (for synthesis of cytochrome
C oxidase) deficiency] has been successfully conducted by our research group [209–212]. In
our patented chemical reaction(Greek patent, No: 1010063, titled «Method for the develop-
ment of a delivery platform to produce deliverable PTD-IVT-mRNA therapeutics», with the
International publication number: WO2021/094792 A1/20.05.2021, PCT/GR2020/000059),
a peptide bond is being exploited to covalently bind the selected PTD (PFVYLI) to the
IVT-mRNA of SCO2 or β-globin for its intracellular delivery, leading to functional replace-
ment of the respective proteins, in both SCO2-deficient, primary cells and bone marrow
cells from β-thalassemic patients [49]. This novel transduction technology was employed
again to transduce the IVT-mRNAs for two different, 2nd generation constructs of CAR
(either with CD28 or 4-1BB as co-stimulatory sequences). It was found that the reaction of
conjugation led to increased stabilization of the IVT-mRNAs and their significant protection
from the action of RNases. The intracellular accumulation of the PTD-IVT-mRNAs of 2nd
generation CARs rapidly accumulated within cells and reached their peak intracellular
levels 24 h after transfection, suggesting their stability. Subsequently, their intracellular
accumulation began to decline, but they remained detectable even at 120 h after transfection.
The anti-ErbB-CAR-CD3ζ-(CD28 or 4-1BB) chimeric receptors were thus expressed at the
expected molecular mass and possessed the correct membranous localization. At the same
time, no negative impact on NK-92 cells’ morphology, growth, or viability was recorded to
be caused by this transfection scheme. In our experiments, 2,3-butanediol was also used to
enhance the cytotoxic potential of NK-92 cells by increasing perforin’s expression [213]. In
the co-incubation experiments of the CAR-engineered NK-92 cells with two separate ErbB+
cancer cell lines, the human tongue squamous cell carcinoma (HSC-3), known to express
ErbB receptors at quite high levels [214] and the breast adenocarcinoma MCF7 cell line,
both constructs of the engineered 2nd generation CAR-NK-92 cells provoked cell death of
target cells at high levels (at around 25%), in comparable ratios to lipofectamine-induced
transduction of the corresponding IVT-mRNA of CAR (control of transfection). In fact, at
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the lower 5:1 (Effector: Target cells) ratio, a higher degree of cytotoxicity was assessed for
the anti-ErbB-CAR-CD3ζ-4-1BB as compared to the respective chimeric receptor bearing
the CD28 co-stimulatory domain sequence [50]. Moreover, MCF7 cells expressed only 25%
of the ErbB2 protein levels compared to the HSC-3 cells. A possible explanation for this
is that the TIE scFv (PanErbB) used in our constructs could also be tight to other ErbB
receptors, such as homo- and heterodimers of ErbB1, ErbB2, and ErbB3 receptors, found in
breast cancer cells [215].

8. Enhancing CAR NK Cell Potency: A Spotlight on Bioenergetics

A vital source of energy for living organisms is adenosine triphosphate (ATP), which
is produced through the two major metabolic pathways, glycolysis and mitochondrial
oxidative phosphorylation (OXPHOS). Cancer cells often use glycolysis to make ATP, even
in the presence of oxygen, with the rate at which glucose is absorbed and preferentially
producing lactate, via the well-known Warburg Effect [216]. Recent research, however, indi-
cates that cancer cells’ ATP generation could switch to OXPHOS, if glycolysis is inhibited,
thus improving mitochondrial function. It is anticipated that comprehending these events
would lead to clarification of the mechanism of action of anticancer approaches and result
in the development of effective therapeutics for cancer as well as neurological diseases and
other disorders [217,218].

The influence of immune cell metabolism and bioenergetics (immunometabolism)
on CAR cell cytotoxic capacity is a novel and emerging field in terms of improving the
therapeutic outcome by regulating immunometabolism. In fact, it is well known that the
cellular metabolism of immune cells substantially influences the immune response [219].

In macrophages, glycolysis has been associated with the conversion from the M2
(immune-suppressive) to the M1 (pro-inflammatory) phenotype. Also, in CAR T-cells, the
presence of the co-stimulatory domains 4-1BB and CD28 was found to affect both their
activation for tumor reduction and their survival for tumor elimination. These effects
were attributed to changes in their metabolism [220]. The integration of signals through
cytokine and germline-encoded activating and inhibitory receptors is necessary for NK cell
activation in the context of tumors and viral infection, as are potential strategies used for
«arming» NK cells for these environments, such as IL-15 priming. For NK effector functions
like proliferation, killing, and the generation of interferon gamma (IFN-γ), metabolic fuels
and pathways must be available [221].

