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Abstract: It is of utmost importance to develop a computational method for accurate prediction
of antioxidants, as they play a vital role in the prevention of several diseases caused by oxidative
stress. In this correspondence, we present an effective computational methodology based on the
notion of deep latent space encoding. A deep neural network classifier fused with an auto-encoder
learns class labels in a pruned latent space. This strategy has eliminated the need to separately
develop classifier and the feature selection model, allowing the standalone model to effectively
harness discriminating feature space and perform improved predictions. A thorough analytical
study has been presented alongwith the PCA/tSNE visualization and PCA-GCNR scores to show
the discriminating power of the proposed method. The proposed method showed a high MCC value
of 0.43 and a balanced accuracy of 76.2%, which is superior to the existing models. The model has
been evaluated on an independent dataset during which it outperformed the contemporary methods
by correctly identifying the novel proteins with an accuracy of 95%.

Keywords: antioxidation; deep auto-encoder; composition of k-spaced amino acid pair (CKSAAP);
latent space learning; neural network; classification

1. Introduction

The oxidative damage due to free radicals is prevented by the antioxidants which are
naturally produced in the human body [1]. Small antioxidant molecules, scavenges the
free radicals by neutralizing them, where as the large antioxidant molecules prevents the
potential damage by absorbing the free radicals [2]. However, on some occasions, the natu-
rally produced antioxidants are outnumbered by the free radicals, and their procurement
from the external sources including vegetables and fruits become indispensable [3,4]. The
macro-molecules (proteins), that offer these nutrients must be effectively identified, since
it would contribute towards the development of novel methods to prevent the diseases
caused by the free radicals. Conventionally, the experiments to identify the antioxidant pro-
teins are conducted using biochemical techniques, which however, is arduous and comes
at high cost. The protein sequence database provided an opportunity for computer-based
antioxidant protein inference [5]. In early study [6], a naive bayes method was developed
for the prediction of antioxidant proteins. Amino acid compositions and di-petide com-
positions of the protein sequences were utilized as features, which were later subjected to
a feature selection algorithm. The resultant features with reduced dimension were then
used as the training dataset. Later, AoPred was presented by same authors [7], in which
g-peptide composition was adopted to extract features from the protein sequences and
analysis of variance (ANOVA) [8], was employed to obtain the optimal feature set to train
a support vector machines (SVM).

Recently, deep learning (DL) based classification methods have been proposed to
perform prediction in almost every field. In particular, many bioinformatics applications
have taken advantage of the outstanding capabilities of deep neural networks (DNN) [9].
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The prediction of protein structure and function, based on the deep learning algorithms
have also been proposed, which yielded highly accurate results [10,11], confirming the
potential scope of DL methods in this field. Motivated by the recent success of deep
latent-space based learning methods [12–14], herein, we propose a deep learning based
classification model which is essentially an auto-encoder with an embedded classifier.

The major advantages of the proposed approach is its ability to learn the non-linear
embedding of the features whilst maintaining the properties of the original features through
reconstruction. This consistency helps filter out fluctuating data points by evaluating their
distance from the class centers. As a result, the model can be an important tool for designing
a classifier with noisy annotations. Another advantage of using such configuration is the
elimination of the need of a crucial step of feature engineering, which involves the selection
of dominant features for the training of classifier. The built model has been evaluated
by the widely known statistical parameters, and the performance is compared with the
existing methods. The results show that the proposed method offers superior performance
on the benchmark dataset.

The rest of the paper is organized as follows: In Section 2, the details of the benchmark
dataset, features and the classification model are discussed. Section 3 presents the results of
the performance evaluation of the proposed method and its comparison with contemporary
approaches. The conclusion of the paper is presented in Section 5.

