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Abstract: Neuropsychiatric complications, in particular cognitive and depressive disorders, are
common consequences of ischemic stroke (IS) and complicate the rehabilitation, quality of life, and
social adaptation of patients. The hypothalamic–pituitary–adrenal (HPA) system, sympathoadrenal
medullary system (SAMS), and inflammatory processes are believed to be involved in the patho-
genesis of these disorders. This study aimed to explore these systems in IS patients, including
those with post-stroke cognitive and depressive disorders, within a year after IS. Indices of the
HPA axis, inflammatory system, and SAMS were measured in blood serum (cortisol, interleukin-6
(IL-6)), plasma (adrenocorticotropic hormone), and saliva (cortisol, α-amylase). During one year after
mild/moderate IS (NIHSS score 5.9 ± 4.3), serum cortisol and salivary α-amylase levels remained
elevated in the total cohort. In the group with further cognitive decline, serum and salivary cortisol
levels were elevated during the acute period of IS. In the group with poststroke depressive disorder,
salivary α-amylase was constantly elevated, while serum IL-6 was minimal during the acute period.
The results suggest prolonged hyperactivation of the HPA axis and SAMS after IS. Specifically, post-
stroke cognitive impairment was associated with hyperactivation of the HPA axis during the acute IS
period, while post-stroke depressive disorder was associated with the chronic inflammatory process
and hyperactivation of SAMS during the follow-up period.

Keywords: ischemic stroke; hypothalamic–pituitary–adrenal system; sympathoadrenal medullary
system; interleukin 6; cortisol; post-stroke depressive disorder; post-stroke cognitive impairment

1. Introduction

Ischemic stroke (IS) remains one of the most critical medical and social problems due to
high morbidity, high mortality rate, and subsequent persistent disability of patients [1]. An
equally important medical and social problem is the set of neuropsychiatric complications,
including post-stroke cognitive and depressive disorders [2,3]. These disorders often de-
velop after stroke, are frequently comorbid, and significantly complicate the rehabilitation,
everyday life, and social adaptation of patients, significantly reducing their quality of life.

Post-stroke cognitive impairment (PSCI) occurs in about one third of patients in the
first month after a stroke [4] and persists for at least six months [5,6]. Changes in population
demography, in particular, as well as increased life expectancy and improved survival after
stroke have stimulated an increase in the absolute number of people with PSCI. Yet, despite
the urgency of the problem, effective therapeutic approaches for PSCI prevention have not
been developed so far, and revealing the risk factors of PSCI remains a live issue. PSCI
is often comorbid with a post-stroke depressive disorder (PSDD) [7] developing in about
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30% of patients within five years after a stroke [8,9]. This complicates the diagnosis and
obstructs the choice of a subsequent adequate treatment [10].

In spite of extensive studies, the etiology and pathogenesis of PSCI and PSDD remain
rather obscure. So far, no reliable correlation between the severity of focal brain injury and
the probability of developing PSCI and PSDD has been found [11]. It has been hypothesized
that focal brain injury results in uncontrolled activation of proinflammatory processes,
inducing the disruption of the hypothalamic–pituitary–adrenal (HPA) axis control and
hyperactivation of the HPA axis. The increased production of HPA hormones results in
alterations in the expression and properties of corticoid receptors in key brain structures,
primarily the limbic system, thus changing the regulatory mechanisms of the whole system
controlled by negative feedback. Collectively, this leads to pathological functional and
morphological impairments of most stress-sensitive brain areas—first and foremost the
hippocampus with a high density of glucocorticoid receptors [12]. The hippocampus is a
key structure involved in the formation of both memory and emotions, and its damage
contributes to the occurrence of both cognitive and depressive disorders [13]. Besides the
HPA axis, another leading neuroendocrine axis responsible for adaptation to stress is the
sympathoadrenal medullary system (SAMS). The time course of α-amylase activity in the
saliva is routinely used as a non-invasive index of SAMS activation [14]. Surprisingly,
the extent and specific mechanisms of SAMS involvement in the development of PSCI
and PSDD, as well as its interaction with the HPA system in the development of these
post-stroke disorders remain virtually unexplored.

Thus, a comparative and comprehensive analysis of the status of HPA, SAMS, proin-
flammatory systems, and clinical parameters of patients performed at different post-stroke
periods can provide important information on the involvement of these systems in the
development of PSCI and PSDD. Potentially, such a study can reveal interrelations between
these systems and contribute to developing approaches for the assessment of risks and
prevention of these post-stroke disorders. The aims of this study were: (a) following the
time course of changes in the biochemical indices of the HPA system, SAMS, and proin-
flammatory cytokine system in patients within a year of ischemic stroke (IS); (b) finding
associations between these changes and the clinical parameters of the patients; and (c)
assessing potential corticoid-dependent, neuroinflammation-mediated, and SAMS-related
mechanisms of PSCI and PSDD development.

