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Abstract: Mycoviruses are viruses that specifically infect and replicate in fungi. Several mycoviruses
have been previously reported in Pleurotus ostreatus, including the oyster mushroom spherical virus
(OMSV), oyster mushroom isometric virus (OMIV), Pleurotus ostreatus spherical virus (POSV), and
Pleurotus ostreatus virus 1 (PoV1). This study was designed to develop a multiplex RT-PCR for
simultaneous detection and differentiation of the four P. ostreatus mycoviruses. Four pairs of primers
were designed from conserved regions based on the reported sequences and the multiplex RT-PCR
products were 672 bp for OMSV, 540 bp for OMIV, 310 bp for POSV, and 200 bp for PoV1. The optimal
annealing temperature of the multiplex RT-PCR was 62 ◦C and the detection limits of the plasmids
were 100 fg for OMSV and OMIV and 1 pg for POSV and PoV1. This technique was successfully
applied for the detection of OMSV, OMIV, and POSV from different P. ostreatus strains and the plasmid
containing the PoV1 sequence. This methodology can serve as a powerful diagnostic tool for the
survey of the incidence and epidemiology of the four P. ostreatus mycoviruses, further contributing to
the prevention and treatment of mycoviral diseases in P. ostreatus.

Keywords: Pleurotus ostreatus; multiplex PCR; oyster mushroom spherical virus; oyster mushroom
isometric virus; Pleurotus ostreatus spherical virus; Pleurotus ostreatus virus 1

1. Introduction

Mycoviruses, also known as fungal viruses, specifically infect and replicate within fungi.
Mycoviruses were discovered relatively late, compared to the viruses of plants, animals, and
prokaryotes [1–3]. The majority of mycoviruses that have been previously reported contain
double-stranded (ds)RNAs genomes, while a small number have single-stranded (ss)RNA
or DNA genomes [4]. It is very difficult to identify and characterize new mycoviruses using
traditional methods. In recent years, high-throughput sequencing technologies were gradually
used for exploration and identification new mycoviruses among fungi [5,6]. The mycovirus
was first found and isolated in the diseased mushrooms of Agaricus bisporus [7]. With the
increasing number of edible mushroom species, several others have been reported to be
infected with mycoviruses including Pleurotus ostreatus, Lentinula edodes, Flammulina velutipes,
Cyclocybe aegerita, Volvariella volvacea, Boletus edulis, Armillaria, Grifola frondose, Auricularia heimuer,
Leucocybe candicans, Picoa juniperi, and Bondarzewia berkeleyi [3,8–23]. The majority of known my-
coviruses are latent and their infections show no apparent symptoms in their hosts. However, a
few mycoviruses have been known to cause damage to their host fungus [24]. In edible mush-
rooms, mycoviruses often cause severe diseases with symptoms including mycelium degen-
eration, deformation of fruiting bodies, and reduction in the yield [25–27]. Pleurotus ostreatus
(oyster mushroom) is a widely cultivated edible fungus worldwide, with high nutritional
and medicinal values [28]. Several mycoviruses have been previously discovered and
identified in P. ostreatus, including dsRNA viruses, such as an oyster mushroom isometric
virus (OMIV), Pleurotus ostreatus spherical virus (POSV), Pleurotus ostreatus virus 1 (PoV1),
and (the only ssRNA virus) oyster mushroom spherical virus (OMSV) [12,15,29–31]. In-
fection with various mycoviruses differs in the effects on the morphology and physiology
of P. ostreatus. Recently, studies have shown that an OMSV-Chinese isolate can significantly
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inhibit mycelial growth, cause fruiting body deformation, and yield loss in P. ostreatus [32].
In contrast, P. ostreatus infected with PoV1 displayed no distinct morphological or growth
phenotypes [29]. The POSV was found and identified in the P. ostreatus TD300 strain,
which causes strain degeneration [12]. The infection of PoV-ASI2792 influenced the spawn
growth and fruiting body development by decreasing the activity of extracellular enzymes
such as lignocellulolytic enzymes in P. ostreatus [25]. In southern Korea, the OMIV was
isolated and characterized from the diseased P. ostreatus cultivar Suhan [15]. The dis-
eased P. ostreatus cultivar Chunchu coinfected with OMSV and OMIV displayed a delay in
mycelial growth, malformations of fruiting bodies, and yield reduction [28].

