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Abstract: Targeted cancer therapy is a challenging area that includes multiple chemical and biological
vehicles. Virus-like particles (VLPs) combine safety and efficacy in their roles as potential vaccines
and drug delivery vehicles. In this study, we propose a novel drug delivery system based on
HCV-LPs engineered with SP94 and RGD peptides mediated by a specific molecular chaperone
(Grp78) associated with cancer drug resistance. The PCR primers were designed for engineering two
constructs, SP94-EGFP-CORE-HIS and RGD-EGFP-CORE-HIS, by sequential PCR reactions. The
two fragments were cloned into pFastBac Dual under the polyhedrin promoter and then used to
produce two recombinant baculoviruses (AcSP94 and AcRGD). The VLP’s expression was optimized
by recombinant virus infection with different MOIs, ranging from 1 to 20 MOI. Recombinant VLP2
were purified by Ni-NTA and their sizes and shapes were confirmed with TEM. They were incubated
with different types of cells prior to examination using the fluorescence microscope to test the binding
specificity. The effect of the overexpression of the Grp78 on the binding affinity of the engineered
VLPs was tested in HepG2 and HeLa cells. The protocol optimization revealed that MOI 10 produced
the highest fluorescence intensities after 72 h for the two recombinant proteins (SP94-core and RGD-
core). Moreover, the binding assay tested on different types of mammalian cells (HeLa, HEK-293T,
and HepG2 cells) showed green fluorescence on the periphery of all tested cell lines when using the
RGD-core protein; while, the SP94-core protein showed green fluorescence only with the liver cancer
cells, HepG2 and HuH7. Overexpression of Grp78 in HepG2 and HeLa cells enhanced the binding
efficiency of the engineered VLPs. We confirmed that the SP94 peptide can be specifically used to
target liver cancer cells, while the RGD peptide is sufficiently functional for most types of cancer cells.
The overexpression of the Grp78 improved the binding capacity of both SP94 and RGD peptides. It is
worth noting that the SP94 peptide can function properly as a recombinant peptide, and not only as a
chemically conjugated peptide, as heretofore commonly used.
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1. Introduction

Conventional cancer treatments such as curative resection, transarterial chemoem-
bolization, radioembolization, radiofrequency ablation, and systemic targeted agents, can
be destructive, risking severe side effects on all dividing cells [1]. There are various biomed-
ical applications in drug delivery such as inorganic nanoparticles, liposomes, and polymers;
however, no clear-cut solution is available and each has some limitation, such as biocom-
patibility, deliverability, and specificity [2]. Virus-like particles (VLPs) have emerged as
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new drug vehicles to reduce the deleterious effect of many chemotherapies and also allow
several conventional drugs to be administrated in less harmful ways [3].

VLPs are made by altering the viruses’ genomes to become nucleic-acid-free parti-
cles. They can be loaded with anti-cancer drugs and conjugated with cancer-targeting
peptides [4]. VLPs are metastable; they can endure environmental stress but are sensi-
tive to cellular stimulations leading to cargo dislodgement. One of the most prominent
mammalian-derived VLPs is the hepatitis B virus; it is heavily investigated both as a vaccine
and as a gene vehicle. In addition, recent work showed that hepatitis E VLPs has intrinsic
tissue tropism to the liver and can enter via endocytosis to deliver plasmids [5], however,
little is known about hepatitis C VLPs.

In a previous study, the HCV core protein fused with RGD peptide (arginine-glycine-
aspartic) and the IFN-α2a protein, which was expressed by the baculovirus expression
system, inhibited the migration and invasion of the breast cancer cells MDA-MB231 [6].
RGD peptides can bind to most integrins, which are highly expressed in cancer cells,
especially the αvβ3 integrin, therefore RGD can be effective in delivering anti-tumor drugs
to most types of cancer cells [6,7]. Integrins are heterodimeric transmembrane (TM) proteins,
which belong to cell adhesion receptors and contain two non-covalently associated α and β

subunits. They control many biological functions such as growth, migration, and survival
of cells; they also have an important role in the invasion and migration of tumor cells [8].

On the other hand, SP94 (SFSIIHTPILPL), a novel peptide identified by Lo et al. using
a phage display technique, can specifically bind to various types of liver cancer cells, such
as HepG2 and Huh-7 [9]. VLPs of bacteriophage MS2 displaying SP94 were loaded with
different types of anti-cancer drugs such as doxorubicin, cisplatin, and 5-fluorouracil in
order to kill HCC cell lines selectively [10].

