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Abstract
Lowering cellular prion protein (PrPC) levels in the brain is predicted to be a power-
ful therapeutic strategy for the prion disease. PrPC may act as an antiapoptotic agent by 
blocking some of the internal environmental factors that initiate apoptosis. Prion protein 
(PrP)-knockout methods provide powerful indications on the neuroprotective function of 
PrPC. Using PrPC-knockout cell lines, the inhibition of apoptosis through stress inducible 
protein1 (STI1) is mediated by PrPC-dependent superoxide dismutase (SOD) activation. 
Besides, PrP-knockout exhibited wide spread alterations of oscillatory activity in the olfac-
tory bulb as well as altered paired-pulse plasticity at the dendrodendric synapse. Both the 
behavioural and electro-physiological phenotypes could be rescued by neuronal PrPC 
expression.

Neuprotein Shadoo (Sho), similarly to PrPC, can prevent neuronal cell death induced 
by the expression of PrPΔHD mutants, an artificial PrP mutant devoid of internal hydro-
phobic domain. Sho can efficiently protect cells against excitotoxin-induced cell death by 
glutamates. Sho and PrP seem to be dependent on similar domains, in particular N-terminal 
(N), and their internal hydrophobic domain. ShoΔN and ShoΔHD displayed a reduced 
stress-protective activity but are complex glycosylated and attached to the outer leaflet of the 
plasma membrane via glycosylphosphatidylinositol (GPI) anchor indicating that impaired 
activity is not due to incorrect cellular trafficking. In Sho, overexpressed mice showed large 
amyloid plaques not seen in wild-type mice. However, Shadoo is not a major modulator of 
abnormal prion protein (PrPSc) accumulation. Sho and PrP share a stress-protective activity. 
The ability to adopt a toxic conformation of PrPSc seems to be specific for PrP.
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PrPC protects neurons from stress-induced apoptosis

Neurogenesis
Recently, several reports showed that cellular prion protein (PrPC) participate in a trans-
membrane signalling process that is associated with haematopoietic stem cell replication 
and neuronal differentiation (Mouillet-Richard et al., 2000; Steele et al., 2006; Zhang et al., 
2006). Abundant expression of P,,,rPC has been detected during mouse embryogenesis in 
association with the developing nervous system (Manson et al., 1992; Miele et al., 2003; 
Tremblay et al., 2007). In the developing mouse brain, undifferentiated neural progenitor 
cells in the mitotically active ventricular zone do not express PrPC. In contrast, post-mitotic 
neurons express high levels of PrPC after their last mitosis in the neuroepithelium as they 
migrate towards marginal layers and differentiate (Steele et al., 2006; Tremblay et al., 2007). 
Thus, PrPC may be expressed exclusively in differentiated neurons (Tanji et al., 1995). Stud-
ies in vitro have shown that expression of PrPC is positively correlated with differentiation 
of multipotent neuronal precursors into mature neurons (Steele et al., 2006). In addition, 
treatment of embryonic hippocampal neurons with recombinant PrPC enhance neurite 
outgrowth and survival (Kanaani et al., 2005).

The distribution of PrPC in the developing nervous system of cattle (Peralta et al., 2011), 
as well as in mice (Tremblay et al., 2007) and humans (Adle-Biassette et al., 2006) suggests 
that PrPC plays a functional role in neural development. While mice lacking in prion protein 
(PrP) display no overt neural phenotype (Beuler et al., 1992), numerous subtle phenotypes 
have been reported (Steele et al., 2007), including reduction in the number of neural precur-
sor cells in developing mouse embryo (Steele et al., 2006). Other studies have shown that 
PrPC induced neuritogenesis in embryonic hippocampal neurons cultured in vitro (Kanaani 
et al., 2005; Lopes et al., 2005). PrPC interacts with stress-inducible protein 1 (STI1) 
(Zanata et al., 2002), which is a heat-shock protein (Lässle et al., 1997). The interaction of 
PrPC with STI1 not only activates cyclic adenosine monophosphate (cAMP)-dependent 
protein kinase A to transducer a survival signal but also induces phosphorylation/activation 
of the mitogen-activated protein kinase to promote neuritogenesis (Lopes et al., 2005). The 
expression of mammalian PrPC in the neuroepithelium and its spatial and temporal rela-
tion with neural marker nestin and MAP-2 also suggests the participation of PrPC in the 
process of neural differentiation during early embryogenesis (Peralta et al., 2011). The use 
of embryonic stem (ES) cells to study the potential role or PrPC will indicate how PrPC is 
up-regulated during the differentiation of stem/progenitor cells.

Neuroprotection
The mammalian PrPC is a highly conserved glycoprotein localized in membrane lipid rafts 
and anchored to cell surface by glycophosphatidylinositol (GPI) (McKinley et al., 1991). It is 
present in many cell types and is particularly abundant in neurons (Taraboulos et al., 1992). 
Under certain conditions PrPC may undergo conversion into a conformationally–altered 
isoform (scrapie prion protein or PrPSc) widely believed to be the pathogenic agent in prion 
disease or transmissible spongiform encephalopathies (TSE) (Caughey et al., 1991; Pan et 
al., 1993). Although much is known about the effect of PrPSc in prion diseases, the normal 
function of PrPC is poorly understood. PrPC has an alpha and beta-cleavage site during 
normal processing and hosts translational modifications (Mange et al., 2004). The most 
commonly observed function of PrPC is copper-binding. The octapeptide-repeat region of 
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PrPC binds with Cu2+ within the physiological concentration range (Hornshaw et al., 1995; 
Kramer et al., 2001; Miura et al., 1999; Prusiner, 1997; Zeng et al., 2003). Furthermore, 
PrPC displays a functional role in normal brain metabolism of copper (Brown et al., 1997). 
Besides binding with Cu2+ at the synapse, PrPC serves as a Cu2+ buffer as well (Kretzschmar 
et al., 2000). Overexpression of PrPC increases Cu2+ uptake into cells (Brown, 1999), while 
PrPC-knockout mice show a lower synaptosomal Cu2+ concentration than normal mice 
(Kretzschmar et al., 2000). On the other hand, the Cu2+ rapidly and reversibly stimulates the 
internalization of PrPC during PrPC endocytosis (Haigh et al., 2005; Kubosaki et al., 2003; 
Pauly et al., 1998). Through the binding with Cu2+, PrPC displays superoxide dismutase 
(SOD) activity in vitro (Brown et al., 1999; Vassallo et al., 2003). Interestingly, treatment 
with copper chelator cuprizone induces TSE-like spongiform degeneration (Pattison et al., 
1973). Therefore, Cu2+ metabolism appears to play an important role in not only PrP func-
tion but also the pathogenesis of prion diseases.