Mycoviruses have no known natural vectors and are usually horizontally transmitted
via hyphal anastomosis and vertically transmitted via sporulation in nature [33]. Studies
have shown that Lentinula edodes spherical virus (LeSV) was vertically transmitted by
basidiospores in L. edodes [34]. A recent transmission study on A. bisporus revealed that
the mushroom virus X (MVX) can be horizontally transferred via mycelia from an infected
strain to five other uninfected strains [35]. Our previous studies have shown that the OMSV
can be horizontally transmitted from the OMSV-infected strain to a virus-cured strain [31].
Due to these transmission patterns, it can be a challenge to prevent mycovirus diseases,
especially in edible mushrooms. As reported, a few attempts to eliminate mycovirus
infections have been described for several edible mushroom species. For example, the
methods of growth on a limited nutrient medium containing cAMP and rifamycin, single
hyphal tip cultures combined with high-temperature treatment, protoplast regeneration, or
mycelial fragmentation were used for curing the OMSV, OMIV, POSV, and PoV-ASI2792
from the virus infected P. ostreatus strains [12,28,31,36]. Moreover, ribavirin treatment and
mycelial fragmentation were also used for curing Lentinula edodes mycovirus HKB (LeV-
HKB) and L. edodes partitivirus 1 (LePV1) from Lentinula edodes [37]. At present, the most
effective control strategy is to detect and eliminate the virus from the virus-infected strain.

PCR is a commonly used technique for the detection and diagnosis of viruses due
to its high sensitivity and specificity. Previously, the routine reverse transcription PCR
(RT-PCR) technique has been used for the detection of viruses including OMSV, OMIV,
PoV1, and POSV. Moreover, serological methods have also been used for the detection
of OMSV and OMIV [15,38]. A surface plasmon resonance biosensor chip and a triple
antibody sandwich-ELISA system have been successfully developed for the detection of
OMSV and OMIV, respectively [15,38]. However, these methods could not distinguish the
four P. ostreatus mycoviruses in one reaction. Multiplex RT-PCR has become a powerful tool
for the simultaneous detection of several different viruses at a time [39,40]. In the present
study, we developed a multiplex RT-PCR assay for the simultaneous detection of the four
known P. ostreatus viruses. This is a simple and effective method to identify single or mixed
viral infections in various P. ostreatus cultivars. This study represents the first time that the
multiplex RT-PCR technique has been used to detect P. ostreatus mycoviruses.

2. Materials and Methods
2.1. Viruses

The P. ostreatus strains infected with OMSV, OMIV, POSV, and PoV1 were used for the
multiplex RT-PCR detection. The pUC vectors containing genomic sequences of OMSV
(Accession No. OL546221), OMIV (Accession No. AY308801.1), POSV (Accession No.
GQ505291), and PoV1 (Accession No. NC006961.1 and AY533036.1) were used to in-
vestigate the optimal annealing temperature, sensitivity, and specificity of the multiplex
PCR detection.

2.2. Primer Design

The genomic sequences of OMSV (NC004560.1 and OL546221), OMIV (AY308801.1),
POSV (GQ505291.1), and PoV1 (NC006961.1 and AY533036.1) were obtained from the
GenBank nucleotide sequence database from the National Center for Biotechnology Infor-
mation (NCBI, https://www.ncbi.nlm.nih.gov/, accessed on 1 November 2022). Three
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pairs of specific primers (OMIV-F/R, POSV-F/R, and PoV1-F/R) were designed based on
the conserved RNA-dependent RNA polymerase (RdRp) gene sequences of OMIV, POSV,
and PoV1, respectively. One pair of primers (OMSV-F/R) were designed in the conserved
coat protein (CP) gene of OMSV for the multiplex RT-PCR amplification (Table 1).

Table 1. The primers used for the multiplex detection of the four P. ostreatus mycoviruses.

Primer Name Primer Sequence (5′ to 3′) Target Virus a Amplicon Size (bp)

OMSV-F ACCCCCCCAGGATCTCAAGCTTC
OMSV 672OMSV-R GAGATGTAGACRTTGAAAGC

OMIV-F AACATTGTTGATCACGCTCT
OMIV 540OMIV-R GGCTTCAGAATAAAGATTGT

POSV-F ATCWCATGGCTATCAACCTA
POSV 310POSV-R AGCTGAATTATCGTCACCCA

PoV1-F AAACTCGAAGAGTTCCTTTC
PoV1 200PoV1-R GCGCGTGGGCCACGTTCGGG

a OMSV, oyster mushroom spherical virus; OMIV, oyster mushroom isomeric virus; POSV, Pleurotus ostreatus
spherical virus; PoV1, Pleurotus ostreatus virus 1.

