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Abstract: Dysregulated Wnt/β-catenin signal transduction is implicated in initiation, propagation,
and poor prognosis in AML. Epigenetic inactivation is central to Wnt/β-catenin hyperactivity, and
Wnt/β-catenin inhibitors are being investigated as targeted therapy. Dysregulated Wnt/β-catenin
signaling has also been linked to accelerated aging. Since AML is a disease of old age (>60 yrs),
we hypothesized age-related differential activity of Wnt/β-catenin signaling in AML patients. We
probed Wnt/β-catenin expression in a series of AML in the elderly (>60 yrs) and compared it to
a cohort of pediatric AML (<18 yrs). RNA from diagnostic bone marrow biopsies (n = 101) were
evaluated for key Wnt/β-catenin molecule expression utilizing the NanoString platform. Differential
expression of significance was defined as >2.5-fold difference (p < 0.01). A total of 36 pediatric
AML (<18 yrs) and 36 elderly AML (>60 yrs) were identified in this cohort. Normal bone marrows
(n = 10) were employed as controls. Wnt/β-catenin target genes (MYC, MYB, and RUNX1) showed
upregulation, while Wnt/β-catenin inhibitors (CXXR, DKK1-4, SFRP1-4, SOST, and WIFI) were sup-
pressed in elderly AML compared to pediatric AML and controls. Our data denote that suppressed
inhibitor expression (through mutation or hypermethylation) is an additional contributing factor in
Wnt/β-catenin hyperactivity in elderly AML, thus supporting Wnt/β-catenin inhibitors as potential
targeted therapy.

Keywords: acute myeloid leukemia; gene expression; Wnt/β-catenin; Wnt/β-catenin inhibitors;
targeted therapy

1. Introduction

Acute myeloid leukemia (AML) is a malignant neoplasm of myeloid stem cells
(MSCs) [1]. The pathogenesis is defined by genetic aberrations resulting in disrupted
balance between expression of proto-oncogenes and the controlling mechanisms [2]. Hence,
genetic heterogeneity defines the basis for clinical risk stratification [3]. The disease is
prevalent among older patients (>60 yrs) who exhibit high (fivefold) mortality compared
with younger patients [4]. The conventional and emerging therapeutic regimens, with or
without bone marrow transplant, are providing efficacious clinical outcome in younger
patients [5]. However, such therapeutic interventions pose limited utility in older AML
patients due to high therapeutic toxicity and accompanying comorbidities. Hence, pallia-
tive therapy remains the only option among more than half of the older AML patients [6,7].
In recent years, AML in older patients has emerged as a distinct and defined entity. This
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approach is improving insight into AML biology, steering the development of appropriate
targeted therapies, thus minimizing toxicities [7]. The characterization of detailed disease
biology in this distinct group is essential for the identification of critical and targetable
pathways to devise and expand novel therapeutic regimens for older AML patients [4,8].

Signal transduction pathways are crucial cellular processes that modulate genetic ex-
pression for physiological functions to maintain homeostasis. However, aging is linked with
aberrant function of multiple signaling pathways and other host of factors that maintain
cellular health [9]. Wingless-Int (Wnt)/β-catenin pathways are a group of signal transduc-
tion pathways that carefully coordinate critical cellular functions such as cell proliferation,
differentiation, and migration. These effects are executed through three distinct cascades,
namely, canonical and two noncanonical pathways [10]. Extracellular ligands induce signal-
ing by binding Wnt receptors on the plasma membrane and recruiting co-receptors, such
as the Frizzled receptor and lipoprotein-receptor-related receptors (LRPs) in the canonical
cascade. The non-canonical Wnt signaling regulates cytoskeletal dynamics and directional
cell movement through Frizzled or ROR receptors to transduce Wnt/planar cell polarity
(PCP) and other Wnt/receptor signaling cascades [11]. AML pathogenesis is influenced by
Wnt/β-catenin hyperactivity through epigenetic dysregulation, resulting in an imbalance in
regulatory molecules and upregulating activity of Wnt intermediaries [12]. These events
rescue the main effector β-catenin in the canonical Wnt pathway from proteolysis and
permit it to translocate to the nucleus for expressing genes that coordinate cellular prolifera-
tion [13]. Gene expression profile (GEP) has identified WNT effectors that are differentially
expressed in AML patients, while targeted inhibition of Wnt/β-catenin signaling provides
therapeutic options in AML pts [14].