PrPC may act as an antiapoptotic agent by blocking some of the factors that initiate apop-
tosis (Bounhar et al., 2001; Roucou et al., 2005). Mature PrPC tend to localize in lipid raft 
of cells (Taraboulos et al., 1992). As lipid rafts are membrane structures that specialize in 
signalling, a potential role of PrPC in signal transduction may be anticipated. Discovery of 
several PrPC-interacting candidates has facilitated the understanding of the PrPC function 
(Table 2.1). PrPC-interacting molecules are most likely involved in signal transduction. 
In addition, a phosphorylating function of PrPC, mediated by caveolin-1 to indirectly 
increase Fyn (a member of Src family of tyrosine kinase) phosphorylation, governs the 
downstream production of nicotinamide adenine dinucleotide phosphate (NADPH)-
oxidase-dependent reactive oxygen species and activation of the extracellular regulated 
kinase 1/2 has been demonstrated (Mouillet-Richard et al., 2000; Schneider et al., 2003). 
PrPC interacts with normal phosphoprotein synapsin Ib and cytoplasmic adaptor protein 
Grb2 without being deciphered with prion interactor Pint1 (Spielhaupter and Schätzl, 
2001). Bovine PrP strongly interacts with the catalytic α/α¢ subunit of protein kinase CK2 
to increase the phosphotransferase activity of CK2, thus leading to the phosphorylation of 
calmodulin (Maggio et al., 2000).

Recently, PrPC has been demonstrated to modulate serotonergic receptor-signalling in 
the inducible serotonergic 1C115-HT cell line, viz. modulation of 5-hydroxytryptamine 
(5-HT) receptor coupling to activate G-protein functions, as well as acting as a protagonist 
to promote homeostasis of serotonergic neurons (Moulliet-Richard et al., 2005). In addi-
tion, PrPC binds with extracellular matrix laminin to promote genesis and maintenance 
of neurites (Graner et al., 2000a,b). Indeed, a recent study has discovered PrPC to induce 
self-renewal of long term populating haematopoietic stem cells (Zhang et al., 2006). 
Furthermore, another study has revealed that PrP is expressed on the multipotent neural 
precursors and mature neurons without being detected in glia, suggesting that PrPC plays 
an important role in neural differentiation (Steele et al., 2006). Therefore, the interaction 
between PrPC and various signal transduction molecules speaks well for its importance 
(such as differentiation and cell survival) within the living system.

PrP-knockout methods provide useful hints on the neuroprotective function of PrPC 
(Sakudo et al., 2006). A PrP gene (Prnp)-deficient cell line (HpL3-4), perpetuated from 
hippocampal neuronal precursors, is sensitive to serum deprivation-induced apoptosis but 
is activated/survived with PrPC expression (Kuwahara et al., 1999). Overexpression of Bcl-2 
in this cell-line reveals a functional relation of PrPC with Bcl-2 in the anti-apoptotic pathway 

caister.com/cimb 69 Curr. Issues Mol. Biol. Vol. 36



Onodera et al.

Table 2.1 Proteins interacting with PrP
Proteins Methods References

Stress-inducible protein 1 Complementary hydropathy Martins et al. (1997)

Tubulin Cross-linking by 
bis(sulfosuccinimidyl)-suberate

Nieznanski et al. 
(2005)

Neural adhesion molecule 
(N-CAM)

Cross-linking by formaldehyde Schmitt-Ulms et al. 
(2001)

Dystroglycan Detergent-dependent immunoprecipitation Keshet et al. (2000)

Neuronal isoform of nitric 
oxide synthase (nNOS)

Detergent-dependent immunoprecipitation Keshet et al. (2000)

Grp94 Immunoprecipitation Capellari et al. (1999)

Protein disulphide 
isomerase

Immunoprecipitation Capellari et al. (1999)

Calnexin Immunoprecipitation Capellari et al. (1999)

Calreticulin Immunoprecipitation Capellari et al. (1999)

ZAP-70 Immunoprecipitation Mattei et al. (2004)

NF-E2 related factor 2 
(Nrf2)

Interaction with PrP23-231-alkaline 
phosphatase probe

Yehiely et al. (1997)

Amyloid precursor 
protein-like protein 1 
(Aplp1)

Interaction with PrP23-231-alkaline 
phosphatase probe

Yehiely et al. (1997)

F-box protein-6 Interaction with PrP23-231-alkaline 
phosphatase probe

Yehiely et al. (1997)

Neural F-box protein 42 
kDa (NFB42)

Interaction with PrP23-231-alkaline 
phosphatase probe

Yehiely et al. (1997)