2. Materials and Methods
2.1. Subjects

Forty-five patients (33 men, 12 women, mean age 56 ± 5 years) hospitalized and
treated at Konchalovsky Hospital of Moscow Health Care Department in 2019–2022 were
selected for the study. For the control group, 32 healthy volunteers (19 men, 13 women,
mean age 57 ± 4 years) were recruited.

The inclusion criteria for the IS patients were: age 45–80 years; ischemic cerebral
infarction of hemispheric localization not involving limbic structures; mild to moderate
stroke severity (1–15 points on the US National Institute of Health Stroke Severity Scale
(NIHSS); admission to the hospital not later than 48 h after the CI. The exclusion criteria
for all study participants were: previous stroke; craniocerebral injury with residual focal
changes on CT/MRI or accompanied by loss of consciousness in the history; cognitive and
depressive disorders in the history; presence of acute or chronic somatic and hormonal
diseases; presence of alcohol or drug addiction.

The patients received therapy aimed at lowering blood pressure (Amlodipine, Enalapril,
Moxonidine, Bisoprolol, Losartan); aimed at restoring blood flow in the vessel due to the
dissolution of the thrombus inside the vascular bed (Actilyse, Aspirin); they were also
treated with antioxidants (Mexidol), nootropics (Neipilept, Cerebrolysin), vasodilators
(Magnesium sulfate), and antiarrhythmic drugs (Atorvastatin).
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Socio-demographic information and medical and life history were collected from
patients after stroke during the initial hospitalization. The focus of ischemic brain lesions
was also determined by CT or MRI in all patients on admission.

Informed consent to participate in the study was signed by each included subject.
Clinical and laboratory examinations were performed:

- For 45 patients (33 men/12 women) in the acute period after stroke;
- For 41 patients (32 men/9 women) in the acute period and 30 days after stroke;
- For 33 patients (27 men/6 women) in the acute period, 30 days, and 180 days af-

ter stroke;
- For 29 patients (24 men/5 women) in the acute period, 30 days, 180 days, and 365 days

after stroke;
- For control group participants (HC).

This study adhered to the tenets of the Declaration of Helsinki and had local ethics
committee approval (#42, 23 August 2019) with informed consent obtained from all subjects.

2.2. Clinical Examination

Clinical examination included the evaluation of neurological, psychiatric, and cog-
nitive parameters of the subjects by a neurologist and neuropsychologist based on the
patient’s complaints, information obtained from third parties, and the results of the follow-
ing neurological and psychometric tests:

The National Institutes of Health Stroke Scale, NIHSS—to assess the neurological
status [15];

Montreal Cognitive Assessment, MoCA—to assess the cognitive status [16];
Hospital Anxiety and Depression Scale, HADS—to assess the psychoemotional sta-

tus [17];
Beck Depression Inventory, BDI—to assess the depressive states [18];
Hamilton Rating Scale for Depression, HAM—to assess the depressive states [19];
Perceived Stress Scale, PSS—to assess the level of perceived stress [20];
The Holmes and Rahe Stress Inventory, or Social Readjustment Rating Scale, SRRS—to

assess the stress level [21].
Modified Rankine Scale, mRS—to assess the degree of disability after a stroke [22].
Barthel Index for Activities of Daily Living, ADL—to assess daily life activity [23].
Stroop test—to assess the delay in reaction time between congruent and incongruent

stimuli [24].
Luria memory words test—to assess different aspects of executive function, including

the execution of a learned motor program, inhibitory control, attentional flexibility, working
memory, and motor planning [25].

Head’s probe—to assess the spatial organization of movements [26].
Rey–Osterrieth complex figure test—to assess the visio-constructional ability and

visual memory of neuropsychiatric disorders, including copying and recall tests [27].
The acoustic gnosis tests—to assess the perception of rhythms and the recognition of

nonspeech sounds [28].

2.3. Laboratory Examination
2.3.1. Serum and Blood Plasma

Blood sampling in patients at all examination periods, as well as in participants of
the control group, was performed from the ulnar vein in the morning hours on an empty
stomach into vacuum tubes with a S-Monovettec clotting activator to obtain blood serum
and into vacuum tubes with S-Monovettec K3 EDTA to obtain blood plasma followed by
centrifugation at 2000× g for 15 min at 4 ◦C.

The laboratory study included: the determination of baseline parameters of lipid,
carbohydrate, and protein metabolism; assessment of adrenocorticotropic hormone (ACTH)
level in blood plasma by enzyme immunoassay using ACTH ELISA Kits (Biomerica, Inc.,
Irvine, CA, USA); assessment of cortisol and interleukin-6 (IL-6) levels in blood serum
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by enzymatically amplified chemiluminescence on an Access2 immunochemical analyzer
(Beckman Coulter, Brea, CA, USA) with appropriate kits (Beckman Coulter, Brea, CA, USA).