2.3. RNA Extraction

The P. ostreatus strains presented in Table 2 were cultured in solid potato dextrose agar
medium. After culturing at 25 ◦C for one week, 0.1 g mycelia of each strain were collected
for RNA extraction by using the RNA Easy Fast Plant Tissue Kit (Tiangen, Beijing, China).
The RNA was eluted in 50 µL RNase-free water and stored at −80 ◦C for future use.

2.4. Reverse Transcription

The complementary DNA (cDNA) was synthesized by using a reverse primer and M-
MLV reverse transcriptase (Promega, Madison, Wisconsin, USA). The reverse transcription
(RT) reaction was performed in a 10 µL RT mixture containing 2 µL total RNA (~1500 ng),
2 µL 5× RT Buffer, 1 µL reverse primers mixture (OMSV-R/OMIV-R/POSV-R/PoV1-R,
10 uM), 0.5 µL dNTP Mixture (2.5 mM each), 0.25 µL RNase Inhibitor (40 U/µL), 0.25 µL
MLV Reverse Transcriptase (200 U/µL) and 4 µL RNase Free ddH2O. The RT reaction tubes
were incubated at 37 ◦C for 1 h.

2.5. PCR Amplification

For uniplex PCR, the 20 µL mixture containing 2 µL cDNA template,10 µL 2× Taq PCR
MasterMix II (Tiangen, Beijing, China), 0.5 µL each of forward/reverse primers (10 µM),
and 7 µL ddH2O. For multiplex PCR, the 20 µL mixture containing 2 µL cDNA template,
10 µL 2× Taq PCR MasterMix II, 4 µL of multiplex primer mixture (containing 0.5 µL each
of forward and reverse primer for OMSV, OMIV, POSV, and PoV1, 10 µM), and 4 µL ddH2O.
A multiplex PCR program was set as follows: pre-denaturation at 95 ◦C for 5 min, followed
by 30 cycles of 3 steps including 95 ◦C for 30 s, 62 ◦C for 30 s, followed by 72 ◦C for 60 s and
a final extension at 72 ◦C for 10 min. After PCR amplification, the products were examined
by electrophoresis in 1.5% agarose gel. The healthy P. ostreatus sample (virus-cured strain
8129 [31]) acted as a negative control.

2.6. Cloning and Sequencing

Each of the mycoviruses infecting P. ostreatus was validated by RT-PCR and sequenc-
ing. The amplified target fragments of each mycovirus with specific primers were purified
and ligated into pMD19-T vector and then transformed into Escherichia coli DH5α compe-
tent cells. At least three positive recombinant clones were sequenced by Sangon Biotech
(Shanghai, China) Co., Ltd.
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Table 2. The names, sources, and presence of viruses in this study.

Number Strain
Name Source

Presence of Virus

OMSV OMIV POSV PoV1

1 8129 Yantai + – – –
2 DF5 Yangzhou + – – –
3 DF5-2 Liaocheng + – – –
4 969 Liaocheng + – – –
5 Kang-2 Liaocheng + – – –
6 Kang-3 Liaocheng + – – –
7 P89 Beijing + – – –
8 P99 Beijing + – – –
9 PG-0122-1 Yantai + + – –

10 Heiping Yantai + + – –
11 PG-ZP20 Yantai + + – –
12 TD300 Linyi – – + –
13 PG-2203 Jinan – – – –
14 PG-2204 Jinan – – – –
15 P2108 Dezhou + + – –
16 LD-0701 Weifang + – – –
17 LD-0704 Weifang – – – –
18 LD-0707 Weifang – – + –
19 LD-0719 Weifang – – – –
20 LD-1011 Qingdao + + – –
21 LD-1015 Qingdao + – – –
22 PGH-1011 Zibo – – + –
23 PGH-1012 Zibo – – – –
24 PGH-1014 Zibo + + – –
25 PGZ-1020 Weihai + – – –
26 PGZ-1021 Weihai + – – –
27 PGZ-1022 Weihai – – – –
28 Huimei Liaocheng – – – –
29 Xianfeng-1 Liaocheng – – – –
30 PG-0324 Yantai – – – –
31 WPG-1107 Yantai – – – –
32 8105 Yangzhou – – – –

33 Luping-
0417–5 Yantai – – – –

34 F803 Linyi – – – –
35 PG-ZP17 Yantai – – – –
36 LD-0328 Yantai – – – –

Note: “+” means infected, and “–” means non-infected.