Postsynaptic density 95 
kDa (PSD-95)/SAP-90 
associated protein

Interaction with PrP23-231-alkaline 
phosphatase probe

Yehiely et al. (1997)

Protein tyrosine 
phosphatase, 
non-receptor type-21

Interaction with PrP23-231-alkaline 
phosphatase probe

Yehiely et al. (1997)

Predicted protein 
KIAA0443

Interaction with PrP23-231-alkaline 
phosphatase probe

Yehiely et al. (1997)

Glial fibrillary acidic protein 
(GFAP)

Interaction with radioisotope-labelled 
PrP27-30

Oesch et al. (1990)

Hsp60 of Brucella abortus Pull-down assay Watarai et al. (2003)

Bcl-2 Yeast two-hybrid system Kurschner and 
Morgan (1995)

Heat shock protein 60 kDa Yeast two-hybrid system Edenhofer et al. 
(1996)

37 kDa laminin receptor 
protein (LRP)

Yeast two-hybrid system Rieger et al. (1997)

Pint1 Yeast two-hybrid system + immunoprecitation Spielhaupter and 
Schätzl (2001)

Synapsin Ib Yeast two-hybrid system + immunoprecitation Spielhaupter and 
Schätzl (2001)

Neuronal phosphoprotein 
Grb2

Yeast two-hybrid system + immunoprecitation Spielhaupter and 
Schätzl (2001)
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(Kurschner et al., 1995; Kuwahara et al., 1999). Prevention of cell death in cultured retinal 
explants from neonatal rats and mice induced by anisomysin (a protein synthesis inhibitor) 
unfurls and the effect is associated with PrPC–STI1 interactions (Zanata et al., 2002). The 
production of another type of heat-shock protein (Hsp 70) is enhanced when PrP levels 
elevate during hyperglycaemia (Shyu et al., 2005). According to findings in another study, 
the inhibition of apoptosis through STI1 is mediated by PrPC-dependent SOD activation 
(Sakudo et al., 2005). The functional role of STI1 and PrPC has been confirmed in both 
murine and bovine systems (Hashimoto et al., 2000). The late onset of severe ataxia and 
loss of cerebellar Purkinje cells in several knockout mouse lines (Moore et al., 1999; Rossi 
et al., 2001; Sakaguchi et al., 1996) suggest a lack of protection of cerebellum by PrPC in 
these mice. Interestingly, deposition of PrPSc has been located in the deep cerebellar nuclei 
(DCN) of scrapie-infected sheep (Ersdal et al., 2003). Future studies with a microarray 
analysis (Park et al., 2006) applied in eye-blink conditioning of mice may provide insight 
into understanding the normal function of PrPC in the DCN of cerebellum.

A loss of PrPC function could be implicated in the pathogenesis of prion diseases and 
PrPC-dependent pathways might be involved in neurotoxic signalling. For example, in vivo 
crosslinking of PrPC by antibodies triggered neuronal apoptosis (Solforosi et al., 2004) and 
PrPC-dependent receptors were postulated to explain the neurotoxic effect of a PrP mutant 
lacking the hydrophobic domain (see next sections) (Winklhofer et al., 2008).

Taken together, PrPC is functionally involved in copper metabolism, signal transduction, 
neuroprotection and cell maturation (Fig. 2.1). Despite these published roles, mice that 

Proteins Methods References

Neurotrophin receptor 
interacting MAGE 
homolog

Yeast two-hybrid system + in vitro binding 
assay + immunoprecipitation

Bragason et al. 
(2005)

Potassium channel 
tetramerization 
domain containing 1 
(KCTD1) protein

Yeast two-hybrid system Huang et al. (2012)

Rab7a Coimmunoprecipitation + immunofluorescence Zafar et al. (2011)

Rab9 Coimmunoprecipitation + immunofluorescence Zafar et al. (2011)

HS-1 associated protein 
X-1 (HAX-1)

Yeast two-hybrid system Jing et al. (2011)

Histone H1 Far Western immunoblotting Strom et al. (2011)

Histone H3 Far Western immunoblotting Strom et al. (2011)

Lamin B1 Far Western immunoblotting Strom et al. (2011)

14-3-3beta protein Immunoprecipitation + pull-down assays Liu et al. (2010)

Casein kinase II Immunoprecipitation + pull-down assays Chen et al. (2008)

Tetraspanin-7 Yeast two-hybrid 
system + immunoprecipitation

Guo et al. (2008)

2P domain K+ channel 
TREK-1 protein

Bacterial two-hybrid + immunoprecipitation Azzalin et al. (2006)

ADAM23 Immunoprecipitation + pull-down assay Costa et al. (2009)

Table 2.1 Continued
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are lacking PrPC display no consistent phenotype apart from complete resistance to TSE 
infection (Büeler et al., 1992, 1993). Further search for PrPC-interaction molecules using 
Prnp–/– mice and various types of Prnp–/– cell lines under various conditions may elucidate 
the PrPC functions.

Synaptic plasticity
In PrP–/– mice, Kim et al. (2007) have observed pathological alterations and some physiologi-
cal dysfunctions in olfactory bulb (OB). Recently, Le Pichen et al. (2009) have uncovered 
a significant phenotype of PrP–/– mice in the olfactory system by utilizing a combination of 
genetic, behavioural and physiological and physiological techniques in a systems approach. 
They employed a so-called ‘cookie finding task’, a test of broad olfactory acuity, to analyse 
a battery of mice including PrP knockout on multiple genetic backgrounds and transgenic 
mice in which Prnp expression was driven by cell type-specific promoters. PrP–/– mice 
exhibited impaired behaviour that was rescued in transgenic mice expressing PrPC specifi-
cally in neurons but not in mice expressing only extra-neuronal PrPC. PrP–/– mice displayed 
altered behaviour in an additional olfactory test (habituation–dishabituation) which was 
also rescued by transgenic neuronal PrP expression suggesting that the phenotype was 
olfactory specific.

