
 

 
 

 

 
Curr. Issues Mol. Biol. 2022, 44, 4888–4901. https://doi.org/10.3390/cimb44100332 www.mdpi.com/journal/cimb 

Article 

Serum Levels of VEGF-A and Its Receptors in Patients in  

Different Phases of Hemorrhagic and Ischemic Strokes 

Anastasiya S. Babkina *, Mikhail Ya. Yadgarov, Irina V. Ostrova, Vladislav E. Zakharchenko, Artem N. Kuzovlev, 

Andrey V. Grechko, Maxim A. Lyubomudrov and Arkady M. Golubev 

Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia 

* Correspondence: asbabkina@gmail.com; Tel.: +7-965-175-9578 

Abstract: Vascular endothelial growth factors (VEGFs) are important regulators of angiogenesis, 

neuroprotection, and neurogenesis. Studies have indicated the association of VEGF dysregulation 

with the development of neurodegenerative and cerebrovascular diseases. We studied the changes 

in serum levels of VEGF-A, VEGFR-1, and VEGFR-2 in patients at various phases of ischemic and 

hemorrhagic strokes. Quantitative assessment of VEGF-A, VEGFR-1, and VEGFR-2 in serum of pa-

tients with hemorrhagic or ischemic stroke was performed by enzyme immunoassay in the hyper-

acute (1–24 h from the onset), acute (up to 1–7 days), and early subacute (7 days to 3 months) phases 

of stroke, and then compared with the control group and each other. Results of our retrospective 

study demonstrated different levels of VEGF-A and its receptors at various phases of ischemic and 

hemorrhagic strokes. In ischemic stroke, increased VEGFR-2 level was found in the hyper-acute (p 

= 0.045) and acute phases (p = 0.024), while elevated VEGF-A and reduced VEGFR-1 levels were 

revealed in the early subacute phase (p = 0.048 and p = 0.012, respectively). In hemorrhagic stroke, 

no significant changes in levels of VEGF-A and its receptors were identified in the hyper-acute 

phase. In the acute and early subacute phases there was an increase in levels of VEGF-A (p < 0.001 

and p = 0.006, respectively) and VEGFR-2 (p < 0.001 and p = 0.012, respectively). Serum levels of 

VEGF-A and its receptors in patients with hemorrhagic and ischemic stroke indicate different path-

ogenic pathways depending on the phase of the disease. 
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1. Introduction 

Acute cerebrovascular accidents have major medical and social significance. Due to 

the high global mortality and morbidity of stroke, improved differential diagnosis of its 

types, disease control methods at different phases, and outcome prediction are essential. 

The pathways to vascular endothelial growth factor (VEGF) secretion are different for 

various types of stroke. Ischemic stroke causes reduction of tissue oxygenation, resulting 

in energy deficit and subsequent neuronal death. If the blood flow interruption is incom-

plete, a penumbra zone appears, where the damaged cells remain in a necrotic-like con-

dition, and an increase in excitotoxicity occurs, causing destruction of cytosolic structures. 

Ischemia also affects vessels and stimulates VEGF secretion [1]. Subarachnoid hemor-

rhages (SAH) usually develop as a result of either arterial aneurysm rupture or traumatic 

brain injury. Vascular wall damage induces VEGF production. In some cases, SAH can be 

caused by anticoagulant medications, blood coagulation disorders, etc. The spread of 

blood into the cerebrospinal fluid space can result in intracerebral hypertension, blockage 

of the cerebrospinal tracts by blood clots, and cellular response associated with lysis. In-

tracerebral hemorrhage is caused by a rupture of the altered brain vessels (commonly in 

hypertension), or red blood cell diapedesis. The main pathogenetic factor here is arterial 
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hypertension. In ischemic stroke, damage to microcirculatory blood-vessel walls occurs, 

leading to the development of hemorrhages with diapedesis. Abnormalities of coagula-

tion and fibrinolysis along with vascular ischemia also play important roles in triggering 

VEGF production [2]. 

Studying levels of molecular markers of brain damage and regeneration depending 

on the type and phase of stroke is a promising area of research [3–6]. 