2. Materials and Methods
2.1. Evaluation Parameters

To evaluate the performance of the proposed method, we used metrics for the imbal-
anced class samples including sensitivity (Sn) or recall, specificity (Sp), precision, conven-
tional accuracy (ACC), mathews correlation coefficient (MCC), balanced accuracy (BACC),
youden’s index (YI), F1 score, and Cohen’s kappa (κ). These parameters can be evaluated
using the following equations:

Sensitivity =
TP

TP + FN
(1)

Speci f icity =
TN

TN + FP
(2)

Precision =
TP

TP + FP
(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

MCC =
(TP× TN)− (FP× FN)√

(TP + FP)× (TN + FN)× (TP + FN)× (TN + FP)
(5)

Balanced Accuracy =
Sensitivity + Speci f icity

2
(6)

Youden′s Index = Sensitivity + Speci f icity− 1 (7)

F1 Score = 2× Precision× Recall
Precision + Recall

(8)

Po =
TP + TN

TP + TN + FP + FN
(9)

Pe =
((TP + FN)× (TP + FP) + (FP + TN)× (FN + TN))

(TP + TN + FP + FN)2 (10)
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κ =
Po− Pe
1− Pe

(11)

Here TP, FP, TN, and FN represent true positive (correctly classified AoPs), false
positive (incorrect classification of non-AoP as AoP), true negative (correctly classified
non-AoPs), and false negative (incorrect classification of AoP as non-AoP), respectively.

2.2. Dataset

The benchmark dataset has been obtained from Feng et al. [6]. The formation of the
dataset included the selection of the sequences from UniProtKB, that were annotated and
reviewed as antioxidant in the molecular function of gene ontology. The sequences were
manually observed to remove any nonstandard letters other than the 20 standard amino
acid alphabets. Furthermore, the sequence similarity was reduced to ≤60% using CD-HIT.
The final dataset contained 253 antioxidant protein sequences and 1552 non-antioxidant
proteins. To fairly compare the performance of the proposed method, the training and test
datasets were set quantitatively equal to the contemporary approaches, i.e., 200 antioxidant
and 1240 non-antioxidant proteins were used as the training subset, while the remaining
53 antioxidants and 312 non-antioxidant proteins were used as the test dataset.

2.3. Features and Latent Space Encoding

The protein features are made compatible with the machine learning algorithms
by encoding them numerically. Several encoding schemes have been utilized by the
researchers in accordance with the adopted machine learning method [13,15–17]. In this
study, we use a well known feature encoding method called the composition of k-spaced
amino acid pairs (CKSAAP). It is a comprehensive encoding scheme, and has shown
significant performance in variety of protein prediction tasks [18–20]. In CKSAAP, k
denotes the gap or space between the pairs of the amino acid fragments. For k = 2, the
intermediate feature vectors ranging from j = 0, . . . , k are obtained, which are stacked
together to form the final feature vector. An illustration of the feature vector for k = 2,
obtained from the CKSAAP method is shown in Figure 1.

As observed in Figure 1, the dimensions of the resultant feature vector of CKSAAP
can be very high. This high resolution feature vector has multilevel granularity which
intensifies the relationship of amino acid fragments. However, the inadequate number of
positive samples leads to the large p small n problem and therefore, feature engineering
such as component analysis [21] and information gain [15] must be employed. The feature
engineering tends to work well in the circumstances when the features and class labels have
a linear relationship, however, in deep learning applications, this relationship is mostly
non-linear, which presents complications in selecting the efficacious features. Therefore,
in this study we employ an auto-encoder, which is commonly used for the compressed
representation of the input data [22]. The compressed input exists in the bottle-neck of
the auto-encoder called the latent space. The latent space contains sufficient information
to reconstruct the approximate of the original input by the decoder unit. In the proposed
method, the latent space also serves as an input to the classifier module, which is a fully
connected neural network, the details of which is presented in Section 2.4.
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Figure 1. Illustration of CKSAAP descriptor calculation for k = 2. Extracted from [13].

2.4. Neural Network Architecture

The proposed Deep Latent Space Encoding (DeepLSE) model comprises of three
modules: (1) encoder, (2) decoder and (3) classifier. The input layer of the encoder of
the baseline model consists of 400× (k + 1) neurons, the first and second hidden layers
has N × 10, N × 5 neurons respectively, while the final hidden layer has N × 2 neurons.
To improve generalization and to avoid over-fitting, the batch-normalization layer and
a dropout of 30% has been employed between each dense layer. The decoder being the
complement of the encoder and has mirror symmetric configuration. For classification,
a multi-layer perceptron has been implemented with two fully connected hidden layers.
Each hidden layer has 10 neurons while the output layer has 2 neurons characterizing the
antioxidant and non-antioxidant proteins class labels. For N = 5, the architecture of the
proposed model is shown in Figure 2.