Besides, the odour-evoked electrophysiological properties of the OB of PrP knockouts 
were studied (Le Pichon et al., 2009). In these mice, alterations in the patterns of oscillatory 
activity in the OB were detected. The plasticity of dendrodendritic synaptic transmission 
was altered between granule cells and mitral cell. Le Pichon et al. propose that electrophysi-
ological alterations at the dendrodendritic synapse in the OB could underlie the behaviour 
phenotypes.

In detail, the cookie finding phenotype was manifest in three PrP–/– lines (Zurich I PrP 
knockout: Beuler et al., 1992; Nagasaki PrP knockout: Sakaguchi et al., 1996; Edinburgh 
PrP knockout: Manson et al., 1994) on alternate genetic backgrounds, indicating strong 
evidence of its dependence on PrPC rather than other genetic factors. PrP knockouts also dis-
played altered behaviour in the habituation–dishabituation task, suggesting the phenotype 

Figure 2.1 Gain and loss of function in prion disease.
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was likely olfactory-specific. PrP–/– mice exhibited wide spread alterations of oscillatory 
activity in the OB as well as altered paired-pulse plasticity at the dendrodendritic synapse. 
Both the behavioural and electrophysiological phenotypes were rescued by neuronal PrPC 

expression.
Disruption was observed in local field potential (LFP) oscillation and in the plasticity 

of the dendrodendritic synapse, either, or both, of which could contribute to the PrP–/– 

behavioural phenotype. Oscillatory LFPs may act to organize information flow within the 
olfactory system (Lledo et al., 2006; Stopher et al., 2007) by constraining the timing of 
mitral cell action potentials (Kasiwadani et al., 1999). In addition, gamma oscillations are 
specifically implicated in behavioural performance in olfactory tasks (Beshel et al., 2007; 
Brown et al., 2005; Nusser et al., 2001). Therefore, alterations in oscillatory timing during 
odour exposure may perturb OB output to higher centres by disrupting how information is 
packaged within a breathing cycle.

Altering the dendrodendritic synapse may have multiple functional consequence. This 
synapse may mediate lateral inhibition between ensembles of mitral cells, and be critical for 
olfactory discrimination (Urban, 2002; Yokoi et al., 1995). Additionally, because granule 
cells receive convergent information onto their proximal dendritic arbour from multiple 
higher brain areas (Shepherd, 2003), disruption of the dendrodendritic synapse may alter 
the transmission of centrifugal modulation of OB mitral cells.

High frequency oscillations in the OB (gamma and high-gamma) are shown in vitro to 
result from the rapid and reciprocal interactions between granule and mitral cells across the 
dendrodendritic synapse (Lagier et al., 2007; Schoppa et al., 2006). Therefore, Le Picheon’s 
observation could imply that increased facilitation of mitral cell inhibitory postsynaptic 
potential (IPSP) following repetitive spiking, decreases the dynamic range and increases 
the duration of gamma oscillations across the boundaries of breath. Although both oscilla-
tory and synaptic effects could be reversed by neuronal PrPC expression, they cannot claim 
a causal link between these findings.

Mitral cells receive facilitated inhibition in PrP–/– mice. This facilitation could result 
from either pre- and/or post-synaptic changes to the dendrodendritic synapse. Future work 
should determine the precise synaptic localization of the PrPC protein as well as its bio-
chemical interactions with synaptic machinery (Criado et al., 2005).

Myelination and chronic demyelinating polyneuropathy
A late-onset peripheral neuropathy has been identified in PrPC-deficient Nagasaki (PrnpNgsk/

Ngsk) and Zurich-I (Prnp–/–) mice (Sakaguchi et al., 1996; Nishida et al., 1999; Büeler et al., 
1992). This indicates that PrPC might have a role in peripheral neuropathies. At 60 weeks 
of age, all Prnp–/– mice (n = 52) investigated showed chronic demyelinating polyneuropathy 
(CDP) (Bremer et al., 2010). CDP was 100% penetrant and conspicuous in all investigated 
peripheral nerves (sciatic and trigeminal nerves, dorsal and ventral spinal roots). Besides, 
CDP was associated with another two independently targeted Prnp knockout mouse lines, 
PrnpGFP/GFP (Heikenwalder et al., 2008) mice and PrnpEdbg/Edbg (Manson et al., 1994) mice.

Prnp–/– and PrnpEdbg/Edbg mice suffered from CDP despite the normal expression of 
Doppel (Dpl) (Moore et al., 1999), indicating that Dpl regulation did not cause polyneu-
ropathy. CDP was present in mice lacking both Prnp and Prnd (the gene for Dpl) (Genoud 
et al., 2004), but absent from mice selectively lacking Prnd (Behrens et al., 2002). Therefore, 
Dpl is not required for the maintenance of peripheral nerves. PrPC might interact with the 
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myelin component directly or through other axonal proteins. Some of the reported PrPC 
interacting proteins have roles in homeostasis (Rutinshauser et al., 2009), and represent pos-
sible candidates for mediation of its myelinotrophic effects. The octapeptide repeat region 
was not required for myelin maintenance, whereas mice PrP lacking central domain (aa 
94–134) developed CDP (Baumann et al., 2007). The hydrophobic core, but not the charge 
cluster (CC2), of this central PrPC domain was essential for peripheral myelin maintenance.