Several clinical studies have reported increased serum levels of vascular endothelial 

growth factor (VEGF) in patients with stroke of various etiologies and severity [7–10]. 

Angiogenesis processes mediated by vascular growth factor receptors are known to 

start within a few hours after stroke onset [11]. Vascular endothelial growth factor (VEGF), 

also known as vascular permeability factor (VPF), is involved in hypoxia-induced neovas-

cularization by specifically binding to vascular endothelial cells and thus promoting their 

growth [12,13]. 

Levels of circulating VEGF usually are very low in healthy subjects, and are im-

portant for maintaining endothelial viability and basic transport across the endothelial 

barrier. The main storage sites of circulating VEGF are α2-macroglobulin, sVEGFR-1 (sFlt-

1), and platelets, which release VEGF at activation in vivo or in vitro [14]. The levels of 

circulating VEGF increase in response to hypoxia, inflammation, and immunopathologi-

cal processes. A significant difference was found between VEGF levels in Alzheimer’s dis-

ease patients and healthy individuals [15]. A number of studies have shown the diagnostic 

and prognostic value of circulating VEGF in arterial hypertension [16], coronary artery 

disease [17], myocardial infarction [18], peripheral arterial disease, and heart failure 

[19,20]. 

VEGF-A isoform is the most potent angiogenic factor within the VEGF molecule fam-

ily. 

The biological activity of VEGF-A is mediated by two receptors, VEGFR-1 and 

VEGFR-2 [20]. Despite the stronger affinity of VEGF-A to VEGFR-1, signals regulating 

proliferation, survival, endothelial cell migration, and changes in vascular permeability 

are predominantly transmitted through VEGFR-2, which has the strongest tyrosine kinase 

activity [21]. It has been noted that the production of VEGFR-1 and VEGFR-2 increases in 

response to hypoxia, but less so than VEGF [20]. The exact mechanism of action of VEGFR-

1 is not fully understood. However, it is known that the angiogenic response to hypoxic 

conditions is induced by the binding of VEGF-A to VEGFR-2, which stimulates the growth 

of vascular endothelial cells. Soluble VEGFR-1 (sFlt-1) is a circulating form of VEGFR-1 

with high affinity for VEGF. Acting as a decoy, sFlt-1 (also regulated by hypoxia) binds 

circulating VEGF, inhibiting the angiogenic action of VEGF binding to endothelial cell-

membrane-bound VEGFR-2. Consequently, sFlt-1 is a negative regulator of angiogenesis 

[22]. An experimental study by Cárdenas-Rivera et al. showed that endogenous VEGFR-

2 activation interferes with neuroprotective mechanisms mediated by VEGFR-1 activation 

[23]. 

VEGF-A and its receptors are expressed predominantly in endothelial cells, as well 

as in hematopoietic cells, neutrophils, smooth muscle cells, retinal progenitor cells, and 

tumor cells, according to various studies [24–28]. The distribution of receptors in the 

blood–brain barrier vessels is not uniform, with VEGF-1 prevailing on the luminal and 

VEGF-2 on the abluminal side of the endothelium. Activation of VEGFR-1 on the luminal 

side results in a cytoprotective response, whereas activation of VEGFR-2 induces vascular 

permeability [29]. 

There have been few studies showing weak expression of VEGF-A (astrocytes), 

VEGFR-2 (neurons), and VEGFR-1 (pericytes) in the cells of the central nervous system 

[30,31]. Studies on cell cultures have shown that under oxygen and nutrient deficiency, 

neurons showed increased expression of VEGFR-2, VEGFR-1, and VEGF [32]. 

Vascular endothelial growth factor and its receptors, initially found in the vascular 

system, were long believed to be involved only in angiogenesis. The mechanisms of im-

pact of the VEGF/VEGFR signaling system on the proliferation, migration, apoptosis, and 
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permeability of endothelial cells in normal conditions and under hypoxia, including in 

cancer and circulatory disorders, have been well studied [30,33]. 