Wnt/β-catenin inhibitors are a group of molecules that attenuate signal transduction
pathways by saturating Wnt/β-catenin receptors and degrading cytosolic β-catenin [15].
Recent investigations have demonstrated how endogenous Wnt/β-catenin inhibitors as
well as Wnt/β-catenin-targeted therapies interfered with AML progression in cell lines, yet
none explored whether they could be used for reducing the progression of AML [16]. The
effectiveness of Wnt/β-catenin-targeted therapies have also been observed in colorectal
cancer [17]; however, the extent to which Wnt/β-catenin intermediaries pertain to AML
pathogenesis in elderly patients remains unknown.

In this study, we conducted a comparative analysis of Wnt/β-catenin activity via
mRNA expression in diagnostic bone marrow biopsy samples of older AML patients
while employing normal bone marrow and pediatric AML patient samples as controls.
Our results authenticate Wnt/β-catenin overexpression in AML patients, as previously
reported [18]. Importantly, we noted that Wnt/β-catenin inhibitor suppression contributes
to Wnt/β-catenin hyperactivity. We believe these data could provide bases for future
insights into the molecular mechanisms of Wnt/β-catenin overexpression for developing
Wnt/β-catenin-related targeted therapies suited towards older AML patients.

2. Materials and Methods
2.1. Patients and Samples

This retrospective study utilized formalin-fixed, paraffin-embedded (FFPE) diagnostic
bone marrow (BM) biopsy samples (n = 36) from older AML patients (>60 yrs) (2011–
2015). A cohort of pediatric AML (<18 yrs) (n = 36) and age-matched (>60 yrs) normal
bone marrow samples (n = 10) were used as controls. The normal control group (n = 10)
comprised lymphoma staging bone marrow in patients >60 years, who were negative for
lymphoma or any other pathology. Diagnosis and classification were reviewed (AM, GEY,
MTSR) according to the 2016 WHO classification system [19]. The tissue samples were
harvested through microdissection at selective sites with maximum tumor cells, avoiding
the contamination of normal cellular elements. The sample size was deemed adequate
(http://bioinformatics.mdanderson.org/Microarray/SampleSize, accessed on 17 July 2022).
FLT3 (ITD and/or TDK) and NPM1 mutation results, where available, were recorded from
clinical files. We employed standard criteria for differential expression (2.5-fold change;
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p < 0.01 and false discovery rate (q value) of <0.05). The institutional ethics committee
approved this study (HREBA.CC-16-0771-MODI dated 14 June 2022).

2.2. RNA Extraction and NanoString nCounter Assay

RNA was extracted using the Ambion Kit (ThermoFisher Scientific, Waltham, MA,
USA) utilizing multiple cores (1 mm) harvested off areas with maximum tumor concen-
tration. The RNA concentration was quantified using a Nanodrop UV-VIS spectropho-
tometer (Nanodrop Technologies, Wilmington, DE, USA) and integrity was assessed using
a Bio-analyzer 2100 and RNA Nano Chip assay (Agilent Technologies, Wilmington, DE,
USA). Total RNA samples were processed according to the manufacturer’s protocol for
the nCounter gene expression PAN-cancer pathway code set containing 770 key genes
related to major pathways in cancer biology (NanoString, Seattle, WA, USA). Briefly, us-
ing nCounterTM technology, mRNA expression analysis was conducted for each sample
using specific probes. Probes were hybridized to 300 ng of total RNA for 20 h at 65 ◦C
and applied to the nCounterTM Prep Station for automated removal of excess probe and
immobilization of probe–transcript complexes on a streptavidin-coated cartridge. Data
were collected using the nCounterTM Digital Analyzer by counting the individual barcodes.
mRNA analysis and normalization of the raw data were conducted using nSolver Analysis
Software v3.0 (NanoString Technologies). mRNA raw counts were normalized to internal
levels of 40 reference genes. Normalized data were log2-transformed and then used as
input for further analysis.