The 78-kDa glucose-regulated protein (Grp78), also known as BiP/HSP5a, is a member
of the heat shock proteins family (HSP70). Grp78 is known to be located in the lumen of
the ER to help in protein folding, however, it is found in several other different places,
such as cell membranes. Recent findings suggest that, cell surface Grp78 (CS-GRP78)
is accumulated in stressed cells and cancer cells, and especially in drug-resistant cells.
Grp78 is one of the main reasons for drug resistance and the recurrence of the tumor; it
plays an important role in the invasion, proliferation, and metastasis of cancer [11]. It has
been suggested that Grp78 is a receptor for SP94. The Ferritin Fn (HccFn) nanocage that
displayed the SP94 peptide could be a promising delivery carrier for an anti-HCC drug
without causing damage to healthy tissues [12]. In this study, HCV-LPs were engineered
from core 173 and fused with EGFP and tumor targeting peptides RGD or SP94 to acquire
a specificity toward cancer cells. In addition, we highlighted the role of Grp78 when
overexpressed in HepG2 and HeLa cells, confirming that Grp78 is the receptor mediating
the binding of the SP94 peptide.

2. Materials and Methods
2.1. Construction of VLPs Tagged with RGD and SP94 Cancer-Specific Peptides

Primers were designed for building two constructs namely SP94-EGFP-CORE-HIS and
RGD-EGFP-CORE-HIS. Each construct was cloned in two steps, SP94-EGFP or RGD-EGFP,
and then Core-His.

(A) SP94-EGFP was constructed after three sequential PCR reactions using Phusion High
Fidelity DNA Taq polymerase (ThermoFisher Scientific, Waltham, MA, USA), using
specific primers listed in (Table 1). The first PCR amplicon was amplified by primers
1 and 7; then it was purified by a gel purification kit (Qiagen, Hilden, Germany).
The same process was followed with the sequential PCR reactions using primers
2 and 7 and finally by primers 3 and 7 to produce the final amplicon. The same
procedures for RGD-EGFP were conducted, but by using primers 4 and 7, then
primers 5 and 7, and finally primers 6 and 7. The purified PCR products of SP94-EGFP
and RGD-EGFP were digested with restriction endonucleases BamH1- and EcoR1
(New England Biolabs-NEB, Ipswich, MA, USA); the same enzymes were used to cut
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the plasmid pFastBac Dual (ThermoFisher Scientific, Waltham, MA, USA). Digested
products were purified and ligated with T4 DNA ligase (New England Biolabs-NEB,
Ipswich, MA, USA) to obtain pFast-SP94-EGFP and pFast-RGD-EGFP constructs. The
ligated products were transformed into competent E. coli DH5a, as in our previous
work [13].

(B) For the second cloning fragment, HCV core-His was constructed by two sequential
PCR reactions using Phusion High Fidelity DNA Taq polymerase (ThermoFisher
Scientific, Waltham, MA, USA); (a) First PCR amplicon was amplified by primers 8
and 9, then primers 8 and 10. The purified amplicon was digested with restriction
endonucleases EcoR1 and Xbal (New England Biolabs-NEB, Ipswich, MA, USA); the
same enzymes were also applied to plasmids pFast-SP94-EGFP and pFast-RGD-EGFP.
Digested products were purified and then ligated with T4 DNA ligase (New England
Biolabs-NEB, Ipswich, MA, USA) to form pFast-SP94-EGFP-core-His (pSP94-core)
and pFast-RGD-EGFP-core-His (pRGD-core). The ligated product transformed into
competent E. coli DH5a as indicated above.

Table 1. List of primers used in sequential PCR to build the two constructs.

