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Abstract: The protective effects of vitamin D (VitD) in different diseases were studied. The liver is
of great interest, especially with the presence of VitD receptors. A high-fat diet (HFD) is associated
with many diseases, including liver injury. Consumption of saturated fatty acids triggers hepatic
apoptosis and is associated with increased inflammation. We aimed in this study to investigate the
protective effects of VitD on hepatic molecular apoptotic changes in response to an HFD in rats. Forty
male Wistar albino rats were used and divided into four groups: control, HFD, control + VitD, and
VitD-supplemented HFD (HFD + VitD) groups. After six months, the rats were sacrificed, and the
livers were removed. RNA was extracted from liver tissues and used for the quantitative real-time
RT-PCR of different genes: B-cell lymphoma/leukemia-2 (BCL2), BCL-2-associated X protein (Bax),
Fas cell surface death receptor (FAS), FAS ligand (FASL), and tumor necrosis factor α (TNF-α). The
results showed that an HFD increased the expression of the pro-apoptotic genes Bax, FAS, and FASL,
and reduced the expression of the anti-apoptotic gene BCL2. Interestingly, a VitD-supplemented HFD
significantly increased the BCL2 expression and decreased the expression of all pro-apoptotic genes
and TNFα. In conclusion, VitD has a protective role against hepatic molecular apoptotic changes in
response to an HFD.
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1. Introduction

Liver damage can be triggered by different factors, such as alcohol intake, viral
infection, drug abuse, and the consumption of a fat-rich diet, particularly saturated fatty
acids [1–4]. Saturated fatty acids accumulate in hepatocytes, resulting in cell death via
various death modes, including apoptosis, necrosis, and necroptosis [5–7].

Apoptosis primarily occurs through two main mechanisms that involve either the in-
ternal mitochondrial intrinsic pathway or the external death receptor extrinsic pathway [8].
The pro-apoptotic protein B-cell lymphoma/leukemia-2 (Bcl2)-associated X protein (Bax)
mediates the mitochondrial intrinsic pathway by a series of cascade signal transduction
pathways that end by activating caspase-9, which is the promoter of the intrinsic pathway.
In contrast, Bcl2 acts as an anti-apoptotic protein in this process [9]. The death receptor
pathway is mediated by various proteins that belong to the tumor necrosis factor (TNF)
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superfamily, including FAS and TNF receptor type 1 (TNFR1) [10]. Once TNF-α binds to
its receptor, it recruits the TNFR1-associated death domain (TRADD) adapter protein [10].
This activation of TNFR1 triggers the formation of several signaling complexes called
Complex I, IIa, IIb, and IIc, and each one of these complexes is responsible for specific
cellular responses [11,12]. Complex I, for example, results in the activation of nuclear factor
kB (NF-kB) and mitogen-activated protein kinases (MAPKs), thus resulting in inducing
inflammation, cellular proliferation, and cellular survival [12–15]. Complex IIa and Com-
plex IIb activate caspase-8, which is the promoter of the extrinsic apoptosis pathway [9,16].
Complex IIc consists of receptor-interacting serine/threonine protein kinase 1 (RIPK1) and
receptor-interacting serine/threonine protein kinase 3 (RIPK3). This complex activates the
mixed lineage kinase domain-like protein (MLKL). The outcome of this signaling cascade
is the induction of necroptosis and inflammation [16,17]. In addition, TNF-α acts as an
important inflammatory cytokine synthesized in response to the presence of reactive oxy-
gen species and impaired α-oxidation enzymes due to the consumption of a high-fat diet
(HFD) [18–20]. Thus, it can cause both hepatocyte apoptosis and necroptosis, which may
result in chronic liver inflammation, creating a vicious cycle [19,21].

Vitamin D (VitD) was previously mainly linked with calcium/phosphorus homeosta-
sis, bone health, and growth. However, in the last few decades, VitD has become known to
be associated with various cellular functions, such as cellular proliferation, differentiation,
immunomodulation, and apoptosis [22,23]. Therefore, many studies have focused on the
protective role of VitD in several diseases, including hypertension, diabetes, cardiovascular
disease, and many more [22,24–26]. The role of VitD in hepatic pathophysiology and its
progression has attracted attention after studies have reported the upregulation of VitD
receptors (VDR) in injured hepatocytes such as hepatocellular carcinoma and nonalcoholic
fatty liver disease (NAFLD) compared with normal hepatocytes [27–30].

