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Abstract: The NAC (NAM, ATAF1/2, and CUC2) gene family, one of the largest transcription factor
families in plants, acts as positive or negative regulators in plant response and adaption to various
environmental stresses, including cold stress. Multiple reports on the functional characterization
of NAC genes in Arabidopsis thaliana and other plants are available. However, the function of the
NAC genes in the typical woody mangrove (Kandelia obovata) remains poorly understood. Here,
a comprehensive analysis of NAC genes in K. obovata was performed with a pluri-disciplinary
approach including bioinformatic and molecular analyses. We retrieved a contracted NAC family
with 68 genes from the K. obovata genome, which were unevenly distributed in the chromosomes and
classified into ten classes. These KoNAC genes were differentially and preferentially expressed in
different organs, among which, twelve up-regulated and one down-regulated KoNAC genes were
identified. Several stress-related cis-regulatory elements, such as LTR (low-temperature response),
STRE (stress response element), ABRE (abscisic acid response element), and WUN (wound-responsive
element), were identified in the promoter regions of these 13 KoNAC genes. The expression patterns
of five selected KoNAC genes (KoNAC6, KoNAC15, KoNAC20, KoNAC38, and KoNAC51) were
confirmed by qRT-PCR under cold treatment. These results strongly implied the putative important
roles of KoNAC genes in response to chilling and other stresses. Collectively, our findings provide
valuable information for further investigations on the function of KoNAC genes.

Keywords: abiotic stress; cold stress; Kandelia obovata; mangrove; NAC transcription factor

1. Introduction

Transcription factors (TFs) are of immense importance due to their crucial impact on
controlling the transcription rate by binding to the cis-regulatory elements, resulting in
activation or inhibition of the transcription level of target genes [1]. There are numerous
types of TF families in plants, among which the NAC (NAM, ATAF1/2, and CUC2) family
serves as one of the largest plant-specific TF families and is named after the Petunia hybrida
E. Vilm. NO APICAL MERISTEM (NAM) [2] and Arabidopsis thaliana (L.) Heynh. genes
ATAF1/2 and CUP-SHAPED COTYLEDON 2 (CUC2) [3]. A typical NAC protein contains
an N-terminal conserved NAC domain for DNA binding and nuclear localization and a
variable C-terminal region with transcriptional regulatory activity [4].

As a complex plant-specific family, the NAC genes with considerable quantities are
present in a wide range of species. A large number of NAC TFs have been identified in var-
ious plants, including A. thaliana [5], Actinidia eriantha Benth. [6], Asparagus officinalis L. [7],
Betula pendula Roth [8], Hylocereus undatus (Haw.) Britton & Rose [9], Juglans mandshurica
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Maxim. [10], Medicago sativa L. [11], Miscanthus sinensis Andersson [12], banana (Musa
acuminata Colla) [13], Oryza sativa L. [5], Populus trichocarpa Torr. & A. Gray ex Hook. [14],
Salix psammophila C. Wang & Chang Y. Yang [15], Solanum lycopersicum L. [16], Zanthoxylum
bungeanum Maxim. [17], and Zea mays L. [18]. Multiple lines of evidence illustrate that
NAC genes act as positive or negative regulators involved in diverse biological processes,
including plant response and adaptation to cold and other abiotic stresses [19,20]. MaNAC1,
one banana NAC TF, acts as a downstream target of MaICE1 and interacts with the C-
repeat binding factor MaCBF1, conferring fruit cold tolerance [21]. Two overexpressed
NAC genes from H. undatus, HuNAC20 and HuNAC25, confer enhanced cold tolerance of
transgenic A. thaliana plants [9]. Overexpression of MbNAC25 from Malus baccata (L.) Borkh.
improves the resistance against chilling stress through enhanced scavenging capability of
reactive oxygen species (ROS) in transgenic A. thaliana plants [22]. The tomato NAC gene
NAM3 and its upstream regulator miR164a positively modulates cold tolerance by inducing
ethylene synthesis in tomato plants [23]. CaNAC035, a novel NAC gene from Capsicum
annuum, was shown to positively regulate cold stress in company with its upstream TF
gene CabHLH79 [24]. CaNAC064, another NAC gene from C. annuum, is strongly induced
by chilling stress and positively modulates cold stress tolerance via interacting with low
temperature-induced haplo-proteinase proteins [25]. Additionally, NAC TFs also function
as negative regulators in response to low temperature. Overexpression of MdNAC029,
an apple NAC gene, reduces cold tolerance in apple and A. thaliana via a CBF-dependent
pathway [26]. MaNAC25 and MaNAC28, two NAC genes from banana, negatively regulate
cold tolerance in fruits by upregulating the expression levels of phospholipid degradation
genes [27].