2.3. Statistical Analysis

We used nSolver software v3.0 (NanoString Technologies) for the normalization of raw
counts for various genes as determined by the NanoString nSolver platform. SPSS software
v24.0 (IBM, Armonk, NY, USA) was utilized for other statistical evaluations. Hierarchical
clustering and principal component analyses were performed employing Qlucore Omics
Explorer v3.2 (Lund, Sweden). Results with fold change ≥2.0 and p-value < 0.05 were
considered significant.

3. Results

A total of 36 elderly AML patients (median age of 74 years; range 60–83 years;
20 men/16 women, M:F 1.25:1) were included. The median bone marrow blast count
was 61% (range 46–90%). All patients were investigated on the basis of a standardized
protocol. No significant correlation was observed between blast count and median counts
for the expression of Wnt/β-catenin pathway molecules in this group (Person correlation,
r (0.21); p = 0.31). A total of 12/36 (33%) patients were positive for both FLT3 and NPM1
mutations. The FLT3+/NPM1− mutation was noted in only 4/36 (11%), while 10/36 (28%)
patients were positive for the NPM1 mutation only. In total, 10/36 (28%) were negative for
both FLT3 and NPM1 mutations. No distinct differential expression was noted between
FLT3 and/or NPM1 mutational status for Wnt/β-catenin molecules. The pediatric group
comprised 36 pediatric AML patients (median age of 14 years; range 3 month–18 years;
22 male/14 female, M:F 1.57:1). The median bone marrow blast count in this cohort was
53% (range 42–98%). The median expression counts for Wnt/β-catenin pathway molecules
did not relate to blast counts (Person correlation, r (0.17); p = 0.73). In this group, 08/36
(22%) patients were positive for both FLT3 and NPM1 mutations. The FLT3+/NPM1−
mutation was noted in only 1/36 (3%), while 07/36 (19%) patients were positive for the
NPM1 mutation only. A total of 11/36 (30%) were negative for both FLT3 and NPM1
mutations, while in 9/36 (25%) patients, the FLT3/NPM1 mutational status was unknown.
GEP by hierarchical clustering revealed a distinct pattern in older AML as compared to
pediatric AML or normal controls (Figure 1). We identified three distinct Wnt/β-catenin
target genes, namely, MYC, MYB, and RUNX1, which showed upregulation in elderly
AML compared to the pediatric AML group, thus confirming upregulated Wnt/β-catenin
pathway molecules. There were 11 genes defined as inhibitors of Wnt/β-catenin pathway
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exhibiting low expression among the elderly AML cohort compared to pediatric AML
patients (Table 1). We noted statistically significant lower expression of selective Wnt/β-
catenin inhibitors in elderly AML compared to normal control samples as well as pediatric
AML samples (Figures 2 and 3).
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Figure 1. The hierarchical clustering analysis of the differential gene expression pattern between
normal controls, elderly AML patients, and pediatric AML patients.

Table 1. Distinct lower mRNA expression of the selected Wnt/β-catenin pathway inhibitors in elderly
AML patients compared to pediatric AML patients.

Genes p-Value q-Value Fold Change
AXIN2 1.38 × 10−5 4.98 × 10−5 −3.1
CXXC4 1.74 × 10−7 1.08 × 10−6 −3.5
DKK1 8.87 × 10−7 4.96 × 10−6 −4.7
DKK2 0.008930 0.012775 −2.5
DKK4 0.000645 0.001336 −3.1
SFRP1 2.82 × 10−6 1.27 × 10−5 −4.3
SFRP2 7.48 × 10−10 1.04 × 10−8 −9.2
SFRP4 2.52 × 10−5 8.32 × 10−5 −4.5
SOST 6.67 × 10−6 2.56 × 10−5 −4.5
WIF1 0.005997 0.008683 −2.6

WNT5A 0.000274 0.000636 −2.5
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Figure 3. Box plot representing suppressed expression of selective Wnt/β-catenin inhibitors among
elderly AML compared to pediatric AML patients.