Kawalekar et al. discovered notable variations in the metabolic and differentiation
characteristics of CAR T-cells, employing CD28 or 4-1BB signaling regions. This study
showed that T-cell metabolic reprogramming is flexible, and that the T-cells’ ultimate
destiny may be affected by the CAR signaling domain. Aerobic glycolysis is the primary
metabolic program in 28z CAR T-cells (including CD3ζ-CD28) [222], whereas oxidative
metabolism, oxidative degradation of fatty acids, and mitochondrial biogenesis are the
predominant metabolic programs in BBz CAR T-cells (CD3ζ-4-1BB) [223]. The increased
survival and proliferative capacity of BBz versus 28z CAR-T-cells was aligned with the
findings of several clinical studies [224]. The study also indicated that metabolic reprogram-
ming of the CAR T-cells to promote either OXPHOS, which is characteristic of memory
cells (BBz CAR-T-cells), or aerobic glycolysis, which is characteristic of effector cells (28z
CAR-T-cells), may be one explanation for the differential persistence.

However, the characteristics of CAR co-stimulatory domains that affect persistence and
resistance to exhaustion of CAR NK cells are still largely unknown, despite considerable
clinical usage. Since NK cells are effectively exploited in cancer immunotherapy, several
methods have been developed to take advantage of their capabilities. In this regard,
immunometabolism has become an important topic, and NK cell metabolism is crucial
to the control of the effector’s activities. Although the tumor microenvironment attempts
to repress the metabolic activity of NK cells, metabolic limitation might be considerably
improved by metabolic plasticity due to the co-stimulatory domains. The variations in
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metabolic setups among different types of NK cells remain unclear, underscoring the
utmost importance of ongoing research in this area.

9. Challenges and Limitations of IVT-mRNA Cancer Immunotherapy Strategies

Cancer treatment strategies based on IVT-mRNA technology encompass a range of
approaches, such as mRNA cancer vaccines, mRNA coding for cytokines [225], CAR-
engineered cells, tumor suppressors, and various combination therapies. Despite their
generally low occurrence, there is still a potential for minimal side effects. These side effects
may be influenced by an individual’s genetic characteristics related to immune system
reactivity. Variability in human immunity is attributed to genetic variations in genes respon-
sible for TLRs, human leukocyte antigens (HLA), cytokines, and cytokine receptors [226].
One noteworthy adverse effect of SARS-CoV-2 IVT-mRNA vaccines associated with genetic
factors is myocarditis [227]. Its occurrence is relatively rare, estimated at around 0.3 to 5.0
cases per 100,000 doses of COVID-19 mRNA vaccines, and in exceptionally rare instances,
it can lead to fatalities. Recent findings have confirmed the involvement of genetic variants,
potentially linked to HLA alleles, in myocarditis, particularly in monochorionic diamniotic
twins [226,228]. Furthermore, it’s crucial to take into account potential adverse effects, like
intense homeostatic proliferation and immune imprinting, during the design of mRNA
vaccines [227].

However, the main current challenge in IVT-mRNA-based therapeutics lies in the
improvement of stability [229] and delivery specificity to achieve systemic DCs targeting.
Furthermore, there is a requirement for future investigations to address the challenges
related to the sustained function and potency of IVT-mRNA. Foster et al. employed recent
RNA technology to purify IVT-mRNA by incorporating a modified 1-methylpseudouridine
nucleoside into the IVT-mRNA, thus minimizing the risk of immune stimulation. They
also removed potential double-stranded RNA contaminants with the assistance of RNase
III, which could impede translation [230]. Human CAR T-cells engineered with purified
CD19 IVT-mRNA exhibited a two-fold increase in cytotoxicity against the Nalm-6 cell
line and a remarkable 100-fold reduction in leukemia burden in humanized ALL mice,
demonstrating enhanced persistence. Furthermore, additional animal studies should be
designed to examine the optimal level of IVT-mRNA purity required before transfection
and to investigate the potential of re-engineered mRNA in T-cells targeting tumor-specific
antigens in conjunction with cytokine stimulatory signals [231]. These efforts have the
potential to pave the way for an increased number of clinical trials involving IVT-mRNA
CAR T therapy for hematologic and solid tumors in the future.

Achieving organ- or cell-selective mRNA delivery is the most important challenge
in biomedical engineering and nanomedicine. Various lipid nanoparticles have been
developed and optimized to increase cellular uptake and endosomal escape of IVT-mRNA-
LNP formulations. Other lipid nanoparticles, such as antibody-conjugated LNPs and SORT
LNPs, have been modulated to selectively accumulate in the target organs. Furthermore,
hybrid nanoparticles containing polymers may facilitate the controlled release of IVT-
mRNA. Other delivery strategies, such as the Selective Endogenous eNcapsidation for
cellular Delivery (SEND), can also be applied for IVT-mRNA delivery [232]. Lastly, it is
imperative to invest in research aimed at improving the homing of mRNA CAR T-cells
within the tumor microenvironment by neutralizing localized immunosuppressive cues.