PrPC undergoes regulated proteolysis in late secretory compartments (McMahon et al., 
2001; Sunyach et al., 2007; Walmsley et al., 2009; Watt et al., 2005). Bremer et al. (2010) 
observed an association between the presence of CDP and lack of C1 fragment in sciatic 
nerves. All PrP mutants in which CDP was rescued produced abundant C1. Cleavage of 
PrPC appeared, therefore, to be linked to its myelinotrophic function. This conjuncture 
might also explain the requirement for membrane anchoring of PrPC uncovered in mice 
(Chesebro et al., 2005), as anchorless PrPC did not undergo regulated proteolysis.

Prion diseases mainly affect the central nervous system (CNS), myelin degeneration 
in optic nerves, corpus callosum or spinal cords was not detected in 60-week-old Prnp–/– 
mice (Bremer et al., 2010). Nevertheless, subliminal myelin pathologies might extend to 
central myelin in Prnp0/0 mice (Nazor et al., 2007), and transgenic mice expressing toxic 
PrPC show both peripheral and central myelinopathy (Baumann et al., 2007; Radovanovic 
et al., 2005). PrPC deficiency affected synaptic function (Collinge et al., 1994; Mallucci et al., 
2002). However, the amplitudes of foot muscle compound action potentials following distal 
stimulation were not significantly altered in 53-week-old Prnp0/0 mice thus arguing against 
an important synaptic defect in neuromuscular synaptic junction.

PrPC show various roles in immunity (Isaacs et al., 2006), and lymphocytes are important 
in mouse models of hereditary demyelinating neuropathies. As the CDP in our mutant mice 
was not modulated by removal of Rag1, lymphocytes are not involved in its pathogenesis. 
The combined results of restricting expression of PrPC of neurons and of selectively deplet-
ing PrPC from neurons indicate that the expression of PrPC by the neuron is essential for 
the long-term integrity of peripheral myelin sheaths (Bremer et al., 2010). Not only was the 
trophic function of PrPC exerted in trans, but also correlated with the proteolytic processing 
of in diverse transgenic mouse models. These findings identify PrPC as a critical messen-
ger of transcellular axomyelinic communication and indicate that regulated proteolysis of 
axonal PrPC might exposed domains that interact with Schwann cell receptors. Clarifying 
the molecular basis of these phenomena might lead to a better understanding of peripheral 
neuropathies – particularly those of late onset – and might help to uncover new therapeutic 
targets.

Recent reports show that PrPC-deficient mice of five different PrPC-knockout strains, 
including the PrnpZH3/ZH3 mice (co-isogenic to BL/6 mice), develop a late-onset periph-
eral neuropathy, indicating that peripheral myelin maintenance is a bona fide physiological 
function of PrPC (Bremer et al., 2010; Nishida et al., 1999; Wulf et al., 2017). Nuvolone et 
al. (2016) used TALEN-mediated genomic editing in fertilized mouse oocytes to create 
PrnpZH3/ZH3 mice on a pure genetic C57BL/6J background. Genomic, translational and 
phenotypic characterization of PrnpZH3/ZH3 mice failed to identify phenotypes previously 
described in non-co-isogenic Prnp–/– mice. However, PrnpZH3/ZH3 mice developed a CDP, 
confirming the crucial involvement of PrPC in peripheral myelin maintenance.

Neuronal PrPC expression and amino-proximal cleavage are necessary for the promyeli-
nating signal (Bremer et al., 2010). It has been discovered that very N-terminal polycationic 
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cluster of PrPC binds to the G-protein-coupled receptor Adgrg6 (Gpr126) of Schwann cells, 
eliciting a promyelinating cAMP response in vitro and in vivo in mice and zebrafish (Küffer 
et al., 2016). This pointed to the N-terminal fragment of PrPC as a promyelinating factor that 
might serve as a possible treatment in other peripheral chronic demyelinating polyneuropa-
thies (Wulf et al., 2017).

PrPC mediates toxic signalling by PrPSc

Mice with prion disease show misfolded PrP accumulation and developed extensive neu-
rodegeneration, in contrast to mouse models of Alzheimer’s disease (AD) or Parkinson’s 
disease (PD), in which neuronal loss is rare. Therefore, prion-infected mice allow access to 
mechanism linking protein misfolding to neuronal death. Mallicci’s group have previously 
shown the rescue of neuronal loss and the reversal of early cognitive and morphological 
changes in prion-infected mice by depleting PrP in neurons, preventing prion replication 
and abrogating neurotoxicity (Mallucci et al., 2003, 2007; White et al., 2008). The same 
group have shown that PrPSc replication causes sustained unfolded protein response (UPR) 
induction with persistent, deleterious expression of eLF2α-P in prion disease (Moreno et al., 
2012). The resulting chronic blockade of protein synthesis leads to synaptic failure, spon-
giosis and neuronal loss. Promoting eLF2α-P dephosphorylation rescues vital translation 
rates and is thereby neuroprotective, whereas preventing this further reduces translation 
and enhances neurotoxicity. The data support the development of generic proteostatic 
approaches to therapy in prion (Balch et al., 2008; Tsaytler et al., 2011). The unfolded PrPC 
response works as protective cellular mechanism triggered by rising levels of misfolded 
PrPSc protein (Moreno et al., 2012).