However, studies of the role of vascular endothelial growth factor in the central nerv-

ous system revealed a direct effect of the VEGF/VEGFR signaling system on neuronal pro-

genitor cells, their differentiation, neuronal migration, neuronal survival, and recovery 

after injury [34,35]. VEGFs are important regulators of angiogenesis, neuroprotection, and 

neurogenesis, which has been confirmed by studies indicating the association of VEGF 

dysregulation with the development of neurodegenerative and cerebrovascular diseases 

[35]. There is evidence of a direct link between blood VEGF levels and the extent of brain 

damage [36–38]. Most of the studies on this subject have been experimental. Few clinical 

studies have revealed increased serum VEGF-A levels in acute cerebrovascular accidents. 

However, they have tended not to consider biomarker changes in the blood of patients 

with various phases of strokes and have separately assessed serum VEGF-A levels in pa-

tients, rather than in combination with its receptor levels. 

Therefore, a study of serum levels of VEGF-A and its receptors during various phases 

of ischemic and hemorrhagic stroke is particularly relevant. 

Objective: to characterize the changes in serum levels of VEGF-A, VEGFR-1, and 

VEGFR-2 in patients at various phases of ischemic and hemorrhagic strokes. 

2. Materials and Methods 

2.1. Study Subjects 

The retrospective cohort study included patients with ischemic and hemorrhagic 

stroke hospitalized in the intensive care units of the Federal Research and Clinical Center 

of Intensive Care Medicine and Rehabilitology and the M. P. Konchalovsky City Clinical 

Hospital No. 3 in Moscow, Russian Federation (inclusion period: 1 January 2018–1 No-

vember 2019). The control group consisted of 40 volunteers (apparently healthy people) 

(Table S1). Informed consent was obtained from the volunteers before inclusion in the 

study. 

The study design was based on the STROBE recommendations for observational 

studies (cohort studies and case–control studies) [39]. 

Inclusion criteria were clinical signs of stroke as confirmed by computed brain to-

mography, any localization of stroke, and level of consciousness on admission at 4–9 

points on the Glasgow Coma Scale. There were no age or comorbidity limitations. 

Exclusion criteria were unstable hemodynamic parameters during the hyper-acute 

phase of stroke; consciousness level below 4 on the Glasgow Coma Scale, infectious com-

plications, sepsis, and terminal condition. 

The diagnosis of stroke was made according to the guidelines of the Ministry of 

Health of the Russian Federation (2020). 

The study protocol was approved by the local bioethics committee of the Federal Re-

search and Clinical Center of Intensive Care Medicine and Rehabilitology (protocol 4/21/3 

from 21 September 2021). Data were collected and analyzed independently by two inves-

tigators using a medical information system and paper medical records. 

The primary end point of the study was measurement of the levels of VEGF-A, 

VEGFR-1, and VEGFR-2 in different phases of ischemic and hemorrhagic stroke. Quanti-

tative assessment of VEGF-A, VEGFR-1, and VEGFR-2 in serum of patients with hemor-

rhagic or ischemic stroke was performed by enzyme immunoassay in the hyper-acute (1–

24 h from the onset), acute (up to 1–7 days), and early subacute (7 days to 3 months) phases 

of stroke. We used the stroke timeline framework proposed by the Stroke Recovery and 

Rehabilitation Roundtable Taskforce [40]. 
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2.2. Blood Samples and ELISA Technique 

Blood samples of 8 mL were taken from the antecubital vein on an empty stomach, 

from patients with hyper-acute, acute, and early subacute stroke, as well as from healthy 

volunteers. Blood samples were stored in standard tubes with EDTA at room temperature 

for 0.5 h. Blood samples were then centrifuged at 2000 rpm for 10 min to separate the 

serum. Afterwards, the samples were immediately placed in 0.25 mL Eppendorf tubes at 

−20 °C. 