Curr. Issues Mol. Biol. 2021, 43 1493

Figure 2. Proposed latent-space encoding-based Antioxidant protein prediction model.

2.5. Training Configurations

The model is trained using Python on Tensorflow-Keras [23] platform for different
configurations of latent variables (LV) and gap values (k). The output of encoder/decoder
and classification network uses sigmoid and soft-max activation functions respectively,
while the hidden layers of all modules use rectified linear unit (ReLU) activation function
to avoid the occurrence of vanishing gradient. Two loss functions; mean squared error
and binary cross-entropy for auto-encoder and classifier respectively are being minimized
using the default learning rate of RMSprop optimizer for 1000 epochs with an early stopping
tolerance of 100 epochs. The convex combination of two losses is achieved by

Lcombined = λLdecoder + (1− λ)Lclassi f ication,

where λ is a mixing weight and which was set to be 0.99.

3. Results and Discussion
3.1. Ablation Study
3.1.1. Finding Best Latent-Space Encoding (LSE) Scheme

The workflow of the proposed study is aimed to obtain the best classification model
based on two variable parameters, i.e., the gap between the two amino acid pairs, which is
done by setting different values of k during the encoding, and the number of units in the
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latent space LS. An ablation study has been designed to acquire latent-space encoding (LSE)
with varying number of aforementioned variable parameters according to the workflow
depicted in Figure 3a. The proteins are distributed into train and test datasets as discussed
in the Section 2.2 and resultant datasets are processed for CKSAAP encoding. For the
model configuration (N = 5) shown in Figure 2, nine different subsets are constructed by
keeping k = 1 to 9. For each value of k, the model is trained with several values of latent
space variables LVs ranging from 2 to 10. For each configuration, 20 independent trials
are performed and the obtained test results are averaged. Same procedure is followed for
the next configuration by incrementing the gap value (k) between the amino acid pairs.
The model with the best average results is finally selected as the base model to perform
prediction and is named as AoP-LSE.

Protein Sequence 
(Fasta)

Feature Extraction 
(CKSAAP)

Gap 
0

Gap 
1

Gap 
9

Training Dataset Test Dataset

Training of AoPred-LSE models

LV 
0

LV 
1

LV 
2

AoPred-LSE

Prediction and
evaluation

Gap 
2

LV 
10

Protein Sequence 
(Fasta)

Feature Extraction 
(CKSAAP)

Training Dataset Test Dataset

Training of AoPred-LSE models

AoPred-LSE

Prediction and
evaluation

(b) AoP-LSE workflow(a) Ablation study workflow

Figure 3. Workflow and ablation study diagram for AoP-LSE method.

The summary of the ablation study is provided in a visual and tabular form. The
results of the BACC, MCC and PSNR are provided as a surface plot in Figure 4. These met-
rics are suggested to be an effective evaluation parameter for the imbalanced classification
problems. From the results it can be seen that for the large range of parameters, the model
achieve comparable accuracy and the variation in both the BACC and MCC is under 10%.
However the PSNR performance is highly sensitive to parameter choice as the variation
in PSNR around 20 dB units. This clearly indicates discrepancy in most descriptive and
most discriminating features. In other words, embedded features which are useful for the
reconstruction of original feature space are not necessarily the most discriminating features
for designing the classifier, while the most discriminating embedded features are not neces-
sarily the most descriptive (indicative feature for oxidation properties) features. Therefore,
finding a balanced features embedding that can help classification while preserving the
indicative feature for oxidation properties is important. The same issue is further discussed
in the Section 4.1 where learned latent-spaces are compared.
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Figure 4. Ablation study: Number of latent variables (LV) and Gaps (k) in CKSAAP features are optimized within 4× 9
parameter space. (A) Balanced Accuracy, (B) MCC and (C) PSNR.