2.3.2. Saliva

Saliva samples for cortisol and α-amylase assessment were collected in SaliCap low-
adhesion tubes (IBL, Stockholm, Sweden) in an amount of approximately 1 mL, in the
afternoon between 14:30 and 15:30 in order to minimize cortisol fluctuations. The procedure
began at least 90 min after drug and food intake, and the oral cavity was rinsed thoroughly
with water no later than 10 min before sampling. None of the participants had inflammatory
or other visible changes in the oral cavity. All patients had a sufficient cognitive level to
perform the procedure. Colored and cloudy saliva samples were discarded.

Saliva samples were centrifuged at 2000× g for 15 min. The supernatant fraction
was collected in a clean test tube. Cortisol concentration was measured by enzymatically
amplified chemiluminescence on an Access2 immunochemical analyzer (Beckman Coulter,
Brea, CA, USA) using an appropriate kit (Beckman Coulter, Brea, CA, USA).

Before determining α-amylase activity, saliva samples were diluted 400-fold with
sodium phosphate buffer (PBS, pH 7.2). The activity of α-amylase was measured using
the kinetic colorimetric method on an ILAB Aries biochemical analyzer (Instrumentation
Laboratory, Bedford, MA, USA).

2.3.3. Hair Cortisol

Hair samples were collected at the posterior vertex of the scalp by cutting the hair
as close as possible to the skin in the first days and 30 days after stroke. Hair samples
were stored in separate airtight plastic containers until extraction. One centimeter of hair
closest to the root was used for the analysis, corresponding to approximately 1 month
prior to the study. The extraction and assessment of cortisol were performed as described
in [29]. Cortisol measurements were performed using the Access cortisol kit (Beckman
Coulter, Brea, CA, USA) for immunoassay for competitive interaction, in accordance with
instructions provided by the manufacturer. Samples were analyzed using the ACCESS® 2
automatic immunoassay analyzer (Beckman Coulter, Brea, CA, USA).

2.4. Statistical Analysis

Statistical analysis was performed using STATISTICA 10.0 (StatSoft Inc., Tulsa, OK
USA) and GraphPad Prism version 9.4.1. software (GraphPad Software, Inc., San Diego,
CA, USA). The normality of distribution was determined using the Shapiro–Wilk test.
Fisher’s exact test was performed and Student’s t-test was used to compare two unrelated
samples. The results are plotted as median with quartiles. The statistical significance of
differences between unrelated samples with a non-normal distribution was determined
using the Kruskal–Wallis test, followed by post hoc analysis (Dunn’s test). To analyze the
statistical significance of differences between unrelated samples with normal distributions,
a one-factor analysis of variance (ANOVA) followed by post hoc analysis (Tukey test)
were used. For related samples, repeated measures analysis of variance (RM-ANOVA) or
mixed analysis of variance (mixed-effects model) followed by post hoc analysis (Tukey or
Sidak test) were used. Differences were considered significant at p < 0.05. A backward
logistic regression model was used to quantify associations between the assumed predictor
variables and this binominal outcome variable in either of the post-stroke depression or
post-stroke cognitive decline components. The significance level for each variable’s entry
to the model was set at 0.05. A logistic regression model involves some independent
(predictor) variables (nominal or continuous) that may be used to predict a dependent
(outcome) binominal variable. The input variables for both models included age, patient
gender, parameters of neuropsychiatric scales as well as biochemical parameters.
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3. Results
3.1. Time Course of Laboratory Markers after IS: Comparison with HC

The patients included in the study had a mild/moderate IS (NIHSS score 5.9 ± 4.3)
with predominant localization in the middle cerebral artery (73%). Stroke with right-
sided lateralization was detected in 49% of patients, with left-sided lateralization in 51%.
Dyslipidemia was diagnosed in 27%, arrhythmia in 9%, diabetes mellitus in 11%, and
arterial hypertension in 85% of patients. Six months after stroke, 58% of patients were
diagnosed with cognitive and/or depressive disorders, which persisted until the end of the
study period.

A comparison of laboratory markers of HPA (blood plasma adrenocorticotropic hor-
mone (ACTH), salivary cortisol), SAMS (salivary α-amylase), proinflammatory cytokine
system (interleukin-6, IL-6), evaluated at different stages in patients after IS was performed
with healthy subjects (healthy control, HC) of similar age (p = 0.8), gender (p = 0.2), and
sociodemographic characteristics.