The serum levels of VEGF-A, VEGFR-1, and VEGFR-2 were quantified using Human 

VEGF-A Platinum ELISA (Thermo Fisher Scientific, Vienna, Austria), ELISA Kit for Vas-

cular Endothelial Growth Factor Receptor 1 (VEGFR1) (Cloud-Clone Corp., Wuhan, 

China), and ELISA Kit for Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) 

(Cloud-Clone Corp., Wuhan, China). The intra-assay coefficients of variation (CVs) were 

6.2%, <10%, and <10%, respectively. Inter-assay CVs were 4.8%, <12%, and <12%, respec-

tively. An ‘ImmunomatTM’ automatic microplate immunoassay was used for the studies. 

2.3. Statistical Analysis 

The Shapiro–Wilk test was used to assess the normality of the data distribution. Con-

tinuous variables were described using median and interquartile ranges (IQR), categorical 

variables were described using frequency and percentages. Intergroup differences were 

studied using the nonparametric Kruskal–Wallis H test for independent groups, and the 

Friedman test; post-hoc tests were performed using Dunn’s and Nemenyi’s tests. Cate-

gorical variables were analyzed using Fisher’s exact test. Regression analysis of relation-

ships with age of VEGF-A, VEGFR-1, and VEGFR-2 in the control group was performed 

in the presence of a potential confounding bias. All analyses were carried out using IBM 

SPSS Statistics for Windows, Version 26.0. Armonk, NY: IBM Corp. The differences were 

considered significant at p < 0.05. 

2.4. Power Calculation 

In a study by Xue L et al. [41] the authors reported a VEGF-A level of 197.6 ± 34.3 

pg/mL in patients with ischemic stroke on day 7, compared with 118.0 ± 13.2 pg/mL in 

patients in the control group. Assuming a mean of 200 pg/mL and pooled standard 

deviation of 80 units in the main group, and a mean of 118 in control group, the study 

would require a sample size of 20 patients for each group, to achieve power of 90% and a 

level of significance of 5% (two sided), for detecting true difference in means between the 

test and the reference groups. 

3. Results 

One hundred and eight patients met the inclusion criteria, including 70 patients with 

ischemic strokes (atherothrombotic, cardioembolic, lacunar) and 38 patients with hemor-

rhagic strokes (subarachnoid hemorrhage, intracerebral hemorrhage). The patients’ char-

acteristics are summarized in Table 1. The VEGFR-1 and VEGFR-2 levels were assessed 

simultaneously in 57 patients, with repeated measurements taken in different stroke 

phases (blood samples were drawn once in 32 patients and 2–3 times in 25 patients at 

different disease phases) and in 20 control subjects, while VEGF-A values were evaluated 

in a separate group of 51 patients and in an independent control group of 20 patients (Ta-

ble 2). 

Table 1. Baseline characteristics of the patient cohort in the study. 

Parameters Main Group Control Group p-Value 

N 108 40 - 

Sex (M) 58 (53.7%) 19 (47.5%) 0.6 

Age (years) 68.0 (57.0–79.0), range: 25–89 52.5 (38.3–60.0), range: 24–68 <0.001 * 
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Types and phases of strokes 

Ischemic stroke 

N = 70 (64.8%) 

Hemorrhagic stroke  

N = 38 (35.2%)  

Age (years):  75.0 (62.8–80.0) 58.5 (45.0–62.0) <0.001 * 

Sex (M): 35 (50.0%) 23 (60.5%) 0.4  

Measurements, N 

Hyper-acute (N = 35) 

Acute (N = 42) 

Early subacute (N = 37) 

Measurements, N 

Hyper-acute (N = 15) 

Acute (N = 15) 

Early subacute (N = 13) 

* Differences are statistically significant. 

Table 2. Values of VEGFR-1, VEGFR-2, and VEGF-A in patient groups (according to stroke type and 

phase). 