Mangroves are a dominant halophytic vegetation with significant ecological value
in various tropical and subtropical coastal wetlands and are well-adapted to these highly
stressful intertidal regions [28,29]. Among them, Kandelia obovata Sheue C.R., H.Y. Liu &
J.W.H. Yong is regarded as a typical true mangrove due to its highest natural distribution
latitude, indicating that K. obovata possesses stronger resistance against low temperature
in contrast to other mangroves [30,31]. Various physiological evidences have shown
that K. obovata displays better performance when exposed to chilling stress than other
mangrove plants [32–34]. However, the underlying molecular mechanisms of cold response
and adaptation in K. obovata are largely unknown. Here, we describe the genome-wide
identification and expression analysis of K. obovata NAC (KoNAC) genes in response to
low temperature based on its available chromosome-level reference genome [35] with a
pluri-disciplinary approach including bioinformatic and molecular analyses, hopefully
providing valuable insights into the function of NAC genes in cold response and breeding
for cold resistance.

2. Materials and Methods
2.1. Identification and Chromosomal Distribution of NAC TFs in K. obovata

The K. obovata chromosome-scale genome (2n = 2x= 36) was obtained from Genome
Warehouse (https://bigd.big.ac.cn/gwh) (accessed on 8 March 2022) under accession
number GWHACBH00000000 [35]. The Hidden Markov Model (HMM) file for NAM
domain (PF02365) was downloaded from Pfam database (https://pfam.xfam.org/) [36]
(accessed on 8 March 2022), and was used to retrieve the NAC proteins with a cut-off
value of 0.001 by HMMER 3.3.2 (http://hmmer.org/download.html) [37] (accessed on
8 March 2022). BLASTP (basic local alignment search tool for proteins) against K. obo-
vata genome data with A. thaliana NAC protein sequences (Table S1) retrieved from
The Arabidopsis Information Resource (TAIR, https://www.arabidopsis.org/) [38] (ac-
cessed on 10 March 2022) was implemented (e-value = 0.001). Taking these two results
together, the final members of the KoNAC genes were acquired and verified by Pfam-
Scan (e-value = 0.001, https://www.ebi.ac.uk/Tools/pfa/pfamscan/) (accessed on 12
March 2022) [39] and NCBI’s conserved domain database (NCBI-CDD) (e-value = 0.001,
https://www.ncbi.nlm.nih.gov/cdd/) (accessed on 12 March 2022) [40]. The basic in-

https://bigd.big.ac.cn/gwh
https://pfam.xfam.org/
http://hmmer.org/download.html
https://www.arabidopsis.org/
https://www.ebi.ac.uk/Tools/pfa/pfamscan/
https://www.ncbi.nlm.nih.gov/cdd/


Curr. Issues Mol. Biol. 2022, 44 5624

formation for KoNAC gene, including chromosome localization, intron number, average
intron length, protein length, and isoelectric point (pI) values was determined based on the
genome database. The chromosomal distribution map of KoNAC genes was drawn using
MapChart 2.32 (https://www.wur.nl/en/show/Mapchart.htm) (accessed on 15 March
2022) [41].

2.2. Phylogenetic Analysis of NAC Proteins

The amino acid sequences of the NAC members of K. obovata and A. thaliana were aligned
using Clustal X, and a neighbor-joining unrooted phylogenetic tree with 1000 bootstrap replica-
tions was constructed by MEGA 7.0 (www.megasoftware.net) (accessed on 15 March 2022) [42].
Finally, the tree was further modified by iTOL v6.5.8 (https://itol.embl.de/) (accessed on 15
March 2022) [43].

2.3. Gene Structure, Motif Identification, and Collinearity Analysis

The intron/exon structure of KoNAC genes was determined with the online gene
structure display server (http://gsds.gao-lab.org/) (accessed on 18 March 2022) [44]. The
conserved motifs in KoNAC proteins were identified by MEME suite v5.4.1 (http://meme-
suite.org/) (accessed on 18 March 2022) [45]. The collinearity relationship of the K. obovata
NAC genes between A. thaliana [5] and P. trichocarpa [14] were analyzed by MCScanX (http:
//chibba.pgml.uga.edu/mcscan2/) (accessed on 18 March 2022) [46]. These results were
presented and visualized using TBtools (https://github.com/CJ-Chen/Tbtools) (accessed
on 18 March 2022) [47].