3. Results
3.1. Establishment of the Multiplex RT-PCR Assay

The primers for OMSV, OMIV, POSV, and PoV1 produced amplicons of 672, 540, 310,
and 200 bp, respectively. In order to investigate the effect of the annealing temperature
on uniplex and multiplex RT-PCR, a gradient PCR was then performed over a range of
60.0–70.0 ◦C. Eight annealing temperatures (60.0, 61.0, 62.3, 64.0, 66.3, 68.1, 69.3, and 70.0 ◦C)
were tested for amplification optimization. Gel electrophoresis using ethidium bromide-
stained agarose gels were used to separate and visualize the amplified DNA products
corresponding to the targeted mycoviruses (Figure 1). When the annealing temperature
was 62.3 ◦C, the amplified bands were bright and clear. However, when the annealing
temperatures increased to 64.0 ◦C, the multiple bands amplified by the multiplex RT-PCR
became faint (Figure 1). According to the specificity and efficiency of amplification, the
optimal annealing temperature for multiplex RT-PCR was determined to be 62 ◦C. The
PCR program was optimized as follows: initial denaturation at 95 ◦C for 5 min; 30 cycles of
amplification (95 ◦C for 30 s, annealing at 62 ◦C for 30 s; elongation at 72 ◦C for 60 s); and a
final extension at 72 ◦C for 10 min.
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Figure 1. Optimization of the annealing temperature on uniplex RT-PCR detection of (a) OMSV (672
bp); (b) OMIV (540 bp); (c) POSV (310 bp); (d) PoV1 (200 bp) and (e) multiplex RT-PCR assay. N,
negative control, the healthy P. ostreatus sample. Lane M: GL DNA Marker2000. Lanes 1–8, 60.0, 61.0,
62.3, 64.0, 66.3, 68.1, 69.3, 70.0 ◦C.

3.2. Sensitivity of Multiplex RT-PCR

To evaluate the sensitivity of uniplex and multiplex PCR, 10-fold serial dilutions
of the purified plasmids pTOMIV, pTPOSV, pTPoV1, and pTOMSV were used as DNA
templates in the uniplex and multiplex PCR amplification. The results demonstrated that
the detection limits of the DNA quantity for uniplex PCR were 100 fg for OMSV, POSV,
PoV1, and 10 fg for OMIV (Figure 2). Using an equal mixture of the four plasmids as
templates for multiplex PCR, the detection limits were 100 fg for OMSV and OMIV and
1 pg for POSV and PoV1 (Figure 2).

3.3. Specificity of Multiplex RT-PCR

To validate the specificity of the multiplex RT-PCR assay, a PCR was conducted by
using the mixture of four pairs of primers in one tube, including single or mixed plasmids
as templates. It was determined that in the presence of single plasmid, mixtures of primer
pairs only amplified the virus corresponding single infection (Figure 3, lines 2–5). Mixed
plasmids using dual, triple or quadruple combinations of different templates were also
amplified simultaneously using multiplex RT-PCR (Figure 3, lines 6–16). Of all the cases
we tested, amplicons were produced by their corresponding mycovirus templates.

3.4. Detection of the Four Mycoviruses in Different P. ostreatus Strains

To evaluate specificity for the P. ostreatus mycoviruses detection, the established mul-
tiplex RT-PCR assay was used to determine the incidence of mycoviruses. The healthy
P. ostreatus sample (virus-cured strain 8129 [31]) acted as a negative control with no ob-
served virus amplification, as expected. The incidence of both single or mixed infections
in different P. ostreatus strains produced clear and specific target bands on an agarose gel
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(Figure 4). Among the 36 P. ostreatus strains presented in Table 2, twelve strains were singly
infected with OMSV, three strains were singly infected with POSV, and six strains were du-
ally infected with OMSV and OMIV (Figure 4). Although, neither triple nor quadruple viral
infection was detected, mixed infections of OMSV, OMIV, and POSV using combinations of
the P. ostreatus strains PG-ZP20 and TD300 were successfully amplified (Figure 4, line M1).
None of the collected 36 strains were infected with PoV1. The above results were confirmed
by the four uniplex RT-PCR assays (data not shown). These results demonstrated that
the multiplex RT-PCR technique specifically detected the four different mycoviruses in
P. ostreatus.