Stroke Phase Stroke Type Value VEGFR-1 (pg/mL) VEGFR-2 (ng/mL) VEGF-A (pg/mL) 

Hyper-acute 

Hemorrhagic 

N 8 8 7 

Median (IQR) 1190 (769–1350) 15.8 (13.6–33.6) 554 (241–869) 

Min 461 12,7 218 

Max 2410 42,0 959 

Ischemic 

N 18 18 13 

Median (IQR) 1412 (957–2055) 14,2 (11.9–15.6) 261 (220–410) 

Min 577 10.0 65 

Max 2840 19.1 1101 

Acute 

Hemorrhagic 

N 7 7 8 

Median (IQR) 851 (409–1310) 19.5 (17.4–21.9) 1051 (989–1146) 

Min 105 13.0 909 

Max 1650 35.4 2221 

Ischemic 

N 33 33 9 

Median (IQR) 793 (535–1055) 13.3 (11.7–16.6) 489 (260–742) 

Min 149 9.5 45 

Max 3910 26.5 1026 

Early subacute 

Hemorrhagic 

N 9 9 4 

Median (IQR) 700 (118–1240) 16.3 (15.1–23.1) 1034 (1016–1657) 

Min 99 9.7 1010 

Max 1720 29.8 1864 

Ischemic 

N 27 27 10 

Median (IQR) 505 (345–753) 12.8 (10.4–14.8) 669 (328–779) 

Min 145 6.7 196 

Max 2770 36.5 844 

Control N/A 

N 20 20 20 

Median (IQR) 904 (625–1118) 8.6 (5.9–15.2) 355 (133–406) 

Min 260 3.7 15 

Max 1650 19.6 574 

N/A—not applicable. 

3.1. VEGF-A, VEGFR-1, VEGFR-2 in Different Phases of Ischemic Stroke 

In ischemic stroke, there was a significant increase in VEGF-A levels in the early sub-

acute phase (669 (IQR: 328–779) pg/mL vs. 355 (IQR: 133–406) pg/mL, p = 0.048) (Figure 1). 

The median serum VEGFR-1 levels in patients with ischemic stroke in the hyper-

acute phase were higher than the control group. In the acute and early subacute phases of 

ischemic stroke, median VEGFR-1 values were lower than the control values. The VEGFR-
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1 levels were significantly lower in the early subacute ischemic stroke group (505 (IQR: 

345–753) pg/mL vs. 904 (IQR: 625–1118) pg/mL, p = 0.012), compared with controls (Figure 

2). 

The median VEGFR-2 values in all phases of ischemic stroke were higher than the 

controls. The VEGFR-2 levels were significantly higher in the hyper-acute (14.2 (IQR: 11.9–

15.6) ng/mL vs. 8.6 (IQR: 5.9–15.2) ng/mL, p = 0.045) and acute phases of ischemic stroke 

(13.3 (IQR: 11.7–16.6) ng/mL vs. 8.6 (IQR: 5.9–15.2) ng/mL, p = 0.024), compared with con-

trols (Figure 3). 

 

Figure 1. Changes in serum VEGF-A level in patients with ischemic or hemorrhagic stroke. 

 

Figure 2. Changes in serum VEGFR-1 level in patients with ischemic or hemorrhagic stroke. 
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Figure 3. Changes in serum VEGFR-2 level in patients with ischemic or hemorrhagic stroke. 

3.2. VEGF-A, VEGFR-1, VEGFR-2 in Different Phases of Hemorrhagic Stroke 

VEGF-A levels increased significantly in the acute (1051 (IQR: 989–1146) pg/mL vs. 

355 (IQR: 133–406) pg/mL, p < 0.001) and the early subacute phases (1034 (IQR: 1016–1657) 

pg/mL vs. 355 (IQR: 133–406) pg/mL, p = 0.006) of hemorrhagic stroke, compared with 

controls (Figure 1). 

The median serum VEGFR-1 levels in patients with hyper-acute phase hemorrhagic 

strokes were higher than the controls. In the acute and early subacute phases of hemor-

rhagic stroke, median VEGFR-1 values were lower than the control values (Figure 2). 

The median VEGFR-2 values in all phases of hemorrhagic stroke were higher than 

the controls. In hemorrhagic stroke, there was a significant increase in VEGFR-2 levels in 

the acute (19.5 (IQR: 17.4–21.9) ng/mL vs. 8.6 (IQR: 5.9–15.2) ng/mL, p < 0.001) and in the 

early subacute phases (16.3 (IQR: 15.1–23.1) ng/mL vs. 8.6 (IQR: 5.9–15.2) ng/mL, p = 0.012), 

compared with controls (Figure 3). 