2.4. Expression Analysis of KoNAC Genes Based on Public RNA-Seq Data

Two previously released RNA-seq data sets of K. obovata were introduced here to
analyze the expression profiles of KoNAC genes. The expression patterns of KoNAC genes
in eight organs (root, stem, leaf, flower, pistil, stamen, sepal, and fruit) were obtained
according to the previously published transcriptomic data under the NCBI BioProject
accession number PRJNA416402 (https://www.ncbi.nlm.nih.gov/bioproject) (accessed
on 31 March 2022) [31]. The expression levels of KoNAC genes in response to cold stress
were determined based on the publicly released data from the NCBI BioProject under
accession number PRJNA678025. These two RNA-seq data were remapped back to the
K. obovata genome used here [35]. All expression data were normalized as fragments per
kilobase of transcript per million fragments mapped (FPKM) values [48]. The differentially
expressed genes (DEGs) related to chilling stress were defined under the criteria of fold
change (FC) ≥ 1.5. The expression profiles of KoNAC genes were visualized as heatmaps
using TBtools [47].

2.5. Plant Materials and Treatment

The healthy mature propagules of the typical viviparous mangrove plant K. obo-
vata were sampled from Guangxi Maoweihai Mangrove Nature Reserve, Qinzhou, China
(21◦37′23′′ N, 108◦44′13′′ E) and cultured in the Mangrove Germplasm Resources Center
(MGRC) of Guangxi Forestry Research Institute (GFRI) (Figure S1). The seedlings were
grown in plastic pots containing sand and cultivated in a growth chamber at 28 ◦C and
75% humidity with a photoperiod of 14 h light/10 h darkness, and watered weekly with
half-strength Hoagland’s nutrient solution [49]. At the eight-leaf stage, the seedlings were
treated under low temperature (4 ◦C) for 0 h, 6 h, 12 h, and 24 h, respectively. All treatments
were performed with three replicates. The leaves were harvested, immediately frozen in
liquid nitrogen, and stored at −80 ◦C for RNA extraction.

2.6. Cis-Regulatory Element Analysis of the KoNAC Genes

The upstream 1500 bp promoter sequences from the ATG start codon of the KoNAC
genes were retrieved from the K. obovata genome, and the cis-regulatory elements in the
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promoter regions were predicted using Plant CARE (https://bioinformatics.psb.ugent.be/
webtools/plantcare/html/) (accessed on 31 March 2022) [50] and displayed by TBtools [47].

2.7. Quantitative Real-Time PCR Assays

Total RNA was extracted from the sampled leaves mentioned above using TRIzol
(Invitrogen, http://www.invitrogen.com) (accessed on 20 April 2022). Quantitative real-
time PCR (qRT-PCR) assays were conducted, as described previously [51], using an ABI
PRISM 7500 Real-time PCR System (Applied Biosystem) with 2−∆∆CT method [52]. The
specific primers of KoNAC genes used here are listed in Table S2. The actin gene (GWH-
TACBH010383.1) was used as an internal control. Student’s t-test in statistical analysis was
performed using Graphpad Prism 9.0.0 (https://www.graphpad-prism.cn/) (accessed on
28 April 2022).

3. Results
3.1. Genome-Wide Identification of the K. obovata NAC Genes

Two independent strategies for retrieval of KoNAC genes from the K. obovata genome,
HMM search and BLASTP, were used here. Taken together, 68 putative KoNAC genes
were identified and confirmed by PfamScan and NCBI-CDD. Based on their chromosome
location, these KoNAC genes were named KoNAC1 to KoNAC68 and unevenly distributed
on 17 chromosomes (Chrs), with no KoNAC gene present on Chr18 (Table 1, Figure 1).
Detail-wise, nine KoNAC genes were located on Chr08, six genes were located on both
Chr03 and Chr12, and five KoNAC genes each were located on Chr02, Chr04, Chr06, Chr09,
and Chr17, while only one KoNAC gene each was found on Chr07, Chr14, and Chr16.

Table 1. Basic information of K. obovata NAC genes.

Name Gene ID Class Chromosome Position Intron Number Average Intron
Length (bp)

Protein
Length (aa) pI

KoNAC1 GWHPACBH000260.1 VII Chr01: 1952420-1954549 2 210 375 8.33
KoNAC2 GWHPACBH000261.1 X Chr01: 1966355-1968293 2 213 381 6.38
KoNAC3 GWHPACBH001011.1 IV Chr01: 9324213-9325936 2 179 268 9.76
KoNAC4 GWHPACBH001737.1 IX Chr02: 545874-547928 2 540 314 4.72
KoNAC5 GWHPACBH002133.1 VI Chr02: 5018997-5022392 2 627 414 4.56
KoNAC6 GWHPACBH002150.1 VII Chr02: 5630019-5632845 2 557 291 6.26
KoNAC7 GWHPACBH002927.1 X Chr02: 12147292-12149791 2 695 308 9.72
KoNAC8 GWHPACBH002942.1 VII Chr02: 12271496-12273886 2 265 397 6.91
KoNAC9 GWHPACBH003351.1 VII Chr03: 1575855-1576587 1 152 170 10.01