Item Primer Sequence of Primer

1 SP94_linker_F 5′ CTTTAGCATTATTCATACCCCGATTCTGCCGCTGGGAGGTGGAGGA 3′

2 SP94_linker_EGFP_F 5′ CGCTGGGAGGTGGAGGAGTGAGCAAGGGCGAGGAG 3′

3 BamH1_SP94_F 5′ GCGGATCCGCCACCATGGTGAGCTTTAGCATTATTCATACCCCGA
4 RGD_linker_F 5′ ACCATGGTG CGTGGCGATGGAGGTGGAGGA 3′

5 RGD_linker_EGFP_F 5′ GCGAT GGAGGTGGAGGAGTGAGCAAGGGCGAGGAG 3′

6 BamH1_RGD_F 5′ GCGGATCCGCCACCATGGTGCGTGGCGAT
7 EcoR1_EGFP_R 5′ GCGAATTCCTTGTACAGCTCGTCCATG 3′

8 EcoR1_Core_F_ 5′ GCGAATTC AGCACGAATCCTAAACCT 3′

9 Core_linker_R 5′ ATGATGTCCTCCACCTCCTCCGGAGCAACCGGGGAGATT 3′

10 linker_xba1_R 5′ GCTCTAGATTAATGGTGATGGTG ATGATGTCCTCCACCTCCTCC 3′

2.2. Construction of Recombinant Baculoviruses

The two transfer vectors (pSP94-core and pRGD-core) were digested by restriction
endonucleases EcoR1 and Xbal (New England Biolabs-NEB, Ipswich, MA, USA) to confirm
the presence of the genes before validation by nucleotide sequencing (Eurofins Genomics,
Ebersberg, Germany). The pSP94-core and the pRGD-core were used to transform DH10Bac
competent cells to produce bacmids, AcSP94, and AcRGD, all via Tn7-mediated transpo-
sition following the “bac-to-bac manual” (ThermoFisher Scientific, Waltham, MA, USA).
These recombinant bacmids were verified by PCR before being transfected into Sf9 cells to
produce the recombinant viruses.

2.3. Sf9 Transfection

EX-CELL 420 insect media (Sigma Aldrich, St. Louis, MO, USA), supplemented with
10% Fetal Bovine Serum (FBS) (Gibco, ThermoFisher Scientific, Waltham, MA, USA), was
used to sustain the Spodoptera frugiperda-Sf9 insect cell line in a monolayer at 26 ◦C. For
transfection, Sf9 cells were seeded in a 6-well-plate at a density of 8 × 105 cells per well
before being incubated for 1 h at RT to attach. The transfection mixture was prepared
by mixing 5 µg of DNA from each bacmid and 7 µL Cellfectin-II reagent (Invitrogen,
ThermoFisher Scientific, Waltham, MA, USA) to a final volume of 200 µL serum-free
media. The master mix and DNA were mixed thoroughly by vortex and added dropwise
to the cells, after removing the media. The plate was left on the rocker for 4 h at RT. The
transfection mixture was removed and replaced with 2 mL of fresh media before incubation
at 26 ◦C. Cells were examined after 48–72 h post-transfection by Zoe fluorescent cell imager
(BioRad, Hercules, CA, USA). The two recombinant viruses were amplified to P2 and the
concentration was measured by end-point dilution assay as described in [14].
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The protein expression was optimized by infection of Sf9 cells in a 24-well plate at
density (2 × 105 cell/well) at different Multiplicity of Infection (MOI) of 1, 5, 10, and 20 for
48, 72, and 96 hpi.

2.4. Purification and Identification of HCV-LP

Sf9 cells were seeded in a 6-well plate at a density of 8× 105 cells per well and infected
with two recombinant viruses (AcSP94 and AcRGD) at MOI of 10 for 48, 72, and 96 hpi
then checked by Zoe fluorescent cell imager (BioRad, Hercules, CA, USA). The culture
media was removed and cells were mixed with 200 µL of cell lysis buffer (CelLytic M,
Sigma-Aldrich, St. Louis, MO, USA) and then incubated for 5 min on a rocking platform
shaker. The cell’s lysate was collected and centrifuged at ~14,000× g for 10 min at 4 ◦C.
The supernatant containing the VLPs was collected and the protein concentration was
measured using a Pierce BCA Protein Assay kit (Thermo Fischer).

For in-gel fluorescence, 50 µL of the crude VLPs, collected at 48, 72, and 96 hpi, were
mixed with 10 µL 4× of SDS-free sample buffer and separated on 10% sodium dodecyl
sulfate-polyacrylamide gel (SDS-PAGE) by electrophoresis for 2 h at 100 volts according
to [15].

The image was taken by ChemiDoc XRS+, with AlexFluor 488 filter (BioRad, Hercules,
CA, USA). For protein purification, VLPs were collected at 72 hpi and purified by affinity
chromatography using Ni-NTA agarose, according to the manufacturer’s protocol (Qiagen,
Hilden, Germany). Transmission electron microscope (TEM) negative staining was used to
characterize the morphology of the purified VLPs by loading on a carbon-coated Cu-grid
(200 mesh) for 5 min at RT and negatively stained with 2% phosphotungstic acid for 3 min
before air drying on a filter paper. The samples were examined using a transmission
electron microscope (Jem-2100, USA) at 200 KeV.