3.3. VEGF-A, VEGFR-1, VEGFR-2 in Different Types of Stroke 

VEGF-A levels were significantly elevated in acute and early subacute hemorrhagic 

stroke compared with the corresponding phases of ischemic stroke (1051 (IQR: 989–1146) 

pg/mL vs. 489 (IQR: 260–742) pg/mL, p < 0.001), (1034 (IQR: 1016–1657) pg/mL vs. 669 

(IQR: 328–779) pg/mL, p = 0.021), respectively) (Figure 1). 

No significant differences in VEGFR-1 changes were found between hemorrhagic 

and ischemic strokes (p > 0.05, Figure 2). 

VEGFR-2 levels increased more significantly in acute hemorrhagic stroke compared 

with the same phase of ischemic stroke (19.5 (IQR: 17.4–21.9) ng/mL vs. 13.3 (IQR: 11.7–

16.6) ng/mL, p < 0.009) (Figure 3). 

To exclude the effect of age differences on the increase in soluble mediators in pa-

tients with stroke, we analyzed in the control group the relationship of VEGF-A, VEGFR-

1, VEGFR-2 levels with age. No relationship between age and VEGFR-1 was found (R^2 = 

0.001, p = 0.891), VEGFR-2 (R^2 = 0.016, p = 0.597). The relationship between age and VEGF-

A was weakly negative (R^2 = 0.346, p = 0.006) (Figure 4). Therefore, the increases in cir-

culating levels of VEGF-A and its receptors in the stroke group cannot be associated with 

age. 
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Figure 4. The relationship between the levels of VEGF-A and age in the control group. 

4. Discussion 

Our results demonstrate different levels of VEGF-A and its receptors at various 

phases of ischemic and hemorrhagic stroke. In ischemic stroke, increased VEGFR-2 was 

found in the hyper-acute and acute phases, while elevated VEGF-A and reduced VEGFR-

1 levels were revealed in the early subacute phase. In hemorrhagic stroke, no significant 

changes in levels of VEGF-A and its receptors were identified in the hyper-acute phase. 

In the acute and early subacute phases, however, there was an increase in levels of VEGF-

A and VEGFR-2. 

Although several studies have referred to VEGF in acute cerebrovascular accidents, 

its dynamics have been considered in only a few. Given the subtle and not fully under-

stood mechanisms of the interaction of this factor with its receptors, studies of factor and 

receptor levels in various diseases should be carried out. 

Previous studies noted increased VEGF levels in acute cerebrovascular accidents, in 

agreement with the results of our study [9,42]. Matsuo et al. showed that plasma VEGF 

values were significantly higher up to 90 days after stroke onset in all stroke subtypes 

compared with controls [43]. However, meta-analysis by Seidkhani-Nahal et al. showed 

that serum VEGF levels were not significantly associated with diagnosis of ischemic 

stroke. Therefore, the usefulness of VEGF as a stroke marker is questionable [44]. Mean-

while, Bhasin et al. pointed to the prognostic significance of VEGF indices in the acute 

stage of ischemic stroke [10]. 

The increase in VEGF-A levels in the early hemorrhagic stroke phase could indicate 

edema and the severity of tissue injury, which has been shown in a number of experi-

mental studies [45]. 

Increased levels of circulating VEGF-A in the later phases of ischemic stroke are prob-

ably due to the activation of angiogenesis [33]. Alternatively, stroke-induced vascular 

damage in the blood–brain barrier leads to increased VEGF expression in the ischemic 

penumbra zone, from where it can enter the bloodstream when the blood–brain barrier is 

damaged [46,47]. 

We noted decreasing VEGFR-1 serum levels over time during acute and early sub-

acute phases of ischemic and hemorrhagic strokes. The main functions of VEGFR-1 could 

be both the transmission of mitotic signals and downregulation of VEGF-A in vascular 

endothelial cells, supported by the existence of the soluble VEGR receptor (sVEGFR-1) 

[48]. This form is not a transmembrane protein; it lacks a tyrosine kinase domain and is 
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unable to transmit the signal, which in turn leads to the suppression of angiogenesis. As-

suming that VEGFR-1 is a “ligand trap” which binds excess VEGF-A in the blood of stroke 

patients, the reversed direction of changes in VEGFR-1 and VEGF-A levels can appear 

obvious [48,49]. A decrease in VEGFR-1 due to inhibition of protein synthesis also remains 

possible. 