In another study, expression of PrPC in neuronal cells is required to mediate neurotoxic 
effects of PrPSc (Chesebro et al., 2005). PrPSc might elicit a deadly signal through a PrPC 

dependent signalling pathway. Spontaneous neurodegeneration in transgenic mice express-
ing a PrP mutant without the N-terminal endoplasmic reticulum (ER)-targeting sequence 
indicated a toxic potential of PrP when located in cytosolic compartment (cytoPrP) (Ma 
et al., 2002). Toxicity of cytoPrP seems to be dependent on its association with cellular 
membranes (Wang et al., 2006) and its binding to Bcl-2, an antiapoptotic protein present at 
the cytosolic side of ER and mitochondrial membranes (Rambold et al., 2006). Might the 
toxic potential of misfolded PrP in the cytosol be relevant to the pathogenesis of prion dis-
eases? Most recent information revealed an impairment of the ubiquitin-proteasome system 
(UPS) in prion-infected mice. In conjunction with in vitro and cell culture approaches, it 
was proposed that prion neurotoxicity is linked to PrPSc oligomers, which translocate to the 
cytosol and inhibit the URS (Kristiansen et al., 2007).

Stress-inducible and toxic signalling mediated by PrPC are 
interconnected
PrPC expression is indispensable for prion-induced neurotoxicity (Brandner et al., 1996), 
implying that PrPC could be a receptor for prions to trigger detrimental signalling. Stritt-
matter reported that PrPC transduces the synaptic cytotoxicity of amyloid-β(Aβ) oligomers 
in vitro (Laurén et al., 2009) and in Aβtransgenic mice (Gimbel et al., 2010). Moreover, 
different anti-PrP antibodies or their antigen-binding fragment that disrupt the PrP–Aβ 
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interaction were able to block the Aβ-mediated disruption of synaptic plasticity. These find-
ings were important because they suggest the involvement of PrPC in Alzheimer’s disease 
(AD) pathogenesis. However, others found that the absence of PrPC did not prevent deficits 
in hippocampal-dependent behavioural tests on intracerebral Aβ injection (Balducci et al., 
2010). Variations in copper availability could contribute to these discrepancies (Stys et al., 
2012).

Parkin et al. (2007) reported an interaction between PrPC and the rate-limiting enzyme 
in the production of Aβ, the β-secretase BACE1, and two studies have also found direct 
links: PrPC has been reported to be a receptor for Aβ oligomers (Laurén et al., 2009) 
and the expression of PrPC is controlled by the amyloid intracellular domain (AICD) 
(Vincent et al., 2009). There are two potential roles suggested for PrPC in AD: one, a 
role in the physiological regulation of amyloid precursor protein (APP) via interaction 
with BACE1; and two, a role in the pathological progression of AD by mediating Aβ 
toxicity by binding Aβ42-oligomers. The feedback loop between, PrPC, BACE1, APP and 
AICD are described, and provides a model linking these recent observations (Kellett 
et al., 2009). However, several questions remain to be answered, including, what effect 
does Aβ42-oligomer binding have on the functions of PrPC, how do the levels of PrPC 
compare with the brains of AD patients and age-matched control, and what is the effect 
of altering PrPC levels in mouse models of AD. Understanding the molecular and cellular 
mechanisms involved in the interactions between PrPC and APP/Aβ is crucial to the 
understanding of AD pathogenesis.

PrPC seems to regulate theβ-secretase cleavage of amyloid precursor protein, thereby reg-
ulating the production of Aβ (Parkin et al., 2007). Besides α-secretase regulates the cleavage 
of PrPC, regulating an N-terminal fragment with neuroprotective activity (Cissé et al., 2005; 
Guillot-Sestier, et al., 2009). PrPC also binds to transmembrane proteins such as the 67-kDa 
laminin receptor (Rieger et al., 1997; Gauczynski et al., 2001; Hundt et al., 2001), neural 
cell adhesion molecules (Schmitt-Ulms et al., 2001; Santuccione et al., 2005), G protein-
coupled serotonergic receptors (Mouillet-Richard et al., 2005), and low density lipoprotein 
receptor-related protein 1 (Taylor et al., 2007; Parkyn et al., 2008), which are able to promote 
intracellular signalling-mediated neuronal adhesion and differentiation as well as PrPC inter-
nalization. Remarkably, PrPC functions as receptor or co-receptor for extracellular matrix 
proteins such as laminin (Graner et al., 2000a, 2000b) and vitronectin (Hajj et al., 2007), 
as well as STI1 (Zanata et al., 2002). These data suggest that glycosylphosphatidylinositol-
anchored PrPC is a possible scaffold receptor in a multiprotein, cell surface, signalling 
complex (Linden et al., 2008, 2009; Martins et al., 2010).

In hippocampal neurons STI1-PrPC engagement induces an increase in intracellular 
Ca2+ levels. Using a best candidate approach to test potential channels involved in Ca2+ 
influx, Beraldo et al. (2010) found that α-bungarotoxin, a specific inhibitor for α7 nicotinic 
acetylcholine receptor (α7nAChR), was able to block PrPC-STI1-mediated signalling, neu-
roprotection, and neuritogenesis. STI1 can interact with the PrPC·α7nAChR complex to 
promote signalling and provide a potential target for modulation of the effect of prion pro-
tein in neurodegenerative diseases. The drugs that prevent bindings of Aβ1-42 toα7nAChR 
seem to be beneficial in a model of AD (Wang et al., 2009). It seems that STI1 binding to 
PrPC can hijack one of the key signalling pathways related to AD. And it is possible that STI1 
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modulation containing a complex containing PrPC andα7nAChR may play an important 
role in AD.