Curr. Issues Mol. Biol. 2022, 2, FOR PEER REVIEW 5783 
 

 

 
Figure 2. Detection limit based on ten-fold serial plasmid DNA dilutions of uniplex PCR and mul-
tiplex PCR detection. Uniplex PCR for (a) OMSV; (b) OMIV; (c) POSV; and (d) PoV1; (e) multiplex 
PCR. Lanes 1–8, 10 ng, 1 ng, 102 pg, 10 pg, 1 pg, 102 fg, 10 fg, and 1 fg of plasmids. N, negative 
control, the healthy P. ostreatus sample. Lane M: GL DNA Marker2000. The amplified gene sizes 
were 672, 540, 310, and 200 bp for OMSV, OMIV, POSV, and PoV1, respectively. 

3.3. Specificity of Multiplex RT-PCR 
To validate the specificity of the multiplex RT-PCR assay, a PCR was conducted by 

using the mixture of four pairs of primers in one tube, including single or mixed plas-
mids as templates. It was determined that in the presence of single plasmid, mixtures of 
primer pairs only amplified the virus corresponding single infection (Figure 3, lines 2–5). 
Mixed plasmids using dual, triple or quadruple combinations of different templates were 
also amplified simultaneously using multiplex RT-PCR (Figure 3, lines 6–16). Of all the 
cases we tested, amplicons were produced by their corresponding mycovirus templates. 

 
Figure 3. Specificity testing of multiplex PCR with single or mixed templates. Lane 1 shows the 
empty vector. Lanes 2–16 indicate the plasmids containing genome sequences of the PoV1, POSV, 
OMIV, OMSV, POSV + PoV1, PoV1+ OMIV, PoV1 + OMSV, POSV + OMIV, POSV + OMSV, OMIV 
+ OMSV, PoV1 + POSV + OMIV; PoV1+ POSV+ OMSV, PoV1 + OMIV + OMSV, POSV + OMIV + 
OMSV, PoV1 + POSV+ OMIV + OMSV as templates, respectively. N, negative control, the healthy 
P. ostreatus sample. Lane M: GL DNA Marker2000. 

Figure 2. Detection limit based on ten-fold serial plasmid DNA dilutions of uniplex PCR and
multiplex PCR detection. Uniplex PCR for (a) OMSV; (b) OMIV; (c) POSV; and (d) PoV1; (e) multiplex
PCR. Lanes 1–8, 10 ng, 1 ng, 102 pg, 10 pg, 1 pg, 102 fg, 10 fg, and 1 fg of plasmids. N, negative
control, the healthy P. ostreatus sample. Lane M: GL DNA Marker2000. The amplified gene sizes were
672, 540, 310, and 200 bp for OMSV, OMIV, POSV, and PoV1, respectively.

Curr. Issues Mol. Biol. 2022, 2, FOR PEER REVIEW 5783 
 

 

 
Figure 2. Detection limit based on ten-fold serial plasmid DNA dilutions of uniplex PCR and mul-
tiplex PCR detection. Uniplex PCR for (a) OMSV; (b) OMIV; (c) POSV; and (d) PoV1; (e) multiplex 
PCR. Lanes 1–8, 10 ng, 1 ng, 102 pg, 10 pg, 1 pg, 102 fg, 10 fg, and 1 fg of plasmids. N, negative 
control, the healthy P. ostreatus sample. Lane M: GL DNA Marker2000. The amplified gene sizes 
were 672, 540, 310, and 200 bp for OMSV, OMIV, POSV, and PoV1, respectively. 