The level of VEGFR-2 rises earlier in ischemic stroke than in hemorrhagic stroke, 

while VEGF-A in ischemic stroke increases later than in hemorrhagic stroke. We found 

that VEGFR-2 increased in hyper-acute ischemic stroke, which could be considered a po-

tential diagnostic marker. This is critically important because computed brain tomogra-

phy, being the worldwide gold standard for the diagnosis of hemorrhagic stroke, can de-

tect the ischemic zone in only one-third of cases of ischemic stroke [50]. 

It can be assumed that early elevation of blood VEGFR-2 levels in ischemic stroke 

could be due to hypoxia-induced increase of its expression in neurons and endothelial 

cells, and the subsequent increase in the blood-brain barrier permeability. 

The elevation of VEGFR-2 in the hyper-acute and acute periods of ischemic stroke 

may be associated with the formation of the ischemic penumbra zone, as increased 

VEGFR-2 expression in the peri-infarct area was reported [51], as well as with microglia 

activation. In a morphological study of the brains of rats exposed to 100-min focal cerebral 

ischemia, the expression of VEGFR-2 was shown in activated microglia cells [52]. Because 

ischemic strokes are often atherothrombotic, the role of VEGFR-2 in the pathogenesis of 

atherosclerosis and atherosclerotic plaque lesions should be considered [53,54]. The dual 

functional role of VEGFR-2 should also be considered, because in addition to VEGFR-2 

involvement in endothelial cell proliferation and inhibition of apoptosis, it can form a 

complex with adhesion molecules that weakens intercellular connections, alters the endo-

thelial cytoskeleton, and induces endothelial fenestration, causing increased vascular per-

meability [30]. 

The VEGF/VEGFR signaling pathway has pleiotropic effects. On the one hand, its 

activation triggers brain angiogenesis associated with hypoxia and vascular damage, and 

has neuroprotective effects [55–57]. On the other hand, VEGF mediates the impairment of 

the blood–brain barrier and increased vascular permeability, which leads to edema and 

increased intracranial pressure [30,35,58]. 

Experimental studies are underway on the therapeutic efficacy of VEGF and anti-

VEGF antibody neutralization for the treatment of stroke and its sequelae. However, the 

results of these studies are controversial. It has been revealed that anti-VEGF antibody can 

decrease blood–brain barrier (BBB) permeability, suppress brain edema formation, and 

improve functional outcome after subarachnoid hemorrhage [46]. It was demonstrated 

that inhibition of VEGF at the acute stage of stroke may reduce ischemic lesions, whereas 

delayed administration of VEGF during stroke recovery can markedly enhance angiogen-

esis in the ischemic brain and reduce neurological deficits [59,60]. Hence, timing of VEGF 

administration is crucial for its effects on ischemic brain tissue. 

The dependence of the factor’s therapeutic effect on the time of administration may 

be due to the dynamics of BBB damage in acute cerebrovascular accidents. 

It has been proposed that the process of BBB damage in ischemic stroke goes through 

several stages of development, depending on the stages of stroke. The first stage, corre-

sponding to the hyper-acute stage of stroke, is characterized by increased BBB permeabil-

ity and cytotoxic edema [61–63]. The second stage corresponds to the acute stage of stroke 

and is characterized by swelling of endothelial cells and astrocyte pedicles [61], leading to 

hypoperfusion. Hypoperfusion leads to increased damage to the BBB. At the third stage, 

corresponding to the subacute stage of stroke, reparative and regenerative processes take 

place, in particular, neoangiogenesis [64]. Experimental [63,65] and clinical [66] studies 

have shown that BBB permeability remains elevated for several weeks after a stroke, 