Remarkably, PrPC functions as a receptor or coreceptor for extracellular matrix pro-
teins such as laminin (Vassallo et al., 2005) and vitronectin (Hajj et al., 2007) as well as 
STI1(Sakudo et al., 2005), which has been repeatedly found by our group. These data 
suggest that GPI-anchored PrPC is a potential scaffold receptor protein, cell surface, and sig-
nalling complex. These processes may serve as the basis for the multiple neuronal functions 
ascribed to PrPC (Linden et al., 2008; Martin et al., 2010). PrPC has been identified to bind 
Aβ oligomers (AβO) with high affinity and to selectively interact with high molecular mass 
assembles of AβO in AD but not control brains ( Jarosz-Griffiths et al., 2016). PrPC is respon-
sible for AβO-mediated inhibition of long-term potentiation (LTP) in hippocampal slices 
and is also required for the manifestation of memory impairment in an AD mouse model. 
AβO-binding to PrPC leads to activation of Fyn kinase. In addition, the AβO activation of 
Fyn leads to phosphorylation of tau. Both metabotropic glutamate receptor 5 (mGluR5) 
and LPR1 have been identified as co-receptors required for the PrPC-bound AβO to activate 
Fyn ( Jarosz-Griffiiths et al., 2016). Fyn kinase phosphorylates N-methyl-d-aspartate recep-
tor (NMDAR) and tau. Eventually NMDAR and tau (pTyr18) induce synaptic impairment 
and neurodegeneration.

Recently, Aβ42, which is associated with neurodegeneration in AD, has also been 
reported to act as a ligand of PrPC (Nah et al., 2013). Jung and our group have demonstrated 
that PrPC is critical in Aβ42-mediated autophagy in neurons (Nah et al., 2013). The inter-
action of PrPC with Beclin (BECN)1 facilitates the localization of BECN1 into lipid rafts 
and thus allows the activation of phosphatidylinositol 3-kinase (catalytic subunit type-3 
or PI3KC3) complex in response to Aβ42, showing a beneficial role of PrPC as a positive 
regulator of the BECN1–PI3KC3 complex in lipid rafts (Fig. 2.2).

Several studies have reported that β-sheet-rich amyloid protein (including α-synuclein) 

Figure 2.2 BECN1 (beclin 1) is supporting for intracellular decrease of Aβ. In elderly mice, the 
amount of cellular BECN1 is decreased. PI3K3C3 is a subunit of PI3K, and activating enzyme 
for autophagy to Aβ complexes, working with BECN1.
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can interact with plasma membrane (Monsellier et al., 2016). Although this interaction might 
be involved in amyloid internalization leading to cytotoxicity, ‘docking’ receptor-mediated 
interaction activities at plasma membrane might support most of the physiological activities 
of the oligomeric proteinaceous species (Linden et al., 2017). PrPC can bind with numerous 
membrane-associated molecules including adhesion molecules, growth factor receptors, 
and neurotransmitter receptors, among others. Abnormal α-synuclein aggregates appear, 
in addition to PD, in various α-synucleinopathies such as dementia with Lewy bodies and 
multiple system atrophy (Masuda-Suzukake et al., 2014). In these disorders, aggregates are 
deposited in the brain in a filamentous form displaying a β-sheet structure (Serpell et al., 
2000) which is abnormally phosphorylated at Serine129 (α-synuclein) and is also ubiquit-
inated (Urrea et al., 2017).

Shadoo, a highly conserved glycoprotein with similarities to 
PrPC

In the search for homologous/paralogues of PrPC, a new gene was identified termed Sprn, 
encoding for a protein denoted Shadoo (Sho) (Premzl et al., 2003). Sho is highly con-
served from fish to mammals. The sequence homology between Sho and PrP is restricted 
to the internal hydrophobic domain. However, certain features, such as a N-terminal 
repeat region and a C-terminal glycosylphosphatidylinositol (GPI) anchor, are conserved, 
suggesting that Sho and PrP may be functionally related. Experimental evidence for the 
post-translational modifications and cell surface localization of Sho was first presented 
for zebrafish Sho (Miesbauer et al., 2006) and afterwards, also, for mouse Sho (Watts 
et al., 2007). Similarly to PrPC, Sho can prevent neuronal cell death induced by the 
expression of PrPΔHD (hydrophobic domain) mutants, an artificial PrP mutant devoid 
of internal hydrophobic domain (Watts et al., 2007). The stress-protective activity of Sho 
is not restricted to counteracting the toxic effects of PrPΔHD. Sakthivelu et al. (2011) 
employed glutamate as a physiologically relevant stressor to show Sho can efficiently 
protect cells against excitotoxin-induced cell death. Deletion mutants revealed that the 
stress-protective activity of Sho and PrP seems to be dependent on similar domains, in 
particular, the N-terminal and their internal hydrophobic domain. ShoΔN (N-terminal) 
and ShoΔHD displayed a reduced stress-protective activity but are complex glycosylated 
and attached to the outer leaflet of the plasma membrane via GPI anchor, indicating that 
the impaired activity is not due to incorrect cellular trafficking.

The N-terminal domain of PrP is intrinsically disordered, and these disordered domains 
are involved in protein–protein interactions (Tompa et al., 2009). Thus, it will be an attrac-
tive idea to assume that the N-terminal domains of PrPC and Sho mediate interaction with 
an, as yet, unknown co-receptor required for intracellular signal transmission. The HD is 
the only domain with significant sequence homologies between Sho and PrPC. The hydro-
phobic domain (HD) prompted dimerization of both Sho and PrPC and was part of dimer 
interface. It is worth mentioning that dimerization is a common feature of many cell surface 
receptors. Therefore, it can be speculated that dimer formation is involved in signal trans-
mission of PrPC and Sho-dependent pathways.
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Sho is stress-protective, however does not mediate 
PrPSc-induced toxicity
Expression of murine Sho gene (Sprn) transgene significantly increased brain Sho protein 
levels in generated mice (Wang et al., 2011). Following infection with mouse-adapted 
scrapie strain 22L, all transgenic mice tested exhibited characteristics of scrapie disease. 
Importantly, there was no correlation between the expression level or incubation time of 
Sho with disease phenotypes. Although the function of Sho are, as yet, little characterized, 
the gain of function experiments seems to be essential for CNS development in mice. 
Wang et al. (2011) generated mice overexpressing Sho to determine the role of Sho in the 
pathogenesis of transmissible spongiform encephalopathy (TSE). Wang reported that Sho 
overexpression has no correlation with the incubation period of scrapie disease or with 
disease progression. There is no possible relationship between levels of Sho expression and 
scrapie pathology.