However, studies on this topic remain limited. Therefore, this study aims to investigate
the protective role of VitD on hepatic molecular apoptotic changes in response to an HFD
in rats.

2. Materials and Methods
2.1. Animals

Male Wistar albino rats (n = 40; weighing 150–200 g) were used in this study. The rats
were obtained from King Fahad Medical Research Centre, Jeddah, Saudi Arabia, and kept in
the animal house unit during the time of the study. The rats were housed under a standard
laboratory temperature (23 ◦C ± 3 ◦C) and humidity, and a natural 12 h:12 h light/dark
cycle, with free access to water ad libitum. All animals were kept under conditions that
prevented them from experiencing unnecessary pain and discomfort according to the
standard guidelines of the European College of Laboratory Animal Medicine. The study
was approved by the Ethical Committee of the Faculty of Medicine, King Abdulaziz
University, Jeddah, Saudi Arabia (reference number 369-16).

2.2. Diets and VitD

A standard diet and an HFD were acquired from Research Diets Inc., New Brunswick,
NJ, USA, and the composition of both diets is listed in Table 1. VitD was purchased from
Sigma-Aldrich Co., St. Louis, MO, USA.
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Table 1. Standard diet and high-fat diet (HFD) composition.

Standard Diet, D12450H HFD D12451

Product Details gm% Kcl% gm% Kcl%

Protein 19.2 20 24 20

Carbohydrate 67.3 70 41 35

Fat 4.3 10 24 45

Total - 100 - 100

Kcl/gm 3.58 - 4.73 -

2.3. Experimental Design

After 1 week of acclimatization, the rats were randomly divided into the following
groups:

Group I (control; C): rats in this group received the standard diet for 6 months (n = 10).
Group II (control + VitD): rats in this group received the standard diet for six months

and were co-administered with vitamin D by gavage in a dose of 400 IU/kg/day for six
months (n = 10).

Group II (HFD): rats in this group received an HFD for 6 months (n = 10).
Group III (HFD + VitD): rats in this group received the HFD for 6 months and were

co-administered with VitD by oral gavage in a dose of 400 IU/kg/day [31,32] (n = 10).
Food intake was monitored throughout the study. Body weight and body length (oral

to anus length, OA) were measured at the beginning to assess body mass index (BMI)
(body weight [g] / the square of OA length [cm2]). This procedure was repeated every
45 days and at the end of the experiment [33]. After 6 months, the rats were sacrificed
under anesthesia using diethyl ether. The livers were removed and washed with normal
saline. RNA was preserved for quantitative real-time polymerase chain reaction (qRT-PCR)
assessment.

2.4. qRT-PCR

Total RNA was extracted from liver tissues using an RNAeasy Mini Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions. The FAS and FAS ligand
(FASL) genes and the Bax, Bcl2, and TNFα genes were selected for the extrinsic and intrinsic
apoptotic pathways, respectively.

Total RNA (5 µg) was reverse transcribed into cDNA in a final reaction mix of 20 µL
using a reverse kit (ImProm-IITm Reverse Transcription System, Promega, Madison, WI,
USA, cat no. A3800), according to the manufacturer’s instructions. The reaction was
conducted on a thermal cycler with the following cycling conditions: 25 ◦C for 5 min, 42 ◦C
for 120 min, and 70 ◦C for 15 min.