It should be noted that most of the blood cortisol is protein-bound, mostly with
corticoid-binding globulin (80%) and albumin (10%). The remaining 10% represents a small
portion of free unbound blood cortisol in its biologically active form. However, since only
the free form of cortisol is able to permeate the saliva, the measurement of salivary cortisol
is considered a more reliable alternative for measuring cortisol in blood serum [15]. In the
present study, cortisol levels in saliva were significantly higher in post-stroke patients as
compared to those in HC at all follow-up time points, starting from day 30 after IS and
reaching their maximal levels one year after IS (Figure 1a).
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Figure 1. Time course of salivary cortisol (a), α-amylase (b), and serum IL-6 (c) within one year
in IS patients and HC (CONTROL) group. Statistical differences between groups were assessed
by Kruskal–Wallis ANOVA followed by post hoc Dunn’s test. # p < 0.1, * p < 0.05, *** p < 0.001,
**** p < 0.0001. Kruskal–Wallis ANOVA: (a): p = 0.0002; (b): p = 0.0003, (c): p = 0.0001. HC, n = 32;
patients after IS day 1, n = 45; day 30, n = 41; day 180, n = 33; day 365, n = 29.
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The activity of α-amylase in the saliva of patients, a noninvasive indicator of SAMS
activity, was lower during the acute period after IS (a trend, p = 0.06) as compared to
corresponding values in the HC group (Figure 1b). Serum IL-6 level in IS patients was
significantly higher only in the acute period after IS as compared with the HC group
(Figure 1c).

3.2. Time Course of Clinical Indices and Laboratory Markers after IS

Clinical examination (assessment by a neurologist, NIHSS) demonstrated that neu-
rological deficits in patients after IS completely recovered soon after IS and NIHSS scores
remained low within a year (Figure 2).
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Figure 2. Neurological deficit according to the NIHSS scale within one year after IS. Statistical
differences between groups were assessed by one-way ANOVA (F (6, 285) =15.53, p = 0.0001) followed
by the post hoc Tukey test. **** p < 0.0001. Patients after IS day 1, n = 45; day 30, n = 41, day 180,
n = 33; day 365, n = 29.

Analyzing changes in laboratory markers after IS we should keep in mind that there
is no “zero” time point in IS patients. The first available time point, 1 day, reflects the
acute period corresponding to a definite point of the respective stress–response curve. The
second point, 30 days, may reflect either nominal normalization or chronic changes in the
level of the given index.

Salivary cortisol did not decrease after the acute period; on the contrary, it increased
one year after the IS (Figure 3a). However, plasma ACTH level did not change significantly
(p = 0.13) at either time point after IS (Figure 3b). Such imbalance may be indicative of a
negative feedback impairment in the HPA system after IS [11].

The salivary α-amylase activity demonstrated a significant and stable increase through-
out the year as compared to the acute period. This may be indicative either of a persistent
activation of SAMS during the post-stroke year, or of a decrease in SAMS functioning 1 day
after IS (Figure 3c). Serum IL-6 levels, maximal in the acute period, decreased, showing a
steady level during the year after SI (Figure 3d).

Thus, the time course of neurological deficit was similar to that of serum IL6, showing
apparent normalization of the status with time, while both salivary cortisol and α-amylase
demonstrated long-lasting increase as compared with respective acute values.

Hair cortisol level was 48.7 ± 5.7 pg/mg on admission and 40.5 ± 3.6 pg/mg 30 days
post-stroke (Mean ± SEM; p = 0.059, t-test) showing a decreasing trend after acute IS.
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within one year after IS. Statistical differences between groups were assessed by RM-ANOVA or by 
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0.13; (c): F (2.102, 48.35) = 7.659, p = 0.001; (d): F (2.393, 56.65) = 4.855, p = 0.008) followed by post hoc 

Tukey test. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Figure 3. Time course of salivary cortisol (a), plasma ACTH (b), α-amylase (c), and serum IL-6
(d) within one year after IS. Statistical differences between groups were assessed by RM-ANOVA or
by mixed-effects model ANOVA ((a): F (1.476, 36.89) = 5.352, p = 0.02; (b): F (1.919, 34.54) = 2.188,
p = 0.13; (c): F (2.102, 48.35) = 7.659, p = 0.001; (d): F (2.393, 56.65) = 4.855, p = 0.008) followed by post
hoc Tukey test. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.3. Time Course of Clinical Indices and Laboratory Markers after IS in Patients with and without
Cognitive Impairment (PSCI)

According to the results of clinical examination, some patients demonstrated persistent
cognitive impairment (opto-spatial agnosia and spatial apraxia, reduced attention and
memory, lack of criticism, and regulatory dyspraxia) as early as day 14 after IS. To assess
the potential involvement of each system (HPA, SAMS, and proinflammatory cytokines) in
the development of PSCI, IS patients were divided into two groups: with detected cognitive
impairment and without cognitive impairment.

Comparative characteristics of sociodemographic and clinical parameters, as well as
data from psychometric scales for the groups of patients with and without PSCI, are shown
in Table S1.