10. Future Directions in Cancer Immunotherapy: Paving the Way for Advancements

As tumors continuously evolve before and after treatment(s), both personalized phar-
macogenomic analysis and post-therapeutics’ monitoring are needed to be integrated into
modern medicine. The selection of the proper TAA(s) and/or TSAs is a key step in the
successful outcome of CAR therapy. A reduction in EGFR expression was recorded in
metastatic lesions of pancreatic cancer after CAR-T therapy [233]. Moreover, several anti-
EGFR mAbs are ineffective in patients bearing tumors with KRAS and NRAS mutations.
Molecular tests for EGFR and RAS are needed in clinical practice to offer individualized
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therapeutic approaches [234]. The development of personalized IVT-mRNA mutanome
vaccines for cancer patients is one of the most groundbreaking highlights [235].

Universal, switchable, and Tan CAR and/or co-administrations with mAbs and OV,
are among the highly promiscuous next-generation CAR. However, in most cases the cost
of CAR T therapy reaches 250,000 $ to cover virus-induced transduction, cryopreservation,
and manufacturing-related, multiple quality controls for each patient [197]. This high cost
is estimated to be almost 10 times higher than the «off-the-shelf» CAR NK therapeutics.
Current clinical trials with CAR NK cells employing the IVT-mRNA technology should be
extended to large cancer patient cohorts to gain more meaningful results. The ultimate goal
is to try to recapitulate the success recorded with CAR T cells in hematological malignancies,
also in solid tumors, while at the same time reducing the severe side effects, cost, and
complicated infrastructure needed.

11. Conclusions

The exploitation of the immune system to harness cancer has long been a hallmark
of cancer research, exemplified by the numerous immunotherapeutic approaches [236].
CAR immunotherapy combined with IVT-mRNA technology has come to the limelight
due to the effectiveness of CAR therapy against a variety of hematologic cancers and
solid tumors and the boost given to mRNA technology due to COVID-19 vaccines. In the
face of the difficulties brought about by the COVID-19 pandemic, mRNA vaccines have
emerged to fulfill the need. IVT-mRNA-based technology can bridge a specific gap between
protein therapy and gene therapy, having a variety of exceptional advantages over the
other two macromolecule methods, such as rapid development, reduced manufacturing
complexity, versatility, and mainly safety; there is no risk of insertional mutagenesis since
for IVT-mRNA there is no requirement for nuclear entry.

In the early stages, IVT-mRNA faced limitations such as instability, high immunogenic-
ity, and poor translatability. However, ongoing advancements in mRNA synthesis have
significantly improved antigen expression and the development of protective immunity,
while elevating the translation efficiency of IVT-mRNA by avoiding detection by RNA im-
mune sensors. Advanced delivery methods, such as LNPs, have extended the intracellular
lifespan of IVT-mRNA vaccines from mere minutes to weeks, enabling IVT-mRNA delivery
to specific cell types, including T-cells [22,237,238].