KoNAC10 GWHPACBH003542.1 X Chr03: 2845984-2847971 3 82 358 8.29
KoNAC11 GWHPACBH003714.1 IV Chr03: 4257070-4258248 2 188 215 10.07
KoNAC12 GWHPACBH004035.1 VI Chr03: 8571932-8575841 7 267 573 4.35
KoNAC13 GWHPACBH004037.1 VI Chr03: 8580877-8585584 3 922 432 5.87
KoNAC14 GWHPACBH004257.1 III Chr03: 10268576-10273325 6 484 340 8.05
KoNAC15 GWHPACBH005193.1 VII Chr04: 4833704-4835719 2 237 301 6.63
KoNAC16 GWHPACBH005487.1 II Chr04: 8899908-8901721 2 518 259 7.96
KoNAC17 GWHPACBH005488.1 II Chr04: 8902766-8904022 1 590 220 8.48
KoNAC18 GWHPACBH005795.1 VII Chr04: 10981103-10983284 2 229 317 9.64
KoNAC19 GWHPACBH005903.1 III Chr04: 11744358-11747114 4 148 304 5.55
KoNAC20 GWHPACBH005980.1 VII Chr05: 171989-173574 2 182 285 8.57
KoNAC21 GWHPACBH006496.1 II Chr05: 3585985-3588070 2 179 576 5.03
KoNAC22 GWHPACBH006945.1 VII Chr05: 8286321-8289550 2 626 425 7.89
KoNAC23 GWHPACBH007161.1 VII Chr05: 10223818-10225996 2 171 372 8.40
KoNAC24 GWHPACBH007671.1 IX Chr06: 2167096-2168677 2 300 327 6.13
KoNAC25 GWHPACBH007697.1 VI Chr06: 2347486-2351319 4 385 591 4.47
KoNAC26 GWHPACBH007806.1 VII Chr06: 3191353-3193417 2 295 303 6.78
KoNAC27 GWHPACBH007934.1 II Chr06: 4507683-4512207 5 551 365 5.29
KoNAC28 GWHPACBH008265.1 X Chr06: 8671993-8674297 2 374 441 6.35
KoNAC29 GWHPACBH009271.1 VI Chr07: 7943036-7946752 5 272 592 4.37
KoNAC30 GWHPACBH009626.1 X Chr08: 595220-599512 2 1624 300 7.03
KoNAC31 GWHPACBH009686.1 VII Chr08: 1067480-1068977 2 114 343 9.60
KoNAC32 GWHPACBH009687.1 VII Chr08: 1074862-1076943 2 171 347 8.70
KoNAC33 GWHPACBH009711.1 X Chr08: 1347371-1350316 2 636 357 7.67
KoNAC34 GWHPACBH009970.1 X Chr08: 3208565-3211847 2 1096 286 7.10
KoNAC35 GWHPACBH010230.1 V Chr08: 6804416-6807401 4 274 345 5.82
KoNAC36 GWHPACBH010231.1 V Chr08: 6808948-6810099 3 123 261 4.47
KoNAC37 GWHPACBH010248.1 IX Chr08: 6936960-6938647 2 191 366 7.37
KoNAC38 GWHPACBH010352.1 VII Chr08: 7704131-7705968 2 435 305 6.78
KoNAC39 GWHPACBH010982.1 VII Chr09: 1762983-1763731 1 160 176 9.98
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Table 1. Cont.

Name Gene ID Class Chromosome Position Intron Number Average Intron
Length (bp)