Table 1 presents the results of the balanced accuracy, which is the average of recall
of each class and is suggested to be an effective evaluation parameter for the imbalanced
classification problems. The consistent values of standard deviations and mean for 20
random trials manifests the stability of the model. However, the best average balanced
accuracy results (i.e., 76.2%) was obtained when the value of both k and LV was equal
to 6. Therefore, the model with k = 6 and LV = 6 has been selected for further testing
and evaluations.

Table 1. Balanced accuracy results of ablation study on Gap(k), and LV parameters.

Gap/LV 2 3 4 5 6 7 8 9

k = 1 0.739± 0.082 0.713± 0.070 0.716± 0.091 0.688± 0.094 0.710± 0.047 0.717± 0.139 0.726± 0.049 0.704± 0.109
k = 2 0.701± 0.080 0.725± 0.068 0.715± 0.086 0.675± 0.079 0.717± 0.057 0.748± 0.026 0.641± 0.124 0.654± 0.093
k = 3 0.729± 0.083 0.759± 0.034 0.702± 0.110 0.716± 0.061 0.668± 0.124 0.703± 0.083 0.722± 0.094 0.669± 0.117
k = 4 0.722± 0.080 0.648± 0.107 0.702± 0.082 0.708± 0.089 0.685± 0.111 0.670± 0.108 0.678± 0.116 0.752± 0.051
k = 5 0.721± 0.036 0.670± 0.120 0.688± 0.105 0.707± 0.096 0.680± 0.090 0.708± 0.078 0.703± 0.073 0.702± 0.064
k = 6 0.689± 0.114 0.702± 0.087 0.692± 0.085 0.717± 0.077 0.762± 0.062 0.739± 0.061 0.740± 0.096 0.753± 0.019
k = 7 0.699± 0.078 0.721± 0.079 0.678± 0.066 0.713± 0.044 0.703± 0.098 0.713± 0.075 0.657± 0.095 0.710± 0.098
k = 8 0.720± 0.062 0.711± 0.069 0.636± 0.128 0.694± 0.104 0.676± 0.101 0.681± 0.106 0.725± 0.034 0.703± 0.098
k = 9 0.718± 0.065 0.708± 0.086 0.689± 0.066 0.729± 0.085 0.694± 0.098 0.734± 0.063 0.694± 0.120 0.720± 0.045

3.1.2. Finding Best-Configuration for DeepLSE Architecture

For the aforementioned combination of k = 6, and LV = 6, three configurations of
model parameters were evaluated. The number of neurons in each configuration were
incremented as shown in Table 2, and their effect on the classification performance were
evaluated for the metrics including Youden’s index, MCC, receiver operating characteristics
area under the curve (ROC AUC), precision recall area under the curve (PR AUC) and the
mean reconstruction error. 10 independent trials were performed for each configuration
and the one producing the best results in terms of aforementioned performance metrics was
selected as the baseline model in this study. Table 3 shows the results of the ablation study.

It was observed from the analysis above that a shallow model (N = 1) failed to
learn the discriminating features, whereas a highly complex model (N = 10) also showed
mediocre performance. Interestingly, the moderate size model with the configuration
(N = 5) works best. Although, this ablation study is not exhaustive, nevertheless, it gives
sufficient clue that the selected parameters are the optimal choice for best performance.

Table 2. Number of neurons in hidden layers of the architecture for the tested configurations.

Configuration (N) 1 5 10

Encode 10-5-2 50-25-10 100-50-20
Decode 2-5-10 10-25-50 20-50-100

Classifier 2-2 10-10 20-20
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Table 3. Training and test results of ablation study performed on network parameters.