IVT-mRNA technology is being explored and developed for cancer treatment applica-
tions, with several developments underway and exceptional clinical trials [50] being held
for treating melanoma, squamous cell carcinoma, ovarian, breast, head and neck, prostate,
pancreatic, metastatic renal, non-small cell lung cancer, and colorectal cancer. These vac-
cines include direct injection of IVT-mRNA into the tumor or surrounding tissue, as well as
DC IVT-mRNA cancer vaccines, which entail the ex vivo loading of patient-derived DCs
and represent the majority of mRNA cancer vaccines in clinical trials [60]. Strong in vivo
antitumor T- or B-cell responses can also be produced by IVT-mRNA cancer vaccines
when they are specifically tailored in accordance with the tumor antigens displayed by
malignant cells, such as TAAs or TSAs/neoantigens [239]. Moreover, IVT-mRNA may
encode cytokines that are considered to modulate the tumor microenvironment (IFNα2b,
IL-2 and IL-12), inducing a broad immunity against cancer cells [240]. To strengthen the
immune response to cancer cells, further strategies include combining IVT-mRNA with
adjuvants, immune checkpoint inhibitors, gene editing instruments, or innovative delivery
methods [241]. IVT-mRNA vaccines have the ability to encode whole proteins or numerous
antigens at once, which may improve cellular and humoral immune responses, both of
which are advantageous for protection against tumors. Unlike DNA vaccines, IVT-mRNA
vaccines are degradable, do not integrate into DNA, and have a limited risk for insertional
mutagenesis. Because there are no hazardous viral or cellular components in the produc-
tion process, they are less prone to infection. In clinical studies, they are usually well
tolerated with few injection site responses. Another benefit of mRNA cancer vaccines is
their large-scale and rapid production.
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In the context of immunotherapy, numerous preclinical and clinical studies on adoptive
T-cell therapy for the treatment of cancer have yielded encouraging outcomes. The efficacy
of the treatment regimens depends on the in vitro introduction of the TCR or CAR molecule
into the host’s immune cells to direct them against cancer cells upon their re-infusion into
the patient’s body. To date, several CAR T products or TCR-engineered T-cells have
been approved by the FDA for the treatment of B-cell leukemia and lymphoma or have
successfully entered clinical studies. Despite the high efficiency of CAR T immunotherapy
in pediatric leukemias, this success unfortunately failed to be recapitulated in other target
groups and/or types of cancer (older patients, solid tumors). Moreover, the severe toxicity
associated with CAR T immunotherapy triggered researchers to search for adjustments
and/or alternative approaches. The therapeutic effectiveness of CAR cells genetically
manipulated with IVT-mRNA, although evaluated in a small number of clinical trials
for the treatment of solid and hematologic malignancies, emerges IVT-mRNA as a game-
changing and essential tool in the field of cancer immunotherapy. However, multiple
infusions of IVT-mRNA- engineered CAR immune cells should also be taken into account.

Notably, our research group’s innovative PTD-IVT-mRNA delivery platform exempli-
fies the potential of delivering via the use of PTD technology, IVT-mRNA into NK-92 cells
to engineer the CAR NK-92 cells, demonstrating that CAR T1E-engineered [242] NK-92
cells expressed the CAR construct safely. These CAR NK-92 cells demonstrated potent cy-
totoxicity against ErbB(+) cancer cell lines. Our work stands for the offer of a non-cytotoxic
and costly-value alternative transduction technology to construct CAR NK-92 cells. Be-
yond the choice of CAR construct, the success of CAR NK-92 cell therapy hinges on other
critical factors, including the choice of co-stimulatory signaling domains (e.g., CD28 and
4-1BB), shaping the metabolic profile (depending on glycolysis or OXPHOS) of CAR NK-92
cells, and influencing their effector functions. Understanding these metabolic differences
could be crucial for optimizing CAR-NK cell immunotherapy in the context of cancer. By
harnessing the metabolic plasticity imparted by co-stimulatory domains, we could poten-
tially overcome the metabolic challenges posed by the tumor microenvironment. Further
research is needed to explore variations in NK cell metabolism across different subtypes,
emphasizing the importance of ongoing investigations in this field.

Significant technological progress has raised the value of IVT-mRNA as a potent and
adaptable cancer immunotherapy platform. Its effective advancement toward clinical
translation, despite the formidable challenges, will significantly improve our capacity to
fight cancer. Future research should keep concentrating on (but not limited to) compre-
hending and making use of IVT-mRNA’s paradoxical intrinsic innate immunity, enhancing
antigen expression and presentation efficiency through the development of sophisticated
and bearable delivery systems to achieve longer expression durations and effectiveness.
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ADCC Antibody-Dependent Cellular Cytotoxicity
ALL Acute Lymphocytic Leukemia
APCs Antigen Presenting Cells
ARCAs Anti-Reverse Cap Analogs
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BCMA B-cell Maturation Antigen
CAR Chimeric Antigen Receptor
CDC Complement-Dependent Cytotoxicity
CPPs Cell Penetrating Peptides
CRS Cytokine Release Syndrome
CTL cytotoxic T-cell
DCs Dendritic Cells
GvHD Graft-versus-Host Disease
EGF Epidermal Growth Factor
ErbB Epidermal growth factor receptor
HER2 Human Epidermal growth factor receptor 2
HLA Human Leukocyte Antigen
GMP Good Manufacturing Practice
IFN Interferon
iPSCs induced Pluripotent Stem Cells
IVT-mRNAs in vitro transcribed (IVT)-mRNAs
LNPs Lipid Nanoparticles
mAbs monoclonal antibodies
MHC Major Histocompatibility Complex
NK cells Natural Killer cells
OV Oncolytic Viruses
PD1 Programmed Death 1
PTD Protein Transduction Domain
r/r refractory and/or relapsed
scFv single chain Fragment variant
TAAs Tumor-Associated Antigens
TCR T-Cell Receptor
TILs Tumor Infiltrating Lymphocytes
TNFα Tumor Necrosis Factor α
TSAs Tumor-Specific Antigens
UTRs untranslated regions
Ψ pseudouridine
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