4. Discussion

AML in elderly patients is a distinct disease due to its discrete biology and poor
prognosis [7]. The conventional AML therapeutic options are often rendered less effective
and more toxic in the long term due to several comorbidities [4,6]. Increased Wnt/β-catenin
signaling contributes towards AML promotion by enhancing cellular growth through sev-
eral mechanisms, including mutations and epigenetic variations of effectors that moderate
these processes [12]. Wnt/β-catenin inhibitors by attenuating Wnt/β-catenin signaling are
thought to coordinate tissue growth and specialization during embryonic development and
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tissue homeostasis [20], but their impact on the genomic biology of AML remains complex
and evolving [21]. Although previous cell line experiments demonstrated the importance
of Wnt/β-catenin signaling in various other cancers and physiological processes, the role of
aging on Wnt/β-catenin inhibitor activity has not been investigated [17,22]. Hence, studying
Wnt/β-catenin expression in detail could help in devising additional therapeutic options
in elderly AML patients. To expand our understanding, we performed a comprehensive
comparative GEP analysis in elderly AML against matched normal controls and compared
it with pediatric AML patients. We captured holistic data related to tumor cells as well as
the influence of the tumor microenvironment across several signal transduction pathways.
Our study reported increased Wnt/β-catenin signaling in the elderly AML cohort compared
to the pediatric AML cohort. We also ascertained that several Wnt/β-catenin inhibitors
were significantly repressed amid elderly AML patients.

The mutational landscape in AML has a discrete impact on clinical progression, and the
WHO classification system has defined distinct AML subtypes based on FLT3 and NPM1
mutations [19]. It is empirical to evaluate and correlate emerging insights in AML biology
with these conventional prognostic makers. There are reports linking a positive or negative
correlation between Wnt/β-catenin pathway expression and FLT3/NPM1 mutations in
AML [23,24]. However, this pilot study failed to document any statistically significant
association between Wnt/β-catenin pathway expression and FLT3/NPM1 mutational status
either in the elderly AML or pediatric AML group. This may be attributed to the small
sample size and there being several intricate molecules within a complex network. There
was no further attempt made to collectively analyze FLT3/NPM1 mutation status within
Wnt/β-catenin pathway molecules.

The secreted frizzled related family (SFRP) of Wnt/β-catenin inhibitors consists of
a broad group of ligands released by a subset of cellular elements for mediating home-
ostasis and modeling the microenvironments of vascular tissues [25]. However, SFRPs
have also been identified to exert onco-suppressive and oncogenic roles in different tissues
and cancers [26,27]. We found SFRP2 was downregulated (>10-fold) the most out of these
genes in the elderly AML samples. Although the methylation of its promoter is associated
with AML progression, the molecular mechanisms by which SFRP2 prevents AML are
unknown, apart from inhibiting extracellular matrix remodeling [28]. The influence of
SFRP2’s downstream effector molecules, especially TP53, which is frequently dysfunc-
tional in elderly AML, deserve further investigation since overexpression of SFRP2 in
TP53-deficient osteoblasts is linked with osteosarcoma development [29]. Moreover, TP53
mutation confers tumor resistance among most elderly AML patients, worsening their
clinical outcomes [30]. Like SRFP2, the methylation of SRFP1 promoters has been associated
with AML development, yet the regulatory mechanism of its impact on Wnt/β-catenin
signaling remains unknown [31]. SFRP1 has previously been established as the more
prevalent biomarker in AML patients, whereas SFRP4 is rarely detected [32]. SFRP1 is also
found to be epigenetically repressed alongside NPM1, a prominent prognostic factor of
AML [32]. Hence, our data support the notion that epigenetic manipulation of SRFP family
members could pose another option for inhibiting Wnt/β-catenin signaling for elderly AML
patients to enhance remission.