To evaluate the survival time, 22L strain of scrapie was injected intracerebrally into the 
brains of wild-type and Sprn over-expressed mice with mouse PrP-promoter (TgMoSprn). 
All 16 prion-infected wild-type mice showed abnormal behaviour such as tremors and 
ataxia by 85 days. All mice had died by 149 days. The disease incubation period in infected 
wild-type mice was not significantly different from those of infected TgMoSprn mice; three 
lines totalled to 40 mice.

In Sho over-expressed transgenic mice, Wang et al. (2011) detected large amyloid plaques 
not seen in wild-type mice. Recent work has shown that reduction in levels of Sho was not a 
direct or simple consequence of PrPSc accumulation. Instead, Sho protein levels are specific 
for the inoculated TSE agent and were not an intrinsic and invariant host process (Miyazawa 
and Manuelidis, 2010). Overexpression of Sho does not affect PrP, indicating that Sho has 
an alternate function. Other studies have shown that Sho exhibit no clear protective role in 
infected mice ( Jeffrey et al., 1997; Lloyd et al., 2009; Miyazawa and Manuelidis, 2010) with 
no reduction in the time from incubation to neurological disease (Gossner et al., 2009). In 
PrP knockout-mouse brain there was no significant change in expression of Sho (Watts et 
al., 2007), further demonstrating that Sho protein and PrP protein are independent. The 
unaltered survival time of scrapie infected TgMoSprn mice is not in accordance with a 
neuroprotective effect of Sho, but it is not completely ruled out as there might be possible 
interference with a Sho-overexpressing phenotype. Anyway, Sho is not a major modulator 
of PrPSc accumulation and scrapie pathogenesis.

Sho mutants devoid of the internal hydrophobic domain do not 
acquire a toxic potential
Studies in transgenic mice revealed the unexpected finding that PrP can acquire a neu-
rotoxic potential by deleting the internal hydrophobic domain (Shmerling et al., 1998; 
Baumann et al., 2007; Li et al., 2007). The neurotoxic potential of PrPΔHD is independ-
ent of the propagation of infectious prions, a phenomenon also seen for other neurotoxic 
PrP mutants (Winklhofer et al., 2008). Although the underlying mechanism of PrPΔHD 
-induced toxicity are still elusive, co-expression of wild type PrPC completely prevents toxic 
effects of PrPΔHD. Based on this intriguing observation, it has been hypothesized that 
stress-protective signalling of PrPC and the neurotoxic signalling of PrPΔHD are transmit-
ted through a common co-receptor, which remains to be identified (Rambold et al., 2008; 
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Shmerling et al., 1998; Baumann et al., 2007; Li et al., 2007). Co-transfection experiment 
with PrP-deficient cerebellar granule neurons indicated that Sho has a PrPC-like activity to 
alleviate toxic effects of PrPΔHD expression (Watts et al., 2007). Sakthivelu et al. (2011) 
have been able to recapitulate the toxic activity of PrPΔHD expression in their cell culture 
model and demonstrate the protective activity of PrP and Sho against PrPΔHD-induced 
toxicity. In addition, Sakthivelu et al. (2011) showed that ShoΔHD lost its ability to pro-
tect against stress-induced cell death. However, ShoΔHD did not acquire a toxic activity, 
at least not under the experimental conditions tested. In summary, Sho and PrP share a 
stress-protective activity. However, the ability to adopt a toxic conformation seems to be 
specific for PrP.

Ablation of PrP in higher organism
Any phenotypic effects of PrPC loss are readily studied in higher organisms. Cattle lack-
ing PrP have been generated and apparently free of clinical physiological, pathological, 
immunological, and reproductive abnormalities, at least up to 20 months of age (Richt et 
al., 2007). PrP knockout goats have also been produced and appear to be developmentally 
normal (Yu et al., 2009).

Systemic lipopolysaccharide (LPS) challenge induced characteristic signs of sickness 
behaviour that was prolonged by about two hours in PrP-deficient (PrnpTer/Ter) goats after 
the initial dose of LPS (Salvesen et al., 2017). This is a noble clinical loss-of-function pheno-
type, pointing to a more inflammatory response in the absence of PrPC. Transcriptome data 
revealed that in the absence of PrPC, LPS induced an increased expression of numbers of 
genes downstream of type I interferons. It will be interesting to examine the peripheral nerv-
ous system in elderly knockout cows and goats to see if the role of PrPC in the maintenance 
of peripheral nerve myelination is conserved in higher organisms (Watts et al., 2018).

In humans, large-scale exome sequencing efforts have uncovered individuals carry-
ing early stop codon mutations within one copy of their Prnp gene (Minikel et al., 2016). 
The location of these mutations predicts that only one functional copy of PrPC would be 
produced, and thus, these individuals would be expected to express approximately half of 
the normal level of PrPC in their brains. The limited phenotypic data available for these 
individuals, who are between the ages of 52 and 79, suggest the absence of any overt neu-
rological diseases. More in-depth analysis of people who are partially or fully deficient for 
PrPC expression will be required to determine whether PrPC is also dispensable in humans.
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