Metric/Configuration (N)
1 5 10

Train Test Train Test Train Test

Youden’s Index 0.53± 0.31 0.35± 0.20 0.95± 0.08 0.59± 0.06 0.86± 0.08 0.52± 0.07
MCC 0.35± 0.20 0.45± 0.31 0.83± 0.15 0.47± 0.06 0.73± 0.14 0.42± 0.06

ROC-AUC 0.80± 0.16 0.70± 0.12 0.99± 0.01 0.84± 0.03 0.97± 0.02 0.81± 0.03
PR-AUC 0.60± 0.21 0.46± 0.12 0.95± 0.05 0.60± 0.07 0.84± 0.14 0.52± 0.11
MSE (dB) 40.81± 6.63 42.90± 5.27 39.92± 4.49 39.82± 4.65 35.13± 4.47 36.70± 4.73

3.2. Comparison with the Contemporary Methods

Once the best model has been identified from the ablation study, it is selected for
further testing and evaluation according to the workflow depicted in Figure 3b. For com-
parative analysis, the model is compared with the Naive Bayes [6] and AODPred(SVM) [7].
Table 4 presents a comparison of the evaluation metrics of the proposed AoP-LSE including
the test dataset Accurary (ACC), Sensitivity (Sn), Specificity (Sp), and Youden’s Index (YI)
with Naive Bayes [6] and AODPred(SVM) [7]. Although the sensitivity of proposed method
is relatively lower, the proposed AoP-LSE method achieved 0.14, and 0.03 units higher
Youden’s index value than the Naive Bayes and AODPred(SVM) methods respectively.
Since, for a highly skewed test dataset, the higher values of a balanced metric e.g., Youden’s
index are much desired than the individual class metric, therefore, the proposed AoP-LSE
can be considered as a better classification approach.

Table 4. Performance statistics of (k = 6, LV = 6) model.

Method Accuracy Sn Sp Precision YI BACC MCC F1 κ

Naive Bayes [6] 0.668 0.720 0.660 0.26 0.38 0.690 0.27 0.38 0.22

AODPred(SVM) [7] 0.747 0.750 0.744 0.33 0.49 0.747 0.36 0.46 0.32

AoP-LSE (DL) 0.824 0.674 0.849 0.43 0.52 0.762 0.43 0.52 0.42

3.3. Verification on Independent-Dataset of Antioxidant Proteins

For objective evaluation of the performance of the proposed method, we utilize the
reviewed antioxidant proteins from UniProtKB/Swiss-Prot [24]. UniProtKB is a high
quality, manually annotated and non-redundant protein sequence database, which brings
together experimental results, computed features and scientific conclusions. These se-
quences were totally independent and were not present in the positive of negative datasets
of the proposed study. Comparison was performed among AODPred [7], Vote9 [25] and the
proposed AoP-LSE methods. The results are presented in Table 5 show that the proposed
method successfully predicts 21 out of 22 independent antioxidant proteins achieving an
accuracy of 95.4%. This superior performance of of AoP-LSE indicates that it can be utilized
as a useful tool for the annotation of unknown antioxdants.
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Table 5. Prediction results for 22 independent antioxidant proteins. “3” indicates correct identification while “7” represents
a incorrect identification.