qRT-PCR was performed on a StepOne plus Real-Time PCR system (Thermo Fisher
Scientific, Waltham, MA, USA) in a 20 µL reaction mix containing 2 µL of cDNA, 10 µL of
EverGreen Universal qPCR Master Mix (2X) (Haven Scientific, Jeddah, Saudi Arabia), 6 µL
of DNase/RNase-free water (Thermo Fisher Scientific), and 1 µL of each forward/reverse
primer of the target and reference genes (Macrogen, Seoul, Republic of Korea). The list
of primer genes is shown in Table 2. Thermocycling was conducted at 95 ◦C for 2 min,
followed by 40 cycles at 95 ◦C for 15 s, and 60 ◦C for 1 min. All samples were performed in
triplicate. The relative gene expression of each target gene was quantified using the 2−∆∆CT

method, which was normalized to the reference gene for glyceraldehyde-3-phosphate
dehydrogenase (GAPDH). The fold change was calculated using the equation ∆dct/3.3 ×
−10, ∆dct/3.3 ×−10 [34].
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Table 2. Rat primers of all targeted genes used in the quantitative real-time polymerase chain reaction.

Rat Primers Forward Primer Reverse Primer

FAS CTGATAGCATCTCTGAGG CTGATAGCATCTCTGAGG

FASL GACAACATAGAGCTGTGG GACAACATAGAGCTGTGG

Bax CTGGACAACAACATGGAGC CAGACGGCAACTTCAACTG

Bcl2 AGTGGGATACTGGAGATG CTGGCTGTCTCTGAAGAC

TNFα CTTCTGTCTACTGAACTTCG CCAATGGCATGGATCTCAA

2.5. Statistical Analyses

The data were processed using GraphPad Prism 9 (GraphPad Software, Inc., La Jolla,
CA, USA), and the results were presented as the mean ± SEM. Statistical significance was
tested using one-way analysis of variance (ANOVA) and Šídák’s multiple comparison test
to identify the significant differences between groups. A p-value of <0.05 was considered
significant.

3. Results
3.1. BMI of HFD and HFD + VitD Groups

At the end of the 6 months, the body weight, OA length, and BMI were not significantly
different compared with the controls, as shown in Table 3.

Table 3. Initial and final body weight, oral to anus (OA) length, and body mass index (BMI) after 6 months.

Group Initial Rat
Weight (gm)

Initial AO
Length (cm) BMI (g/cm2)

Final Rat
Weight (gm)

Final OA
Length (cm) BMI (g/cm2)

Control 201.4 ± 9.5 20.704 ± 0.8 0.4710 ± 0.04 534.4 ± 42.03 25.5 ± 0.4 0.8218 ± 0.1

Control + VitD 215.4 ± 13.4 21.6 ± 0.74 0.4620 ± 0.03 512.4 ± 57.7 25.1 ± 0.42 0.8148 ± 0.1

HFD 218.7 ± 7.2 21.45 ± 0.4 0.4755 ± 0.02 521.8 ± 63.42 24.95 ± 0.55 0.8383 ± 0.1

HFD + VitD 230.4 ± 12.5 22.26 ± 0.6 0.4649 ± 0.02 534 ± 33.25 25.563 ± 0.5 0.8171 ± 0.04

Control + VitD: rats fed a regular diet treated with vitamin D. HFD: rats fed with a high-fat diet, HFD + VD: rats
fed with a high-fat diet treated with vitamin D. Values were expressed as mean ± SD. Data were analyzed using
an analysis of variance t-test. NS: not significant compared with the BMI value of the control rats.