3.3. Specificity of Multiplex RT-PCR 
To validate the specificity of the multiplex RT-PCR assay, a PCR was conducted by 

using the mixture of four pairs of primers in one tube, including single or mixed plas-
mids as templates. It was determined that in the presence of single plasmid, mixtures of 
primer pairs only amplified the virus corresponding single infection (Figure 3, lines 2–5). 
Mixed plasmids using dual, triple or quadruple combinations of different templates were 
also amplified simultaneously using multiplex RT-PCR (Figure 3, lines 6–16). Of all the 
cases we tested, amplicons were produced by their corresponding mycovirus templates. 

 
Figure 3. Specificity testing of multiplex PCR with single or mixed templates. Lane 1 shows the 
empty vector. Lanes 2–16 indicate the plasmids containing genome sequences of the PoV1, POSV, 
OMIV, OMSV, POSV + PoV1, PoV1+ OMIV, PoV1 + OMSV, POSV + OMIV, POSV + OMSV, OMIV 
+ OMSV, PoV1 + POSV + OMIV; PoV1+ POSV+ OMSV, PoV1 + OMIV + OMSV, POSV + OMIV + 
OMSV, PoV1 + POSV+ OMIV + OMSV as templates, respectively. N, negative control, the healthy 
P. ostreatus sample. Lane M: GL DNA Marker2000. 

Figure 3. Specificity testing of multiplex PCR with single or mixed templates. Lane 1 shows the
empty vector. Lanes 2–16 indicate the plasmids containing genome sequences of the PoV1, POSV,
OMIV, OMSV, POSV + PoV1, PoV1+ OMIV, PoV1 + OMSV, POSV + OMIV, POSV + OMSV, OMIV
+ OMSV, PoV1 + POSV + OMIV; PoV1+ POSV+ OMSV, PoV1 + OMIV + OMSV, POSV + OMIV +
OMSV, PoV1 + POSV+ OMIV + OMSV as templates, respectively. N, negative control, the healthy
P. ostreatus sample. Lane M: GL DNA Marker2000.



Curr. Issues Mol. Biol. 2022, 44 5784

Curr. Issues Mol. Biol. 2022, 2, FOR PEER REVIEW 5784 
 

 

3.4. Detection of the Four Mycoviruses in Different P. ostreatus Strains 
To evaluate specificity for the P. ostreatus mycoviruses detection, the established 

multiplex RT-PCR assay was used to determine the incidence of mycoviruses. The 
healthy P. ostreatus sample (virus-cured strain 8129 [31]) acted as a negative control with 
no observed virus amplification, as expected. The incidence of both single or mixed in-
fections in different P. ostreatus strains produced clear and specific target bands on an 
agarose gel (Figure 4). Among the 36 P. ostreatus strains presented in Table 2, twelve 
strains were singly infected with OMSV, three strains were singly infected with POSV, 
and six strains were dually infected with OMSV and OMIV (Figure 4). Although, neither 
triple nor quadruple viral infection was detected, mixed infections of OMSV, OMIV, and 
POSV using combinations of the P. ostreatus strains PG-ZP20 and TD300 were success-
fully amplified (Figure 4, line M1). None of the collected 36 strains were infected with 
PoV1. The above results were confirmed by the four uniplex RT-PCR assays (data not 
shown). These results demonstrated that the multiplex RT-PCR technique specifically 
detected the four different mycoviruses in P. ostreatus. 

 
Figure 4. Viruses’ detection of P. ostreatus strains using the developed multiplex RT-PCR. Numbers 
1–36 represent the 36 strains in Table 2. Lane M1 represents the mixed strains of PG-ZP20 and 
TD300. Lane M2, combined strains of PG-ZP20 and TD300 with the plasmid pTPoV1. N, negative 
control, the healthy P. ostreatus sample. Lane M: GL DNA Marker2000. 

4. Discussion 
Unlike other pathogens such as fungi and bacteria, chemical methods are difficult to 

employ to control mycoviruses. Therefore, the establishment of a rapid and sensitive 
detection method is necessary to control the mycovirus disease during the latent stage, or 
before the ejection of virulent spores. The multiplex RT-PCR assay has the advantage of 
easy operation, sensitivity, speed, and cost-effectiveness. Thus, this technology has been 
widely used for the simultaneous identification of several viruses, viral strains, isolates, 
or genotypes in plant viruses. Previously, this method has been successfully used for 
simultaneous detection of the two L. edodes mycoviruses in China [41]. In the present 
study, a multiplex RT-PCR assay for simultaneous detection of OMSV, OMIV, POSV, and 