Protein
Length (aa) pI

KoNAC40 GWHPACBH011181.1 II Chr09: 3089069-3090025 1 112 236 6.50
KoNAC41 GWHPACBH011224.1 X Chr09: 3378802-3380434 2 115 356 7.92
KoNAC42 GWHPACBH011287.1 VIII Chr09: 3895422-3899009 2 1261 243 4.62
KoNAC43 GWHPACBH011356.1 X Chr09: 4526977-4529037 2 553 318 7.21
KoNAC44 GWHPACBH012132.1 III Chr10: 2632918-2637871 5 584 373 7.08
KoNAC45 GWHPACBH012473.1 VI Chr10: 5929512-5932298 3 255 574 4.20
KoNAC46 GWHPACBH012540.1 X Chr10: 7425092-7428318 3 579 333 9.19
KoNAC47 GWHPACBH012930.1 VIII Chr11: 4340404-4343638 4 342 326 5.37
KoNAC48 GWHPACBH013040.1 IX Chr11: 5432389-5434082 2 285 354 6.19
KoNAC49 GWHPACBH013264.1 IX Chr11: 7036403-7038056 3 165 331 6.75
KoNAC50 GWHPACBH013622.1 VII Chr12: 1361271-1363117 2 215 294 9.80
KoNAC51 GWHPACBH013650.1 V Chr12: 1584267-1587516 4 219 534 4.43
KoNAC52 GWHPACBH013651.1 V Chr12: 1588784-1591086 4 165 336 6.58
KoNAC53 GWHPACBH013779.1 X Chr12: 3635952-3638945 2 591 354 8.79
KoNAC54 GWHPACBH013961.1 X Chr12: 5551002-5553482 3 571 256 9.26
KoNAC55 GWHPACBH014293.1 III Chr12: 7828847-7830888 2 494 296 8.61
KoNAC56 GWHPACBH014606.1 VII Chr13: 304056-306202 2 230 255 9.29
KoNAC57 GWHPACBH014849.1 VII Chr13: 2243283-2244839 2 109 265 7.90
KoNAC58 GWHPACBH015137.1 III Chr13: 8039942-8044242 5 466 461 4.62
KoNAC59 GWHPACBH015463.1 VII Chr14: 3448051-3450062 2 222 255 9.64
KoNAC60 GWHPACBH015782.1 V Chr15: 43374-47367 5 324 638 4.57
KoNAC61 GWHPACBH015958.1 IX Chr15: 1512975-1513703 1 125 162 9.55
KoNAC62 GWHPACBH016068.1 VIII Chr15: 2698343-2700471 4 261 306 9.33
KoNAC63 GWHPACBH016810.1 III Chr16: 4714504-4716464 2 516 304 9.25
KoNAC64 GWHPACBH017115.1 VII Chr17: 1665396-1666616 2 119 245 8.31
KoNAC65 GWHPACBH017251.1 IV Chr17: 2901510-2902567 1 103 314 7.77
KoNAC66 GWHPACBH017590.1 VII Chr17: 5655463-5657073 2 147 358 8.88
KoNAC67 GWHPACBH017594.1 VII Chr17: 5688319-5689928 2 146 358 8.88
KoNAC68 GWHPACBH017666.1 III Chr17: 6866174-6868665 2 727 325 7.67
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Moreover, every KoNAC gene contained one or more introns with an average length
of 371 bp, while the proteins encoded by KoNAC genes ranged from 162 amino acid (aa)
residues (KoNAC61) to 638 aa (KoNAC60) in length, with an average length of 344 aa.
The pI values varied from 4.20 (KoNAC45) to 10.07 (KoNAC11), over half of the members
(39/68) exhibiting pI > 7 (Table 1).

3.2. Phylogenetic Analysis and Classification of KoNAC Proteins

To illustrate the phylogenetic relationship among K. obovata and Arbidopsis thaliana
NAC proteins, a neighbor-joining phylogenetic tree was constructed with 68 KoNAC
proteins and 105 AtNAC proteins (Table S1). The result showed that the 173 NAC proteins
could be classified into ten classes, namely, Class I to Class X (Figure 2). Obviously, Class VII,
with 21 KoNACs and 24 ANACs was the largest class, followed by Class X with 12 KoNACs
and 14 ANACs. Other classes contained no more than 10 KoNACs each. Specially, no
KoNAC belonged to Class I (Figure 3).
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To better understand the phylogenetic relationship and classification of KoNAC genes,
the gene structure and motif organization of the 68 KoNAC genes were analyzed. Each
KoNAC gene had one or more introns and contained no more than six exons, while over
half of the KoNAC genes (41/68) contained three exons (Figure 4c). Additionally, a total of
10 conserved motifs were queried within all K. obovata NAC proteins. Most motifs were
located within the N-terminal region (Figure 4b), and motif 1, motif 2, motif 4, and motif
5 were the common elements in KoNAC genes. Clearly, these results showed that the
KoNAC genes in the same phylogenetic cluster harbored similar gene structures and motif
compositions (Figure 4), which further supported the evolutionary relationship of KoNAC
genes demonstrated above.
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3.3. Collinearity Analysis of KoNAC Genes