2.5. Binding Assay

HeLa and HepG2 cells were cultured in RPMI, while Huh7 and HEK-293T cells
were cultured in DMEM high glucose (Gibco, ThermoFisher Scientific, Waltham, MA,
USA), supplemented with 10% fetal bovine serum (FBS), and 100 U/mL penicillin G, and
100 µg/mL streptomycin, (Gibco, ThermoFisher Scientific, Waltham, MA, USA) at 37 ◦C
and 5% CO2. All cells were treated and incubated with 100 µM of either SP94-core or
RGD-core for 2 h at 37 ◦C. Then, cells were washed with phosphate buffer saline (PBS)
(Sigma-Aldrich, St. Louis, MO, USA) 2–3 times and examined with Leica DMi8 inverted
microscope (Leica Microsystems, Wetzlar, Germany) at a magnification of 20×.

2.6. Overexpression of Grp78 in HeLa and HepG2 Cells

HepG2 and HeLa cells were cultured in RPMI (Gibco, ThermoFisher Scientific, Waltham,
MA, USA) medium, supplemented with 10% FBS, 100 U/mL penicillin G, and 100 µg/mL
streptomycin (Gibco, ThermoFisher Scientific, Waltham, MA, USA), before being incubated
at 37 ◦C with 5% CO2. Cells were seeded at a density of 100,000–150,000 cells per 30-mm cell
culture petri dish for transfection with BiP-mCherryplasmid (Addgene; plasmid #62233) or
pPAmCherry-a-tubulin plasmid (Addgene; plasmid#31930). Lipofectamine 3000 transfec-
tion reagent was used for transfection (ThermoFisher Scientific, Waltham, MA, USA), and
2.5 g DNA for each vector was added to the cells. Before adding the transfection complexes
to cells, they were prepared in Opti-mem reduced serum medium (ThermoFisher Scientific,
Waltham, MA, USA) and cultured at RT for 30 min. The transfected cells were incubated for
48 h at 37 ◦C with 5% CO2. After 48 h of transfection, the transfected media were removed
and cells were washed with PBS before being incubated with SP94-Core or RGD-Core
proteins at a concentration of 100 µM for 2 h. Cells were washed with PBS 2–3 times and
examined by Leica DMi8 inverted microscope (Leica Microsystems, Wetzlar, Germany) at a
magnification of 100×.
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3. Results
3.1. Expression and Validation of SP94-Core and RGD-Core Proteins

SP94-EGFP-core-His and RGD-EGFP-core-His constructs were cloned in pFastbac
dual to obtain the two transfer vectors: pSP94-core and pRGD-core (Figure 1A). The
two recombinant vectors were confirmed on a 1% agarose gel after double digestions
with BamH1/EcoR1, EcoR1/Xba1, and BamH1/Xba1 to obtain the sizes of the expected
fragments (Figure 1B). Both vectors, pSP94-core and pRGD-core, were authenticated by
DNA sequencing before being transformed into DH10Bac to produce Bacmids via Tn7-
mediated transposition, which eventually produced AcSP94 and AcRGD viruses after
transfection into Sf9 insect cells (Figure 1A). The endpoint dilution was used to measure the
titers of the produced recombinant virus, which were 9.4× 1011 and 4.48× 1011 pfu/mL for
AcSP94-VLPs and AcRGD-VLPs, respectively. To select the most efficient day post-infection
to harvest the expressed proteins, Sf9 cells were infected with MOI 10 and total proteins
were isolated from cells at 48, 72, and 96 hpi. The in-gel fluorescence results confirmed
that the highest fluorescence intensities were obtained at 72 hpi for both recombinant
viruses (Figure 1C). In addition, TEM revealed spherical VLPs of 30 to 40 nm in size for
RGD-VLPs and 40 to 60 nm for SP94-VLPs, which is the expected size range of the HCV
virions (Figure 1D,E).

Curr. Issues Mol. Biol. 2022, 2, FOR PEER REVIEW 5 
 

 

(ThermoFisher Scientific, Waltham, MA, USA) and cultured at RT for 30 min. The trans-
fected cells were incubated for 48 h at 37 °C with 5% CO2. After 48 h of transfection, the 
transfected media were removed and cells were washed with PBS before being incubated 
with SP94-Core or RGD-Core proteins at a concentration of 100 µM for 2 h. Cells were 
washed with PBS 2–3 times and examined by Leica DMi8 inverted microscope (Leica Mi-
crosystems, Wetzlar, Germany) at a magnification of 100×. 