Figure 4. Viruses’ detection of P. ostreatus strains using the developed multiplex RT-PCR. Numbers
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4. Discussion

Unlike other pathogens such as fungi and bacteria, chemical methods are difficult
to employ to control mycoviruses. Therefore, the establishment of a rapid and sensitive
detection method is necessary to control the mycovirus disease during the latent stage, or
before the ejection of virulent spores. The multiplex RT-PCR assay has the advantage of
easy operation, sensitivity, speed, and cost-effectiveness. Thus, this technology has been
widely used for the simultaneous identification of several viruses, viral strains, isolates,
or genotypes in plant viruses. Previously, this method has been successfully used for
simultaneous detection of the two L. edodes mycoviruses in China [41]. In the present study,
a multiplex RT-PCR assay for simultaneous detection of OMSV, OMIV, POSV, and PoV1
in P. ostreatus from one reaction was developed based on the conserved regions of RdRp
(for OMIV, POSV, and PoV1) and the CP (for OMSV) genes. The method presented here
demonstrated high sensitivity and specificity for the detection of the four mycoviruses.
This methodology can serve as a valuable tool for the diagnosis of the four mycoviruses
at the early stages of P. ostreatus production. This method can therefore contribute to the
prevention and treatment of mycovirus diseases. To the best of our knowledge, this study
is the first to report multiplex RT-PCR detection of P. ostreatus mycoviruses. Previous
reports have demonstrated that some mycoviruses such as Cryphonectria hypovirus 1
(CHV1), Cryphonectria naterciae fusagravirus 1 (CnFGV1), and Cryphonectria nitschkei
chrysovirus 1 (CnCV1) can cross the barrier of incompatibility and infect different related
species of fungi [42–44]. To date, it is not clear whether the four known P. ostreatus my-
coviruses (OMSV, OMIV, POSV, and PoV1) could infect other closely-related host species.
Thus, the multiplex RT-PCR assay can be further used for a comprehensive survey on new
host species of the four mycoviruses.

In nature, multiple viral infections are common in plants and this phenomenon also
can occur in fungi. An increasing number of fungal species are infected with different
mycoviruses. In the plant pathogen Sclerotium rolfsii, 21 virus-like sequences have been
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identified in a hypovirulent strain [45]. In the L. edodes mushroom, distinct viral sequences
have been previously identified [46]. Co-infection of Lentinula edodes mycovirus HKB
(LeV-HKB) with Lentinula edodes partitivirus 1 (LePV1) is prevalent in Chinese L. edodes
germplasm resources [26,47]. In southern Korea, dual infections of OMSV and OMIV were
detected in the P. ostreatus cultivars Suhan and Chunchu [15,28]. In the current study, the
incidences of the four mycoviruses in different P. ostreatus strains were investigated using
the multiplex RT-PCR assay. Single infection with OMSV or POSV and dual infection with
OMSV and OMIV were detected. Previous research has shown that the incidence rate of
OMSV in Beijing suburbs was 32.8% [48]. In the detection of the 36 collected P. ostreatus
strains, the incidence rate of OMSV was higher (47.2%, 17/36) than OMIV (6/36, 16.7%),
POSV (3/36, 8.3%), or PoV1. In order to obtain an accurate prevalence pattern of the four
mycoviruses, a larger number of Chinese P. ostreatus germplasm resources should be further
collected for multiplex RT-PCR detection. In this study, OMIV was found to occur in the
form of co-infection with OMSV. Therefore, the possibility that two mycoviruses have
synergistic interactions cannot be ruled out. However, whether or not the two mycoviruses
have direct interactions requires further study.

Our newly developed multiplex RT-PCR assay offers a simple, quick, and sensitive
technique for the diagnosis of the four different mycoviruses infecting P. ostreatus. This
method can be used as a powerful diagnostic tool for a large-scale survey of the occurrence,
distribution, and epidemiology of known P. ostreatus mycoviruses. This methodology can
contribute to the future prevention and control of mycoviral diseases.

5. Conclusions

In this study, we developed a multiplex RT-PCR assay for simultaneous detection
and differentiation of the four P. ostreatus mycoviruses. This methodology can serve as
a powerful diagnostic tool for the survey of the incidence and epidemiology of the four
P. ostreatus mycoviruses, further contributing to the prevention and treatment of mycoviral
diseases in P. ostreatus.
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