UniProtKB ACC NCBI Definition AODPred Vote9 AoP-LSE

P9WQB7 Alkyl hydroperoxide reductase C 3 7 3

P9WHH9 Dihydrolipoyl dehydrogenase 7 7 3

P9WIS7 Dihydrolipoyllysine-residue 7 3 3

P9WG35 Thiol peroxidase 3 7 3

P9WGE9 Superoxide dismutase 3 7 3

P9WQB5 Alkyl hydroperoxide reductase 3 7 3

P9WIE3 Alkyl hydroperoxide reductase 3 7 3

P0CU34 Peroxiredoxin TSA1 3 7 3

Q5ACV9 Cell surface superoxide dismutase 7 7 3

P9WHH8 Dihydrolipoyl dehydrogenase 7 3 3

P9WIE1 Putative peroxiredoxin Rv2521 7 3 3

P9WIS6 Dihydrolipoyllysine-residue 7 7 3

P9WQB6 Alkyl hydroperoxide reductase 3 7 3

P9WID9 Putative peroxiredoxin Rv1608c 3 7 3

O17433 Cys peroxiredoxin 3 7 7

P9WIE0 Putative peroxiredoxin MT2597 7 7 3

P9WID8 Putative peroxiredoxin MT1643 3 7 3

P9WGE8 Superoxide dismutase [Cu-Zn] 3 7 3

C0HK70 Superoxide dismutase 3 7 3

P9WQB4 Alkyl hydroperoxide reductase AhpD 3 7 3

P9WG34 Thiol peroxidase 3 7 3

P9WIE2 Alkyl hydroperoxide reductase E 3 7 3

4. Analysis of Deep Latent-Space Encoding
4.1. Comparison of Feature and Latent-Space Discrimination Capability

The latent space learned by the proposed method has been visualized in Figure 5. For
fair comparison, two feature-encoding/ dimension-reduction methods are utilized. For
linear and non-linear embedding, PCA [26] and tSNE [27] methods are used respectively.
Both methods were provided with the original feature space and deep encoded latent-space
data. From Figure 5 it can be clearly seen that the proposed deep latent space encoding
method learns to separate the two classes data which are not distinct in the original feature
space as can be seen in Figure 5A. The tSNE results in Figure 5B shows interesting patterns,
indicating the possibility of noisy labels, which are not as prominent in original features
space. Another important characteristics of proposed method is the fact that even with
linear encoding method of PCA, the proposed Deep-LSE encoded features looks linearly
separable, which is an added advantage as in many bioinformatics problem the simplicity
and explainability is more important than the gain in classification scores.

Since both classification and reconstruction modules are trained simultaneously and
the training attention is increased towards minimizing the reconstruction loss. The model
has more freedom to represent individual samples with its variability. On the other hand,
the attention of learning is towards minimizing the decoder’s loss with a low value of the
classification weight. It creates an unfair tug of war between the two objectives and results
in a cluster of high dimensional data in a compact distinguishable latent-space.
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Figure 5. Visualization of Feature and Latent Space Embedding by PCA & tSNE. (A) Feature Space
Embeddings (PCA, tSNE), and (B) Latent Space Embeddings (PCA, tSNE). The opaque points are
the training instances and clearly expressed points are test instances.

4.2. Comparison of Proposed DeepLSE and Conventional Auto-Encoder-Based Encoding Schemes

Although, the architecture of the proposed model is similar to auto-encoder (AE)
+ multi-layer perceptron (MLP) neural network. However, the way it has been config-
ured/trained i.e., combined training of AE+MLP makes it different from the conventional
approach where AE is trained separately for dimension reduction and obtain the most
representative (low-ranked) features in the latent space (LS) for signal reconstruction. The
proposed DeepLSE on the other hand, not only learns the most representative features but
also impose a classification constraint on the latent variables. Thus, creating a tug of war
between the decoder and the classifier forcing the encoder to generate useful features. To
emphasize this point and for a fair comparison with existing techniques, an evaluation on
three different models has been presented.

We trained the auto-encoder network with similar configuration (N = 5, k = 6, and
LV = 6) as in DeepLSE and extracted the latent space encoding for the entire dataset. Later
the encoder latent-variables were used for the design and evaluation of auto-encoder+multi
layer perceptron (AE + MLP), auto-encoder+ support vector machine (AE + SVM) and
auto-encoder+naive bayes (AE + NB) methods. The models were evaluated for the several
evaluation parameters and the results are reported in Table 6. For AE + MLP model, the
same MLP configuration was used as in DeepLSE. For AE+SVM, linear SVM [28,29] with
Euclidean-distance-based radial-basis-function [30] kernel, balanced class weights and l2
penalty of C = 1000 is used. For AE + NB method, Gaussian Naive Bayes [31] with prior of
(0.5, and 0.5) is used. Both the SVM and NB methods were implemented using scikit-learn
package [32] on Python 3.

As anticipated, the conventional AE fail to generate useful embedding, hence, the
performance of all the aforementioned models is poor. To further highlight this point,
we provided the visualization for the AE and DeepLSE latent variables in Figure 6, and
compare the discrimination potentiality of the original feature-space of DeepLSE’s and
AE’s latent-variables using one-dimensional PCA with absolute-GSSMD [33] method. The
GSSMD is derived from generalized contrast-to-noise ratio (GCNR) [34] metric, in which
the overlap between two distributions is compared. For an ideal classification, a GCNR
score of 1 is obtained, which suggests that the two distributions are distinct with no overlap.