It is well-known that P. trichocarpa is a typical model plant for functional genomics
and molecular studies in woody species. Moreover, K. obovata (Rhizophoraceae) and
P. trichocarpa (Salicaceae) belong to the same order, Malpighiales (https://www.ncbi.nlm.
nih.gov/Taxonomy/Browser/wwwtax.cgi) (accessed on 18 March 2022). Therefore, to
better investigate the evolutionary relationship of NAC genes, the collinearity analysis
was performed based on the genomes of A. thaliana and P. trichocarpa (Figure 5). There
were 16,355 collinear gene pairs between K. obovata and A. thaliana identified, among which
52 orthologous gene pairs between KoNACs and AtNACs were obtained (Figure 5a, blue
lines). Meanwhile, a total of 26,594 collinear gene pairs between K. obovata and P. trichocarpa
were available, among which 54 orthologous gene pairs between KoNACs and PtNACs
were determined (Figure 5b, purple lines). Taken together, 49 common KoNAC genes shared
homologous relationships with both A. thaliana and P. trichocarpa NAC genes (Table S3),
implying these genes might function in a similar manner. In the meantime, there were
11 non-orthologous KoNAC genes (KoNAC13, KoNAC16, KoNAC17, KoNAC21, KoNAC40,
KoNAC50, KoNAC53, KoNAC63, KoNAC65, KoNAC67, and KoNAC68) compared to NAC
genes of A. thaliana and P. trichocarpa. These genes displayed different structure (Figure 4),
among which four genes (KoNAC16, KoNAC17, KoNAC21, KoNAC40) clustered as the
subgroup of Class II (Figure 2).
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Figure 5. Collinearity analysis of KoNAC genes. (a) Genes in 5 chromosomes of A. thaliana (AtChrs),
in orange, and 18 chromosomes of K. obovata (KoChrs), in cyan, are introduced here. The orthologous
pairs between KoNACs and ANACs are highlighted in blue. The gene pairs among ANACs are colored
in yellow, while the gene pairs among KoNACs are colored in red. (b) Genes in 19 chromosomes of
P. trichocarpa (PtChrs), in pink, and 18 chromosomes of K. obovata (KoChrs), in cyan, are introduced
here. The orthologous pairs between KoNACs and PtNACs are highlighted in purple. The gene pairs
among PtNACs are colored in green, while the gene pairs among KoNACs are colored in red.

3.4. Expression Patterns of KoNAC Genes in Different Organs

To gain an insight into the function of NAC genes in K. obovata, the expression levels
of all KoNAC genes in various organs, including root, stem, leaf, flower, pistil, stamen,
sepal, and fruit were determined based on previously published RNA-seq data of K. obovata.
Noticeably, the expression patterns of KoNAC genes were not in a constitutive mode,
whereas they were differentially and preferentially expressed in different organs (Figure 6,
Table S4). For example, 28 out of 68 KoNAC genes were highly expressed in roots, while
18 KoNAC genes were preferentially expressed in leaves, and 13 KoNAC genes were mainly
expressed in fruits.

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
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3.5. Expression Analysis of KoNAC Genes under Cold Treatment

To gain more insight into the function of KoNAC genes, the expression profiles of
these genes under cold treatment were detected based on the public transcriptomic data of
K. obovata. There were 13 KoNAC genes differentially expressed in response to chilling stress,
among which one down-regulated KoNAC gene (KoNAC51) and 12 up-regulated KoNACs
(KoNAC6, KoNAC11, KoNAC15, KoNAC20, KoNAC24, KoNAC26, KoNAC32, KoNAC35,
KoNAC38, KoNAC41, KoNAC62, and KoNAC68) were available (Figure 7a, Table S5).
Specifically, four different genes, KoNAC6, KoNAC15, KoNAC20, and KoNAC38, were
largely upregulated with higher and more significant values after treatment. The expression
levels of these four up-regulated and one down-regulated KoNACs were confirmed by
qRT-PCR (Figure 7c,d), implying that these KoNAC genes might act as positive or negative
regulators in response to chilling stress.