3. Results 
3.1. Expression and Validation of SP94-Core and RGD-Core Proteins 

SP94-EGFP-core-His and RGD-EGFP-core-His constructs were cloned in pFastbac 
dual to obtain the two transfer vectors: pSP94-core and pRGD-core (Figure 1A). The two 
recombinant vectors were confirmed on a 1% agarose gel after double digestions with 
BamH1/EcoR1, EcoR1/Xba1, and BamH1/Xba1 to obtain the sizes of the expected fragments 
(Figure 1B). Both vectors, pSP94-core and pRGD-core, were authenticated by DNA se-
quencing before being transformed into DH10Bac to produce Bacmids via Tn7-mediated 
transposition, which eventually produced AcSP94 and AcRGD viruses after transfection 
into Sf9 insect cells (Figure 1A). The endpoint dilution was used to measure the titers of 
the produced recombinant virus, which were 9.4 × 1011 and 4.48 × 1011 pfu/mL for AcSP94-
VLPs and AcRGD-VLPs, respectively. To select the most efficient day post-infection to 
harvest the expressed proteins, Sf9 cells were infected with MOI 10 and total proteins were 
isolated from cells at 48, 72, and 96 hpi. The in-gel fluorescence results confirmed that the 
highest fluorescence intensities were obtained at 72 hpi for both recombinant viruses (Fig-
ure 1C). In addition, TEM revealed spherical VLPs of 30 to 40 nm in size for RGD-VLPs 
and 40 to 60 nm for SP94-VLPs, which is the expected size range of the HCV virions (Fig-
ure 1D,E). 

 
Figure 1. Construction and characterization of SP94-core protein and RGD-core protein: (A) repre-
sents the strategy for insertion of the two cloning cassettes into the polyhedrin locus of the AcMNPV 
bacmid; both cassettes were inserted into the attb site (indicated by the right and left insertion sites, 
Tn7R and Tn7L) in the polyhedrin locus by Tn-based transposition to generate the recombinant 
bacmids; (B) represents the digestion results of pSP94-core and pRGD-core by different restriction 
enzymes; (C) represents in-gel fluorescence results for SP94-core protein at 47.86 KDa and RGD-

Figure 1. Construction and characterization of SP94-core protein and RGD-core protein: (A) repre-
sents the strategy for insertion of the two cloning cassettes into the polyhedrin locus of the AcMNPV
bacmid; both cassettes were inserted into the attb site (indicated by the right and left insertion sites,
Tn7R and Tn7L) in the polyhedrin locus by Tn-based transposition to generate the recombinant
bacmids; (B) represents the digestion results of pSP94-core and pRGD-core by different restriction
enzymes; (C) represents in-gel fluorescence results for SP94-core protein at 47.86 KDa and RGD-core
protein at 47.86 KDa; (D) TEM of RGD-core protein; (E) TEM of SP94-core protein; TEM showed the
VLPs sizes at 30 nm to 60 nm, which is the expected range of HCV.

3.2. RGD-Core Protein Demonstrated Specificity to Cancer Cells

To prove the binding specificity of RGD peptide to cancer cells, RGD-core protein was
incubated with different types of cells, including: HeLa, HepG2, Huh7, and HEK-293T cells
for 2 h at a concentration of 100 µM. The results revealed that, as expected, the recombinant
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RGD-core protein can specifically bind with all tested cancer cells. The specificity was
demonstrated by the increase in green fluorescence intensity due to binding affinity after
incubation with RGD-core. It was found that the RGD-core protein was highly bound to
HeLa and Huh7 cells and slightly bound to HepG2 and HEK-293T cells (Figure 2).
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Figure 2. HeLa, HEK-293T, HepG2, and Huh7 cells treated with purified RGD-core protein fused
with EGFP at a concentration of 100 µM for 2 h showed a high affinity to tumorigenic cells compared
to none or low tumorigenic cells. Controls are cells not incubated with RGD-core.