It should be noted that the significant difference between the groups of patients with
and without PSCI according to the MoCA scale revealed 7 days after IS was maintained
throughout the whole study period (Figure 4a), indicating a persistent change in the
cognitive status of this fraction of IS patients. However, the scores of the NIHSS reflecting
the neurological status of patients did not differ significantly between the groups with and
without PSCI throughout the study period (Figure 4b), indicating the apparent absence of a
significant association between neurological status and cognitive impairment after IS in the
cohort of patients in our study.
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Figure 4. Time course of MoCA scores (a) and NIHSS (b) in IS patients with and without PSCI.
Differences between groups were assessed by RM-ANOVA or by mixed-effects model ANOVA ((a): F
(3, 87) = 5.807, p = 0.001; (b): F (6, 177) = 0.9638, p = 0.45) followed by the post hoc Sidak test. MoCA
scores for groups without (n = 17) and with PSCI (n = 16), p = 0.0012. NIHSS for groups without
(n = 17) and with PSCI (n = 16), p = 0.5. * p < 0.05, **** p < 0.0001.

Analysis of the time course of changes in laboratory indices indicative of SAMS activity
(salivary α-amylase) and inflammation (IL-6) did not reveal statistically significant differ-
ences between the groups of patients with and without PSCI (p = 0.66, 0.35, respectively)
throughout the study period. However, significant changes between the groups were found
when assessing the time course of changes in cortisol levels in blood serum (p = 0.013)
and saliva (p = 0.07). Serum cortisol and saliva levels were higher in patients with PSCI in
the acute period of IS as compared to the corresponding parameters in patients without
cognitive impairment (Figure 5a,b). Yet, no significant differences between the groups were
found in the time course of ACTH levels in blood plasma (p = 0.53). The results indicate
that in the acute IS period, patients with detected cognitive impairment demonstrate a
higher degree of HPA hyperactivation as compared to patients without such impairment.
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Figure 5. Changes in cortisol levels in blood serum (a) and saliva (b) in the groups of patients
with and without cognitive impairment. Statistical differences between groups were assessed by
RM-ANOVA or by mixed-effects model ANOVA ((a): F (3, 60) = 3.876, p = 0.013; (b): F (3, 71) = 2.464,
p = 0.07) followed by post hoc analysis (Tukey test). # p < 0.1, * p < 0.05, ** p < 0.01. Group without
cognitive decline (n = 11); group with cognitive decline (n = 11).

The logistic regression showed that an increase of salivary cortisol by 1 nmol/L
significantly increased the odds ratio for PSCI 1.42 times while each year increased the
odds ratio 1.13 times (Table S3).
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3.4. Time Course of Changes in Clinical and Laboratory Parameters after IS in Patients with and
without Depressive Disorder

On the 30th day after the IS, 30% of patients who underwent clinical examination
were diagnosed with PSDD. To assess the contribution of each system (HPA, SAMS, and
proinflammatory cytokines) in the development of PSDD, patients were divided into two
groups: with and without a detected depressive disorder.

The comparative characteristics of sociodemographic and clinical parameters, as well
as the psychometric scales data for the groups of patients with and without PSDD, are
shown in Table S2.

The scores on the NIHSS scale evaluating the neurological states of patients in both
groups did not significantly differ throughout the study period (Figure 6a), which indirectly
indicates no significant influence of neurological status on the occurrence of PSDD in
patients after IS. However, significant differences in the HADS (Figure 6b), HAM, BDI,
PSS, and mRS scales between the groups of patients with and without PSDD detected one
month after the IS, persisted throughout the entire follow-up period. This is indicative of
stable changes in their psychoemotional status throughout the post-stroke year.
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Figure 6. Time course of NIHSS (a) and HADS scores (b) in patient groups with and without PSDD. 
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= 0.6; HADS scale for the group without depressive disorder (n = 23) and with depressive disorder 

(n = 10) p = 0.04. Statistical differences between groups were assessed by RM-ANOVA or by 

mixed-effects model ANOVA ((a): F (6, 177) = 0.8, p = 0.57; (b): F (3, 87) = 2.844, p = 0.04) followed by 

post hoc analysis (Sidak test). ** p < 0.01, *** p < 0.001. 

In the group of patients with detected PSDD, the level of α-amylase activity in saliva 

remained statistically significantly increased throughout the study period, staying stably 

high one year after IS. In the group of patients without detected PSDD, the level of 

α-amylase activity was increased only for the first six months after stroke, with subse-

Figure 6. Time course of NIHSS (a) and HADS scores (b) in patient groups with and without PSDD.
NIHSS scale for groups without depressive disorder (n = 23) and with depressive disorder (n = 10)
p = 0.6; HADS scale for the group without depressive disorder (n = 23) and with depressive disorder
(n = 10) p = 0.04. Statistical differences between groups were assessed by RM-ANOVA or by mixed-
effects model ANOVA ((a): F (6, 177) = 0.8, p = 0.57; (b): F (3, 87) = 2.844, p = 0.04) followed by post
hoc analysis (Sidak test). ** p < 0.01, *** p < 0.001.