Curr. Issues Mol. Biol. 2021, 43 1499

While for classification in worst-case, the two distribution must be fully overlapping
resulting in the GCNR score of 0. It can be observed in Figure 6a, that the conventional
AE, with only dimension reduction constraint, obtained the training and testing MSE
of 46.21 dB and 46.37 dB, respectively with (1D-PCA-GCNR score = 0.22) and does not
distinguishes the two classes. While with a comparable MSE error, the proposed method
depicted in Figure 6b, presents superior learning capabilities (1D-PCA-GCNR score = 0.91)
and maps the AoP and non-AoP in separate regions.

Table 6. Evaluation of different models trained on the latent variables of an auto-encoder on
complete dataset.

Method Sensitivity Specificity Accuracy BACC MCC F1 Score YI

AE + MLP 0.65 0.57 0.58 0.61 0.16 0.31 0.23
AE + SVM 0.64 0.56 0.57 0.50 0.15 0.30 0.21
AE + NB 0.78 0.36 0.42 0.57 0.11 0.28 0.15

Proposed DeepLSE 0.67 0.84 0.82 0.76 0.43 0.52 0.52

Figure 6. 2D visualization of (a) latent-space embedding of conventional auto-encoder, and
(b) latent-space embedding of proposed DeepLSE-based Auto-Encoder neural network using PCA.
(a) Training/Test MSE (dB): 46.21/46.37, and 1D-PCA-GCNR score 0.22, (b) Training/Test MSE (dB):
45.05/44.88 and 1D-PCA-GCNR score 0.91.

4.3. Analysis of Decoder and Residual Error

Herein, we analyzed the discriminating power of input, decoded and residual signals.
This provide another interesting characteristics of our proposed DeepLSE. From the 2D
visualization of original feature space X , the decoded-output using proposed DeepLSE
X ′ = Dec(Enc(X )), and the residual of original-input and decoded output of DeepLSE
X −X ′ in Figure 7a it can be seen that the original feature space X with 1D-PCA-GCNR
score of 0.14 units, is highly overlapping/non-linear and have almost no discriminating
capabilities in linear-space. Whereas, the proposed DeepLSE method which acts as optimal-
transport (OT) [35,36], and shift the data distributions in such a way that the reconstruction
error of the original signal remains comparable to the conventional AE as well as the
classification power is greatly improved. Its feature space, shown in Figure 7b, results in 1D-
PCA-GCNR score of 0.77 units, which is 0.63 units higher than the original discriminating
power. The 2D projection of residual error signal X −X ′ in Figure 7c looks identical to the
original feature space X , however, the class separability in residual error is dropped by
0.02 units, This is understandable as the ideal residual error should not contain any useful
information which may improve the classification.
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Figure 7. 2D visualization of (a) original feature space (1D-PCA-GCNR score 0.14), (b) decoded-
output using proposed DeepLSE(1D-PCA-GCNR score 0.77) and (c) residual of original-input and
decoded output of DeepLSE neural network using PCA (1D-PCA-GCNR score 0.12).

5. Conclusions

In this study, we proposed a deep latent space encoding method for the classification
of anti-oxidant proteins using sequence derived features. In particular, the composition of
k-spaced amino acid pair (CKSAAP) and a densely connected multi-layered perception
neural network are used which are trained in tandem. The proposed method can be used to
extract a non-redundant compact feature space, which is shown to outperform the conven-
tional antioxidation protein classification approaches. Furthermore, the effect of varying
parameters and number of gaps in CKSAAP and latent variables in Deep-LSE is analyzed,
which suggests that a sufficient separable encoding can be learned by keeping moderate
number of neurons in the architecture with k = 6 and LV = 6. The proposed approach
effectively learns the non-linear embedding of the features from original feature space,
thus filters out the non-relevant data on the basis of their distance from the class centers.
This property leads towards the development of a classifier for the antioxidant proteins
with noisy annotations and for assessment, the proposed method has been evaluated on an
independent dataset which showed superior classification performance compared to the
contemporary methods. We hope that AoP-LSE will serve as an effective method for the
identification of unknown antioxidants.
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