Additionally, our study detected a distinct difference in the expression profile of
Dikkop (DKK) family molecules between the two age groups within AML. These molecules
mediate several signal transduction pathways for coordinating homeostasis [33]. Selective
DKK ligands function as Wnt/β-catenin inhibitors and are associated in AML progression
inferring oncogenic and tumor-suppressive properties depending on the tumor and its
microenvironment [34]. In this respect, DKK1 is emerging as a molecule with multifaceted
functions. The effect of DKK1 in progression of cancer both in in vitro and in vivo models
is well established [35]. In AML, DKK1 is released by cancer cells to alter the stromal
microenvironment for propagating the disease while hindering normal hematopoietic
stem cell (HSC) activity. Excessive DKK1 production could indirectly establish a tumor
niche, resulting in AML progression, while suppression of DKK1 by exogenous agents
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delayed AML progression and prolonged survival in animal models [36]. This effect is
independent of DKK1 function as a Wnt/β-catenin inhibitor. Furthermore, DKK1 is also
secreted by malignant bone marrow stromal cells for inhibiting the adaptive immune
response and expansion of myeloid-derived suppressor cells (MDSC), hence permitting
immune evasion [37]. In this context, immunotherapy against DKK1 is being considered
as a therapeutic tool and may have a benefit in being explored as a treatment modality in
elderly AML [38].

We also found DKK2 and DKK4 were downregulated in elderly patients, but to a
lesser degree than the other Wnt/β-catenin inhibitors. They are implicated in the neoplastic
processes with or without DKK1 expression, indicating they can mediate an independent
impact on AML progression [39]. However, their functions may vary with factors intrinsic
to the tissue microenvironment. Coincidentally, we also found that IDAX (the product of
CXXC4) expression was also downregulated in elderly AML patients. CXXC4 is implicated
as having an onco-suppressor function in solid tumors [40]. Although the role of CXXC4 is
not currently well understood in AML, future investigations could explore it as another
therapeutic target for addressing treatment options in elderly AML.

The insight into the molecular mechanisms leading to the downregulation of Wnt/β-
catenin inhibitors in AML are sketchy. Hypermethylation, being the most rationale mecha-
nism, has been reported in a subset (8% to 54%) of AML patients [41]. This implies addi-
tional and diverse mechanisms for low expression of Wnt/β-catenin inhibitors in AML. This
is further supported by epigenetic influence through high expression of micro-RNA impact-
ing Wnt/β-catenin inhibitor (DKK3) as reported in adult B-cell lymphoblastic leukemia [42].
These additional mechanisms may be influencing the efficacy of the hypomethylating
agents in elderly AML, which is at best moderate [43]. In solid organ tumors, this sub-
ject is reviewed in detail, and several unspecified mechanisms have been suggested [44].
Hence, additional approaches including combination therapies such as Venetoclax and
other investigational agents are being under extensive evaluation [45]. Since supplemental
pharmacotherapies with exogenous Wnt/b-catenin inhibitors are providing benefits in solid
cancers, such agents may have therapeutic potential in elderly AML as well [46]. It will be
prudent to explicitly state that observations presented in this report should be inferred in
the context of the limitations of this pilot study. These extrapolations require validation
through future comprehensive studies to link RNA expression levels with proteomics data.
However, we can reflect some confidence in our findings through indirect evidence from the
current literature. Several studies have reported good correlation between Wnt/β-catenin
transcripts with protein expression, either through immunohistochemistry or Western
blotting in solid cancers and other pathological processes [47–50].

5. Conclusions

Taken together, our study demonstrates that elevated Wnt/β-catenin signaling is
implicated in clinical biopsies of elderly AML at diagnosis. Some effector molecules are
repressed to a greater extent than others, suggesting the disease-founding mechanisms
related to Wnt/β-catenin signaling are distinct in elderly AML and are independent of
the normal aging process. Furthermore, the GEPs indicate re-routing of other signal
transduction pathways, emphasizing the inclusion of expression profile into the genetic
analysis to explore biology and prospects of target discovery. The restoration of suppressed
Wnt/β-catenin inhibitors may offer a novel and less toxic strategy in the management
of elderly AML, although such an approach mandates harnessing DKK1 suppression of
host immunity.
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