In contrast to the data obtained when comparing the groups of patients with and
without PSCI, a comparative analysis of the HPA indices’ time course after IS did not
yield reliable differences. Comparing the groups of patients with and without PSDD, we
found significant differences neither in the changes in salivary nor serum cortisol levels,
nor ACTH in plasma (p = 0.75; 0.5; 0.9, respectively).

In the group of patients with detected PSDD, the level of α-amylase activity in saliva
remained statistically significantly increased throughout the study period, staying stably
high one year after IS. In the group of patients without detected PSDD, the level of α-
amylase activity was increased only for the first six months after stroke, with subsequent
normalization of the parameter (Figure 7a). Thus, we can assume that in patients with
diagnosed PSDD, SAMS hyperactivation was more prolonged as compared with patients
without PSDD.

A comparative analysis of proinflammatory system state in the groups of patients with
and without PSDD, with IL-6 as a key indicator, showed an important difference between
the groups. IL-6 levels in patients without PSDD were elevated only in the acute period
and “normalized” as early as day 30 after IS. By contrast, in patients diagnosed with PSDD,
the level of IL-6 did not change significantly during the whole follow-up period (Figure 7b).
Based on these results, we can assume that patients with diagnosed PSDD had impaired
reactivity of the proinflammatory cytokine system as compared with post-stroke patients
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without this disorder. The logistic regression could not reveal significant predictors for
PSDD in the cohort of patients studied.

Unfortunately, it was not possible to analyze the time course of changes in laboratory
markers reflecting HPA and SAMS functioning, as well as IL-6 in the group of patients with
comorbid PSCI and PSDD due to the small number of patients in this group. Therefore,
these data were not included in the analysis.
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with and without PSDD. Statistical differences between groups were assessed by RM-ANOVA or
mixed-effects model ANOVA ((a): F (3, 64) = 4.087, p = 0.01; (b): F (3, 62) = 3.789, p = 0.02) followed
by post hoc analysis (Tukey test). * p < 0.05, ** p < 0.01,*** p < 0.001, **** p < 0.0001. Group with PSDD
disorder (n = 9); group without PSDD (n = 21).

4. Discussion

Before discussing the data, it should be clearly understood that the first available
point in patients after IS is 1 day, the acute period. This means that we do not have (and
cannot have in any case) a “zero point”, a conventional “background” for either patient
or index. This fact significantly affects the interpretation of the time course data, making
it more presumptive. We also can neither exclude nor verify that in the patients who
developed PSCI or PSDD some indices might be initially abnormal. This is an obvious
though insoluble limitation of the study.

4.1. Delayed Post-Stroke Cognitive and Emotional Disturbances

In addition to immediate and long-lasting neurological deficits, IS can be followed
by the development of delayed cognitive and emotional disturbances. Progress in the
treatment and prevention of delayed consequences of IS has been frustratingly slow, and
the insufficient knowledge of their mechanisms is one of the reasons. Approximately
two-thirds of all middle-aged and elderly stroke patients develop cognitive impairment,
and one in three develops dementia [30]. Post-stroke depression, a relatively common
complication of IS, occurs in a significant number of patients and, similarly to cognitive
impairment, comprises an important complication of IS, leading to greater disability as
well as increased mortality [31]. Despite the extensive literature on this topic, there is no
agreement on the frequency or risk factors for post-stroke depression [32]. In our study,
about half of IS patients developed PSCI, while about one-third demonstrated PSDD.
The pathophysiology of post-stroke depression is multifactorial and probably involves
alterations in the monoamine and neurotrophic system, increased inflammation with
dysregulation of the HPA axis, and glutamate-mediated excitotoxicity [33].

4.2. Involvement of HPA Axis in IS consequences

The HPA axis dysfunction associated with stroke is generally neglected, though both
clinical data and the results from rodent models of IS show that glucocorticoids are tightly
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involved in IS-induced brain dysfunction (see [34] for review). Adrenal glucocorticoid
stress response in acute stroke is harmful. High cortisol levels are associated with poor
outcomes and mortality of patients with stroke [35]. In patients with acute IS, high serum
cortisol at admission correlated with clinical severity according to NIHSS, as well as poor
prognosis and functional outcome evaluated by the modified Rankin Scale [36]. In the
majority of studies, cortisol levels were high in the first week after IS, and higher cortisol
was associated with dependency, morbidity, depression, and mortality [37], though single
studies demonstrated that, although IS was associated with a change in serum cortisol
level, this change had no prognostic value [38]. In our study, comparative analysis of
patients after IS and HC group revealed significantly elevated cortisol levels during the
year after IS, starting from day 30 (Figure 1a), and persisting during the follow-up period
(Figure 3a), though no significant changes in ACTH levels could be detected (Figure 3b).
The results indicate that despite the complete recovery of neurological deficit in the cohort
studied (Figure 2), the patients had persistent disturbances in HPA functioning within a
year after stroke.