3.3. SP94-Core Protein Demonstrated Specificity to Liver Cancer Cells

To confirm the specificity of SP94 peptide to liver cancer cells, SP94-core protein was
incubated with different types of liver cells like HepG2 and Huh7 for 2 h at a concentration
of 100 µM. Non-liver cells such as HEK-293T and HeLa cells were also used. The results
showed that SP94-core was specifically bound to liver cancer cells HepG2 cells and Huh7
cells and not to non-liver cancer cells. It is worth noting that SP94-core protein exhibited an
increase in green fluorescence intensity and a binding affinity with Huh7 cells than HepG2
(Figure 3).

3.4. Overexpression of Grp78 Increased Binding Efficiency of RGD-Core Protein to Cancer Cells

To assess the role of Grp78 as a possible marker for targeting cancer cells and its role
in the enhancement of RGD-core protein binding, Grp78-mCherry and tubulin-mCherry
were overexpressed in HeLa cells and HepG2 cells and incubated with RGD-core protein
for 2 h at a concentration of 100 µM. The results demonstrated a high binding affinity
of RGD-core protein, corresponding to the dramatic increase in the green fluorescence
intensity in both types of cancer cells transfected with Grp78-mCherry compared to cells
that were transfected with tubulin-mCherry. (Figure 4).
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tubulin-mCherry at the magnification of 100×.
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3.5. Overexpression of Grp78 Increases Binding Efficiency of SP94-Core Protein

To prove the role of Grp78 in the enhancement of binding affinity of SP94-core protein,
Grp78-mCherry and tubulin-mCherry were expressed in HepG2 cells and HeLa cells and
incubated with SP94-core protein for 2 h at a concentration of 100 µM. The results revealed
an obvious increase in green fluorescence intensity in HepG2 cells following overexpression
of Grp78 compared to cells that transfected with a plasmid expressing tubulin-mCherry
or to cells that incubated only with SP94-core protein (Figure 5). HeLa cells transfected
with Grp78 and incubated with SP94-core protein showed green fluorescence intensity
lower than that detected with HepG2 cells. However, no fluorescence was detected in HeLa
cells that were only incubated with SP94 or transfected with tubulin-mCherry before being
incubated with SP94-core protein (Figure 5).
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before they were incubated with SP94-core (fused with EGFP) protein at a concentration of 100 µM
for two hours. The results revealed an increase in the efficacy of binding affinity on the cells that are
transfected with plasmids expressing Grp78-mCherry compared to cells transfected with plasmids
expressing tubulin-mCherry at magnification 100×.

4. Discussion

VLPs have been extensively utilized in vaccine development and therapeutic delivery,
with promising preclinical and clinical results. In this study, HCV core protein fused
with RGD and SP94 peptides were expressed by the baculovirus expression system to
produce two fusion proteins; SP94-core protein and RGD-core protein. The optimum
protein expression was obtained from infection Sf9 cells at MOI of 10 at 72 hpi. Although
most of the proteins, especially transmembrane proteins, that are expressed by baculovirus
are usually harvested at 48 hpi [16] before the compromization of the infected cells, we
found 72 hpi to be more efficient in expressing the HCV core proteins based on the intensity
of the fluorescence bands shown by in-gel fluorescence method.