3.6. Stress-Related Cis-Regulatory Elements Identified in KoNAC Genes

To obtain more evidence for the differentially expressed KoNAC genes on stress
responses, the cis-regulatory elements in the promoter regions of these 13 KoNAC genes
were predicated. Consequently, 8 well-known stress-related elements were available
(Figure 7b, Table S6). LTR (low-temperature response; CCGAAA), a core cis-acting element
involved in cold stress response, was present in the majority of the detected KoNAC
genes. STRE (stress response element; AGGGG) and ARE (antioxidant response element;
AAACCA) were two types of regulatory elements in rapid response to anaerobic stress
and environmental stimuli. ABRE (abscisic acid response element; ACGTG), ERE (ethylene
response element; ATTTTAAA), and TGACG-motifs were responsible for stress induction
by three major stress-related hormones, ABA, ethylene, and methyl jasmonate (MeJA),
respectively. Additionally, two biotic stress-responsive elements, WRE3 (wound-response
element 3; CCACCT) and WUN-motif (wound-responsive element; AAATTACT) were
found in several detected promoters, as well.
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Figure 7. Expression analysis of KoNAC genes under cold treatment. (a) The transcript levels of the
KoNAC genes in response to cold were determined based on publicly available RNA-seq data (NCBI
BioProject: PRJNA678025). Deeper red colors represent higher expression levels of up-regulated KoNAC
genes, while darker blue colors indicate higher values of down-regulated KoNAC genes. Cold 1, first-
time cold treatment; Cold 2, second-time cold treatment; Cold 4, fourth-time cold treatment. (b) The
cis-regulatory elements in the promoters of the 13 KoNAC genes were predicated by PlantCARE. Eight
well-known stress-related elements were identified. The size of the blue ball indicates the number of
the elements in the KoNAC promoters. Expression levels of four upregulated KoNAC genes (c) and
one down-regulated KoNAC (d) under cold treatment were confirmed by qRT-PCR. Three independent
experiments were performed. The actin gene in K. obovata acted as the internal control. Asterisks indicate
significant differences compared with CK by Student’s t-test. *, p < 0.05.

4. Discussion

The NAC gene family, one of the largest TF families in plants, was used as positive
or negative regulators in response to environmental stimuli including cold stress [19].
Multiple investigations on the functional characterization of NAC genes were reported for
A. thaliana [5,53,54], P. trichocarpa [14], and other plants [19]. However, the function of the
NAC genes in the typical woody mangrove K. obovata responding to abiotic stresses remains
largely unknown. Here, we identified a contracted NAC gene family with 68 members
from the K. obovata genome. These KoNAC genes were differentially and preferentially
expressed in various organs, and 13 KoNAC genes were differentially expressed under cold
treatment based on the publicly available RNA-seq data.

KoNAC proteins, in company with A. thaliana NAC proteins were categorized into
10 classes according to phylogenetic analysis. Obviously, the K. obovata NAC family exhib-
ited a significant contraction in number compared to the NAC families in A. thaliana [5],
P. trichocarpa [14], and other plants [15,16], and the decreased KoNAC genes in class V,
class VIII, and class IX mainly contributed to the contraction (Figure 3). These results are
consistent with the previous findings [35], and the contraction might relate to the evolu-
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tionary adaption to the intertidal zones. Moreover, 49 genes from the contracted KoNAC
family shared orthologous relationships with the NAC genes of A. thaliana and P. trichocarpa,
implying these genes might have similar functions [55]. Additionally, compared to AtNAC
and KoNAC genes, there existed 11 non-orthologous KoNAC genes, among which, four
genes (KoNAC16, KoNAC17, KoNAC21, and KoNAC40) clustered in class II (Figure 2).
Another non-orthologous gene, KoNAC68, was induced under cold treatment, implying
it might potentially function in response to cold stress in K. obovata (Figure 7a). More
attention should be paid to these non-orthologous genes, and functional investigations of
these genes will provide valuable knowledge about mangrove species.

To explore the function of NAC genes in K. obovata, the expression patterns of all
KoNACs in various organs were determined. In contrast to the constitutive expression
patterns of other gene families [56–58], KoNAC genes were differentially and preferen-
tially expressed in different organs. For instance, there were 28 KoNAC genes expressed
highly in roots, 18 KoNAC genes expressed preferentially in leaves, and 13 KoNAC genes
expressed mainly in fruits. Referentially, the root-expressed gene OsNAC2 modulated root
development in rice by involving the crosstalk of auxin and cytokinin pathways [59]. The
A. thaliana rosette-expressed gene, ANAC087, positively regulated rosette development and
leaf senescence [60]. FaRIF, a strawberry NAC gene, was reported as one key regulator
controlling fruit ripening [61]. This evidence implied that these organ-specific KoNAC
genes might function as key regulators in organ development. Moreover, the organ expres-
sion patterns of NAC genes in K. obovata were not similar to that in A. thaliana and other
plants. For instance, KoNAC46 and KoNAC54 were primarily expressed in roots (Figure 6),
however, ANAC048 and ANAC074, the closest orthologues of these two KoNAC genes
(Figure 2), respectively, were expressed in different organs. ANAC048 was involved in
vascular development [62], and ANAC074 positively regulated programmed cell death of
stigmatic tissue in A. thaliana [63]. Therefore, functional characterization of the KoNAC
genes primarily expressed in roots distinct from other plants should be deeply covered in
the future.