Gyawali et al. [39] demonstrated that compared with age-matched controls, IS long-
term survivors reported greater levels of perceived stress, and lower levels of resilience
which were independently associated with stroke outcomes. In particular, these relation-
ships were observed for cognitive outcomes including mood, memory, and communication.
Ample control of the HPA axis is vital for a better prognosis after IS. Hypercortisolism is
associated with cognitive dysfunction early after IS, while both high and low circulating
cortisol levels are associated with increased mortality after IS [40]. Serum cortisol level
was independently associated with cerebral small vessel disease burden and cognitive
impairment [41]. A higher salivary cortisol level after IS indicated a higher probability
of mild cognitive impairment occurrence, and the salivary cortisol level can be used as
a predictive marker for MCI occurrence [42]. Here we showed that patients with higher
cortisol levels in the acute period after the IS (Figure 5) subsequently developed cognitive
impairment, which persisted throughout the entire follow-up period (Figure 4b). These re-
sults confirm the data of the Tel Aviv Brain Acute Stroke Cohort (TABASCO) study [43]. The
involvement of stress-related endocrine dysregulation in the development of post-stroke
cognitive changes was assessed in a long-term study of patients who suffered a first mild to
moderate IS or transient ischemic attack; hair cortisol accumulation on hospital admission
was evaluated as an indicator of cortisol levels during a month before IS. Hair cortisol is
a retrospective measure of a previous time period based on the length of hair collected.
Since hair grows approximately 1 cm/month, the 1 cm-long segment of hair analyzed in
this study reflects cortisol accumulation within a month preceding IS [29]. High cortisol
levels in hair were shown to be significantly associated with worse cognitive outcomes at 6,
12, and 24 months after stroke [43]. A trend toward augmented acute hair cortisol levels
found in our study is consistent with increased stress levels preceding IS. However, we
were unable to reveal any difference in this index between groups with and without PSCI
or PSDD, most probably because of the rather small cohort of IS patients in our study. Later,
the TABASCO group demonstrated that higher salivary cortisol levels immediately after IS
were associated with greater subsequent cognitive deficits, brain atrophy, and white matter
damage up to 24 months after stroke [44]. Patients with high salivary cortisol at baseline
and throughout the study had worse memory compared to patients with low cortisol levels.
A number of other studies have confirmed the relationship between elevated cortisol levels
and impaired cognitive performance [45–47]. In our study, salivary cortisol during the
acute post-stroke period and age were predictors of PSDD (Table S3)

The altered HPA functioning could induce fluctuations of cortisol levels and be associ-
ated with the onset of post-stroke depression [48], and the expression of serum cortisol level
is believed to be closely correlated with the incidence of depression after IS [49]. Poststroke
depression is closely related to a dysfunctional HPA axis indicated by blunted salivary
cortisol awakening response [50]. Anhedonia in IS patients was associated with the volume
of stroke lesions in the parahippocampal gyrus and with dysfunction of the HPA assessed
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by salivary cortisol levels [51]. However, in the present study, we failed to find significant
differences in serum or salivary cortisol and plasma ACTH between patients with and
without PSDD.

4.3. Involvement of SAMS in IS Consequences

The functional activity of another important stress-related neuroendocrine system, the
SAMS, is routinely accessed using changes in salivary α-amylase. It is well known that
salivary α-amylase secretion is regulated by the autonomic nervous system, and its level
increases with sympathetic nervous system activation in response to stress [14,52,53]. The
levels of salivary α-amylase in stroke patients were not clearly investigated, but available
results indicate that patients with stroke have higher salivary α-amylase activity compared
to healthy subjects [54]. Changes in SAMS may be involved in the development of neu-
ropsychiatric disorders, though the data are scarce and controversial [55,56]. It is suggested
that while salivary cortisol can differentiate between healthy controls and patients with
psychiatric disorders, salivary α-amylase may be a putative candidate biomarker for major
depression; specifically, salivary α-amylase at awakening and not cortisol differentiates
major depression from other psychiatric disorders in outpatients [57].

In the present study α-amylase activity in the saliva of patients after IS was increased
on day 30 after SI as compared to the values during the acute period, and it stayed stable,
remaining elevated for a year (Figure 3c). We can suggest that persistent activation of the
SAMS detected during the follow-up period takes place in our cohort of patients after
an IS. Importantly, the most pronounced and prolonged SAMS activation was evident
in patients with diagnosed PSDD as compared to poststroke patients without identified
depression (Figure 7a). It is believed that the level of α-amylase activity in saliva reflects
noradrenaline changes [58]. Noradrenaline is synthesized in the locus coeruleus and enters
various structures of the limbic system (amygdala, hippocampus, and hypothalamus),
where it binds to α- and β-adrenoreceptors [59]. A number of authors associate the
development of depressive disorder with changes in the density and sensitivity of α2a-
adrenoreceptors in the brain, as well as to decreased levels of noradrenaline transporter
in the locus coeruleus [60,61]. It can be assumed that the development of post-stroke
depression involves a mechanism related to neurotransmission in SAMS.