The protein purification by NI-NTA affinity resin revealed that a small concentration
of protein particles was obtained in elution, while a high concentration of protein was
obtained in the flow-throw portion; this is perhaps due to the inaccessibility of the His-
tag residues to NI-NTA. This inaccessibility may be due to the assembly nature of the
core, one that may prompt interactions between the elements, fully or partially hiding
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the His-tag. It is worth noting that the His-Tag was added to the C terminus of the HCV
core, which is known to be involved in the proper folding [17]. Even with the addition
of chaotropic compounds and/or detergents allowing total or partial solubilization, the
presence of the C-terminal hydrophobic domain in the HCV core causes challenges with
purification, specifically chromatographic support [18,19]. Yvon and his colleagues found
difficulties in the purification of HCV core protein tagged with histidine in the C terminus,
and opted to use electrophoresis techniques with a solubilization buffer compatible with
electrophoresis. This buffer maintains an adequate amount of protein solubility during
the separation process [20]. However, his-tag seems not to affect the oligomerization of
the core, as the TEM results showed an average size of RGD-core VLPs and SP94-core
VLPs in the range of 30–60 nm, which agreed with previously reported results of HCV-
LP [6]. RGD peptides have some benefits for use in drug delivery applications; they can
attach to different integrin species, which are highly expressed on cancer cell surfaces,
especially α5β1 and αvβ3 integrin [21]. In this study, we found that the intensity of the
green fluorescence intensity, due to the binding affinity of RGD-core, was increased with
HeLa cells and Huh7 cells more than HepG2 cells. That may be due to an increase in the
expression of integrins levels especially (α5β1 and αvβ3) in HeLa cells and Huh7 cells,
compared to HepG2 cells, which are characterized by low expression of these two types
of integrins [22–25]. In addition, we found that RGD-core protein was slightly bound
with HEK-293T cells, which can be explained by the artificial immortalized nature of these
cellsas they contain fragments of Adenovirus 5 DNA and a mutant version of SV40 large
T antigen. Therefore, this slight binding may be due to the high presence of integrins on
the HEK-293T cell surface [26]. A previous study revealed that flowcytometric analysis
and immunocytochemistry results showed expression of different types of integrins on
HEK-293T cells, such as β3, β5, αvβ3, αvβ5, αvβ6, β1, and αv [27]. SP94 is a peptide
that targets HCC specifically, however, most studies used SP94 as a conjugated peptide
to target liver cancer cells in vitro and in vivo [28–30]. The usage of SP94 as a conjugated
chemical peptide is common, but it has some limitations. Synthetic peptides are now
widely available and may be manufactured in huge quantities at a low cost. They are more
resistant to enzymatic degradation and are more robust to pH and temperature fluctuations.
However, synthetic peptides have some limitations which should be considered. Most of
the chemically conjugated peptides are linked by polyethylene glycol (PEG), which has
many side effects, such as obscuring the protein’s surface, increasing the polypeptide’s
molecular size, lowering its renal traction, preventing antibodies or antigen-processing cells
from recognizing the target cells, and slowing proteolytic enzyme destruction. In addition,
PEG imparts the physicochemical properties of molecules, allowing them to be altered [31].
Therefore, our target in this study is to design genetically engineered peptides (SP94 and
RGD) to avoid some limitations of chemically synthetic peptides on other nanocarriers. In
this study, SP94 was designed as a genetically engineered peptide fused with EGFP-core,
and it showed specificity for liver cancer cells HepG2 and Huh7 at a concentration of
100 µM, which is expected and in agreement with previous studies [28–30].

Grp78 is a multifunctional protein, which is mainly located in ER and activated after
ER stress [32]. As mentioned above, Grp78 is a possible specific targeted receptor for SP94.
Therefore, we wanted to confirm these previous results by increasing Grp78 expression
in the different cell lines to investigate its role in the VLPs binding rate, as indicated by
green fluorescence colocalization with Grp78, as shown in Figures 4 and 5. To determine
whether Grp78 could play a role in enhancing the binding affinity of SP94-core and RGD-
core proteins, Grp78-mCherry was overexpressed in HeLa cells and HepG2 cells; while
overexpressing tubulin-mCherry was used as a control. We chose tubulin in this study
as a control because it is an abundant cellular protein. A previous study revealed that
there is a crosstalk between integrins and tubulin, which has an effect, and is attributed to
RGD binding on the cell surface [33]. Our findings showed that overexpression of Grp78-
mCherry in HepG2 cells increased the binding efficiency when incubated with SP94-core
protein and RGD-core protein for 2 h compared to the overexpression of tubulin-mCherry,
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which exhibited no change in the binding affinity of the two fusion proteins, as shown in
Figures 4 and 5. In addition, we found that overexpression of Grp78-mCherry increased the
binding affinity in HeLa cells after incubation with SP94-core protein and RGD-core protein,
where HeLa cells are non-liver cancer cells, and SP94 peptide is specifically and exclusively
targeting liver cancer cells, as shown in Figure 5. These results confirmed the sole role of
GRP78 as an entry mediator for SP94 even in non-liver cancer cells. However, the RGD’s
increased binding efficacy may be due to the effect of overexpression of Grp78 on ECM,
cell-cell adhesion, and increased expression of proteins in ECM, including integrins, which
are the main target of the RGD peptides [34].

5. Conclusions

It is confirmed that the core-EGFP protein tagged with the SP94 peptide is specific for
targeting liver cancer cells, while the VLP tagged with RGD peptide targets most types
of cancer cells. The SP94 peptide works well as a fused peptide, not just as a conjugated
peptide, as commonly used. In addition, it was confirmed that GRP78 is the main binding
receptor for SP94 peptides, and can modulate integrins to increase RGD binding efficacy.
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