To better understand the roles of KoNAC genes, the expression analysis under chilling
stress was performed based on the public transcriptomic data. In total, 13 out of 68 KoNAC genes
were differentially expressed under cold treatment. Among them, KoNAC51 was the only down-
regulated gene, whereas its closest homologue KoNAC35 was up-regulated after treatment,
implying these two class V genes might function oppositely in response to cold stress. Half of
the up-regulated genes (KoNAC6, KoNAC15, KoNAC20, KoNAC26, KoNAC32, and KoNAC38)
belonged to the class VII subgroup (Figures 2 and 7a). Particularly, KoNAC6, KoNAC15, and
KoNAC26 clustered together and shared high sequence similarity to their closest orthologs
ANAC002, ANAC081, and ANAC102 in A. thaliana. ANAC002 (ATAF1) was reported to serve
as dual regulators responsive to abiotic and biotic stresses [64–66]. ANAC081 (ATAF2) was
rapidly induced by pathogen attack and involved in plant defense [67,68], while ANAC102 was
responsive to low-oxygen and high-light stresses [69,70]. Overexpression of MlNAC5, another
closest ortholog of KoNAC26 and ANAC002 from Miscanthus lutarioriparius L.Liu ex S.L.Chen &
Renvoize, led to enhanced tolerance to cold and drought stresses in A. thaliana [71]. Additionally,
three closest orthologs of KoNAC32, ANAC019, ANAC055 and ANAC072, were required for
drought tolerance in A. thaliana [72], among which ANAC019 and ANAC055 displayed a dual
function in regulating ABA response and jasmonate response [73,74]. A. thaliana ANAC042,
the closest ortholog of KoNAC38, conferred stress tolerance through regulating phytohormone
metabolism and signaling [75–77]. Moreover, various stress-related cis-regulatory elements
were identified from the promoters of these KoNAC genes (Figure 7b). The LTR element is
an indispensable cis-acting element in plant response to low temperature [78,79]. Deletion
of the LTR element will result in complete loss of promoter activity under cold stress [79].
STRE is a common cis-regulatory element in eukaryotes, and involved in response to multiple
environmental stimuli [80]. ARE is an antioxidant response element in rapid response to
anaerobic stress [81]. Meanwhile, ABRE, ERE, and TGACG motifs are three major types of
elements related to plant hormones (ABA, ethylene, and MeJA) [82–84]. Among them, ABRE
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and TGACG motifs are enriched in the majority of the detected KoNAC genes, implying these
KoNAC genes might respond to stresses via hormone-mediated pathways [85]. Additionally,
both WRE3 and WUN motifs are biotic stress-responsive elements and present in several
detected promoters as well, implying the KoNAC genes might function in response to biotic
stresses [86,87]. Taken together, these findings suggest that these KoNAC genes may be involved
responses to other abiotic or biotic stresses in addition to the cold response, providing auxiliary
evidence for these KoNAC genes in response to abiotic and biotic stresses. To know more about
the function of KoNAC genes, further investigation and more proof are required.

5. Conclusions

In the present study, a pluri-disciplinary work concerning comprehensive analysis
of the KoNAC gene family was performed. We identified a contracted NAC TF family
containing 68 genes from the genome of the typical mangrove plant K. obovata based on
bioinformatic analysis. These KoNAC genes were unevenly distributed in 17 chromosomes
of K. obovata. The NAC genes of K. obovata and A. thaliana were classified into ten classes,
while no KoNAC gene belonged to class I. Obviously, the decreased members of class
V, class VIII, and class IX mainly contributed to the contraction of the KoNAC family.
KoNAC genes were differentially and preferentially expressed in different organs. Among
them, 13 KoNAC genes were rapidly induced by chilling stress. The expression patterns
of five selected KoNAC genes (KoNAC6, KoNAC15, KoNAC20, KoNAC38, and KoNAC51)
were confirmed by qRT-PCR. Additionally, several stress-related cis-acting elements were
detected in the promoter regions of these KoNAC genes, implying KoNAC genes might
participate in multiple stress responses. Summarily, our findings will provide positive
references for further investigations on functional characterization of KoNAC genes in
stress responses.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cimb44110381/s1, Figure S1: Morphological features of
K. obovata; Table S1: The basic information of A. thaliana NAC genes; Table S2: The primers of KoNAC
genes in this study; Table S3: Common orthologous gene pairs of K. obovata between A. thaliana and
P. trichocarpa; Table S4: The FPKM values of KoNAC genes expressed in different organs; Table S5:
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