4.4. Involvement of Inflammatory Response in IS Consequences

Researchers are increasingly interested in the inflammatory response, in particular,
in the role of pro-inflammatory cytokines, triggered by cerebral ischemia, and their in-
volvement in the consequences of IS [62]. Interleukins play multiple roles in IS through
information transmission, activation, and regulation of immune cells, and thus impacting
the outcome of IS [63]. It has been reported that compared to controls, IS patients have
higher IL-6, IL-8, and TNFα protein in plasma and lower IL-6, IL-8, TNFα, IL-1α, and
IL-1β mRNA in leukocytes within 72 h after stroke. However, only the elevation of IL-6
correlated with the severity and prognosis of stroke, and that of other cytokines in plasma
proteins after IS appeared secondary to IL-6 [64]. Thus, IL-6 may be the key mediator of
the circulating pro-inflammatory cytokines network.

Though the association between inflammatory indices and cognitive decline in post-
stroke situations remains obscure, recent data suggest an involvement of IL-6 in PSCI.
Wang et al. showed that after IS or transient ischemic attacks, elevated IL-6 levels were
independently associated with the reduction in MoCA [65]. In this study, post-stroke
cognitive decline one year after IS was detected in about 24% of patients. Patients in
the highest quartile of IL-6 level had a higher risk of cognitive decline than those in the
first quartile, after adjusting for potential risk factors. Accumulating evidence suggests
that pro-inflammatory cytokines, in particular peripheral IL-6, play an important role in
the pathogenesis of depression [66]. Changes in cytokines have been hypothesized to be
associated with the etiology of post-stroke depression, in particular. The IL-6 level and
afternoon cortisol levels were elevated significantly in IS patients with PSDD [47]. The
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plasma level of IL-6, but not TNFα, sIL-6R, or IL-1ra, was higher in patients who developed
depressive symptoms at 3 months after IS; plasma IL-6 predicted the severity of depressive
symptoms at 3 months after stroke [67].

In the present study, using IL-6 as a reference cytokine, we have shown that the
proinflammatory cytokine system is activated in patients in the acute period after IS as
compared with the control group (Figure 1c). In IS patients, maximal IL-6 level was
detected during the acute period, decreased by day 30, and remained stable during the
whole follow-up period (Figure 3d). However, in patients with a PSDD, IL-6 levels did not
change after the acute period, remaining constant, while in patients without a depressive
disorder, this parameter decreased by 30 days after IS (Figure 7b). Our results confirm
numerous data from clinical studies demonstrating increased levels of IL-6 in the blood of
depressed patients [68]. Uncontrolled activation of the proinflammatory cytokine system
occurs during brain damage, which causes disruption of the HPA axis functioning and
may be a trigger mechanism for the development of PSDD [69]. In the present study, this is
indirectly confirmed by the fact that the group of patients with PSDD, unlike post-stroke
patients without a depressive disorder, had a higher Perceived Stress Scale (PSS) score
(Table S2).

5. Conclusions

Changes in HPA axis indicators (serum and salivary cortisol) and SAMS (salivary α-
amylase) during the year after moderate IS indicate disturbances in the functioning of these
systems, particularly, hyperactivation. The progress of poststroke cognitive impairment
is associated with hyperactivation of the HPA axis in the acute period after IS, while the
development of poststroke depressive disorder is associated with a chronic inflammatory
process and hyperactivation of SAMS during the follow-up period. Though logistic regres-
sion could not reveal significant predictors for PSDD in our cohort of patients, an increase
in salivary cortisol and in age can predict the development of PSCI. An essential line of
research in the future would be the assessment of neurohumoral indices and post-stroke
cognitive and depressive disturbances for different types of stroke. In particular, this may
be important for lacunar versus non-lacunar acute stroke, since the pathophysiology, prog-
nosis, and clinical features of acute small-vessel ischemic strokes are different from other
types of cerebral infarcts, lacunar infarcts demonstrating a better functional prognosis [70].

6. Limitations

One of the major limitations of this study is the rather small cohort of IS patients,
especially at the end of the follow-up period. This limitation prevented us from analyzing
the time course of laboratory markers reflecting HPA and SAMS functioning, as well as
IL-6 in the group of patients with comorbid PSCI and PSDD which was too small for a
decent statistical analysis. An unavoidable limitation of our prospective study design is the
impossibility of having the baseline (before the stroke) laboratory data.
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