3.2. qRT-PCR
3.2.1. Intrinsic Apoptotic Pathway Genes

There was no significant difference between the control group and the control group
supplemented with VitD in the expression of both Bax and Bcl2. Gene expression of the
intrinsic apoptotic signaling gene pro-apoptotic Bax and the anti-apoptotic gene Bcl2 were
measured. At the end of the six months, the HFD significantly increased the expression
of the pro-apoptotic gene Bax relative to the control (9.7-fold change, p = 0.013, one-
way ANOVA, Šídák’s test). In contrast, the HFD decreased the expression of the anti-
apoptotic gene Bcl2 (−4.2-fold change); however, this reduction was not significant. The
rats given a combination of VitD and HFD exhibited a significant downregulation of the
Bax gene toward the normal level (−1-fold change, p = 0.02), whereas Bcl2 was significantly
upregulated (2.2-fold change, p ≤ 0.0001, one-way ANOVA, Šídák’s test), as shown in
Figure 1A,B.
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supplemented HFD (HFD + VitD). Bax was significantly increased in the group fed with the HFD 
(p = 0.013) relative to the control. Combining vitamin D with the HFD downregulated the expression 
of this gene (p = 0.02). (B) The gene expression of the anti-apoptotic Bcl2. Combining VitD with the 
HFD caused a significant upregulation relative to the control and HFD groups (p = 0.0056, p ≤ 
0.0001). Data were normalized to the reference gene GAPDH. All data were expressed as mean ± 
SEM. Data were considered significant if p < 0.05. 
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Figure 1. Gene expression of the intrinsic apoptotic signaling genes. (A) The gene expression of
the pro-apoptotic Bax in rats fed with a normal diet (Control), a high-fat diet (HFD), and a vitamin
D-supplemented HFD (HFD + VitD). Bax was significantly increased in the group fed with the HFD
(p = 0.013) relative to the control. Combining vitamin D with the HFD downregulated the expression
of this gene (p = 0.02). (B) The gene expression of the anti-apoptotic Bcl2. Combining VitD with the
HFD caused a significant upregulation relative to the control and HFD groups (p = 0.0056, p ≤ 0.0001).
Data were normalized to the reference gene GAPDH. All data were expressed as mean ± SEM. Data
were considered significant if p < 0.05.
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3.2.2. Extrinsic Apoptotic Pathway Genes

There was no significant difference between the control group and the control group
supplemented with VitD in the expression of both FAS and FASL. Gene expression of the
extrinsic apoptotic signaling genes FAS and FASL were measured. At the end of the six
months, the HFD significantly increased the expression of both FAS and FASL genes relative
to the control, with 63.4- and 6.9-fold changes, respectively (p ≤ 0.0001, p ≤ 0.0001, one-way
ANOVA, Šídák’s test). However, in the HFD + VitD rats’ group, the expression of the
FAS and FASL genes was at normal levels and significantly different relative to the rats in
the HFD group, with −2.5- and −2.2-fold changes, respectively (p ≤ 0.0001, p ≤ 0.0001,
one-way ANOVA, Šídák’s test) (Figure 2A,B).
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Figure 2. Gene expression of the extrinsic apoptotic signaling genes. (A) The gene expression
of FAS in rats fed a normal diet (Control), a high-fat diet (HFD), and a vitamin D-supplemented
HFD (HFD + VitD). FAS was increased in the group fed with HFD (p ≤ 0.0001) compared with
the control. Combining vitamin D with HFD caused this gene to be significantly downregulated
(p ≤ 0.0001). (B) The gene expression of FAS ligand (FASL). The HFD increased the expression of
FASL in comparison to the control (p ≤ 0.0001). Combining vitamin D with the HFD significantly
downregulated this gene in comparison to the control (p ≤ 0.0001). Data were normalized to the
reference gene GAPDH. All data were expressed as mean ± SEM. Data were considered significant if
p < 0.05.
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3.3. TNF-α as an Inflammatory and Apoptotic Mediator

After six months, there was no significant difference between the control group and
the control group supplemented with VitD in the expression of TNF-α, while the expression
of TNF-α increased in rats in the HFD group significantly (1.8-fold change p = 0.03, one-
way ANOVA, Šídák’s test). In contrast, in the HFD + VitD group, the expression was
significantly downregulated relative to the group fed with the HFD (−2.7-fold change,
p = 0.0006, one-way ANOVA, Šídák’s test), as shown in Figure 3.
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Figure 3. Tumor necrosis factor (TNF-α) gene expression. The high-fat diet (HFD) increased the
expression of TNFα significantly (p = 0.03) compared to the control, whereas VitD supplementation
with the HFD significantly decreased the expression of TNFα (p = 0.0006). Data were normalized
to the reference gene GAPDH. All data were expressed as mean ± SEM. Data were considered
significant if * p < 0.05, *** p < 0.001.

4. Discussion

Chronic consumption of an HFD, particularly saturated fatty acids, is strongly asso-
ciated with hepatocyte apoptosis [35]. Both the intrinsic mitochondrial pathway and the
extrinsic death receptor pathway are stimulated by an HFD. The present study showed
the protective effect of VitD against molecular apoptotic changes in rats fed an HFD for 6
months.