which can be explained by the immaturity of vessels, which are not sufficiently tight. At 

the chronic stage of stroke (>6 weeks), BBB permeability begins to decrease, which is as-

sociated with an increase in recovery factors [67]. 
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Dysfunction of the BBB is an essential part of the pathophysiology of ischemic and 

hemorrhagic stroke. In ischemic stroke, BBB damage occurs due to abnormal paracellular 

and transcellular permeability and impaired endothelial structure. Abnormal water–elec-

trolyte balance and leukocytic infiltration have also been observed. Two ultrastructural 

phases of BBB damage have been characterized. The first phase consists of changes in the 

endothelial cytoskeleton 30–60 min after ischemia, followed by enzymatic cleavage of 

dense contact proteins [68]. Abnormal pericyte function is an important component of the 

pathophysiology of BBB dysfunction [69]. Moreover, BBB damage further inhibits nerv-

ous recovery. Substantial evidence exists showing the effect of hypoxia and ischemia on 

the BBB, indicating the disruption of tight junctions and an increase of BBB permeability. 

These events appear to be mediated by the release of soluble factors, including cytokines, 

VEGF, and NO [70]. A murine study showed that VEGF initially contributed to the dam-

age to the BBB, while in the post-stroke period it activated angiogenesis [71]. In SAH, the 

mechanism of BBB damage is similar to that in intracerebral hemorrhage and ischemic 

stroke, except for the initial period of the disease. Thus, in subarachnoid hemorrhage 

(SAH) the intracranial pressure increases due to blood leakage into the subarachnoid 

space, which subsequently reduces the microcirculatory blood flow [72]. Later, lack of 

ATP and increased levels of toxic metabolites in the blood initiate a pathological cascade 

including depolarization, excitotoxicity, cell edema, oxidative stress, and abnormal ion 

homeostasis, leading to secondary BBB damage. This can be defined as the secondary 

stage of BBB dysfunction [73,74]. Recovery of the BBB after its damage is a long process 

[75]. 

The results obtained in this study give us reason to assume that changes in serum 

levels of VEGF-A and its receptors in patients with hemorrhagic or ischemic stroke indi-

cate different pathogenic pathways depending on the phase of the disease. In the hyper-

acute and acute phases of ischemic or hemorrhagic stroke, an increase in VEGFR-2 levels 

indicates tissue change and circulatory disorders that predominate in early stroke. The 

increase in VEGF-A levels in the early subacute periods of hemorrhagic and ischemic 

strokes indicate ongoing regeneration, including neoangiogenesis. 

Our study has some obvious limitations; we acknowledge the limits of its external 

validity. Another limitation is related to the retrospective design of the study. Further-

more, we did not analyze neurological and other clinical parameters. The above limita-

tions might have biased our results. 

Further studies are necessary to determine the patterns of changes in VEGF levels 

during various phases of stroke, and to unravel the relationship between these levels and 

stroke pathogenesis. An important line of research in future will be the precise assessment 

of serum levels of VEGF-A and its receptors for lacunar versus non-lacunar acute ischemic 

stroke, as the pathophysiology, prognosis, and clinical features of acute small-vessel is-

chemic strokes are different from other types of cerebral infarcts [76]. 

Full multivariate analysis should be performed in future studies, assessing the clini-

cal significance of changes in levels of molecular markers, with a larger cohort of patients 

to allow validation of our findings with a more personalized patient approach. A multi-

center randomized trial could provide a rationale for using serum VEGF-A and VEGFR-2 

levels in clinical practice for differential diagnosis of types and phases of acute cerebro-

vascular incidents.  

5. Conclusions 

Our results demonstrate different levels of VEGF-A and its receptors at various 

phases of ischemic and hemorrhagic stroke. In ischemic stroke, increased VEGFR-2 levels 

were found in the hyper-acute and acute phases. Levels of VEGF-A were elevated in the 

acute and early subacute phases. In the early subacute phase, reduced VEGFR-1 levels 

were revealed. 

In the acute and early subacute phases of hemorrhagic stroke, there was an increase 

in the levels of VEGF-A and VEGFR-2. 
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