No significant changes were found in body weight and BMI between HFD- (45%
fat) and HFD + VitD-fed rats relative to the control group. These results were similar
to the study carried out by Ramalho et al. 2017, suggesting that an HFD is linked to
hyperinsulinemia and insulin resistance without developing obesity [36].

In this study, we showed that an HFD stimulated the intrinsic apoptosis pathway of
hepatocytes, indicated by the significant increase in the gene expression of the pro-apoptotic
gene Bax and the decreased gene expression of the anti-apoptotic gene Bcl2 relative to the
control group. Other studies reported the redistribution of Cathepsin B into the cytoplasm
by enhancing the translocation of Bax to lysosomes in response to an HFD [37,38]. In addi-
tion, free fatty acids increase lysosomal permeabilization, which may lead to mitochondrial
dysfunction, thus demonstrating the role of exogenous fat on lysosomes in the initiation of
the intrinsic apoptotic pathway [38,39]. An HFD supplemented with VitD decreased the
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gene expression of Bax and increased the gene expression of Bcl2 back to a normal level
compared to the control. These results suggest a protective effect of VitD in an HFD. The
same protective effect of VitD has been previously reported [40]. In addition, a recent study
has investigated the role of VitD in non-alcoholic fatty liver disease in rats and reported a
similar result found in our study: VitD injection enhances the expression of Bcl2 compared
to the group fed only with an HFD [41].

The harmful effect of the HFD on triggering apoptosis was not only limited to the
activation of the intrinsic pathway, as mentioned earlier, but was also involved in activating
the extrinsic pathway. This finding was based on the significant increase in both FAS and
FASL gene expression in the HFD-fed rats. This increase in gene expression was significantly
reduced in the group receiving the VitD-supplemented HFD. To our knowledge, the
protective effect of VitD on the extrinsic apoptotic genes FAS and FASL was not investigated
in the liver before. However, several studies have reported the same protective effect of
VitD against pathological changes in extrinsic gene expression pathways in different organs,
including the heart and spleen [31,42–44].

Feeding rats with an HFD not only induced the gene expression of intrinsic and
extrinsic apoptosis but also increased the hepatic expression of the inflammatory cytokine
TNF-α compared to the control. Thus, increased apoptosis could be one of the suggested
mechanisms that can cause liver inflammation and vice versa. The expressions of both
FAS and TNF-α are elevated in liver biopsy samples collected from NAFL patients and in
hepatocyte cell lines treated with free fatty acids [45,46]. Accordingly, hepatocyte apoptosis
is thoroughly associated with hepatic inflammation and fibrosis [47,48]. We found that
VitD significantly reduced the gene expression of TNF-α compared to the HFD-fed group,
which is consistent with several other studies that reported the anti-inflammatory activity
of VitD [40,41,49,50]. However, the protective effect of VitD was only associated with the
HFD but had no protective role in the normal control group since there were no differences
between the two control groups in all studied genes.

Several suggested mechanisms may explain the protective role of VitD against inflam-
mation and apoptosis, and one of these mechanisms is through binding with specific VDR,
as reported previously [38]. Another suggested mechanism is that VitD downregulates the
toll-like receptor 4-mediated inflammatory pathway, which may be activated by an HFD
and fatty acid deposition in the liver [51,52].

5. Conclusions

Our results showed that feeding rats an HFD for 6 months increased both intrinsic and
extrinsic apoptotic gene expressions; however, body weight was not increased. In addition,
it increased the inflammatory cytokine TNF-α, which may also induce the shared intracellu-
lar pathway between apoptosis and necrosis, called necroptosis. VitD supplementation was
effective in inhibiting apoptosis and inflammation by reducing the expression of Bax, FAS,
FASL, and TNF-α, as well as decreasing the expression of Bcl2. The limitation of this study
was the lack of funds. However, future studies are required where more apoptotic genes
may be studied, as well as investigating the protective role of VitD in reducing hepatic
apoptosis and inflammation in response to an HFD at the cellular level.
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