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Abstract
The CRISPR (clustered regularly interspaced short 
palindromic repeat)/Cas9 (CRISPR-associated 
nuclease 9) method has been dramatically chang-
ing the field of genome engineering. It is a rapid, 
highly efficient and versatile tool for precise modifi-
cation of genome that uses a guide RNA (gRNA) to 
target Cas9 to a specific sequence. This novel RNA-
guided genome-editing technique has become a 
revolutionary tool in biomedical science and has 
many innovative applications in different fields. In 
this review, we briefly introduce the Cas9-mediated 
genome-editing tool, summarize the recent 
advances in CRISPR/Cas9 technology to engineer 
the genomes of a wide variety of organisms, and 
discuss their applications to treatment of fungal 
and viral disease. We also discuss advantageous of 
CRISPR/Cas9 technology to drug design, crea-
tion of animal model, and to food, agricultural and 
energy sciences. Adoption of the CRISPR/Cas9 
technology in biomedical and biotechnological 
researches would create innovative applications of 
it not only for breeding of strains exhibiting desired 
traits for specific industrial and medical applica-
tions, but also for investigation of genome function.

Introduction
Although in 1987 a group of scientists led by Atsuo 
Nakata (Osaka University) reported an unusual pat-
tern of non-coding DNA in Escherichia coli (Ishino 

et al., 1987), biological function of CRISPR arrays 
was not understood until 2005, when for the first 
time three studies suggested a role of it in adaptive 
immunity (Bolotin et al., 2005; Mojica et al., 2005; 
Pourcel et al., 2005). Then, in 2007, Barrangou et 
al. (2007) provided evidence of adaptive immunity 
in bacteria by monitoring clustered regularly inter-
spaced short palindromic repeats (CRISPR) loci in 
phage-challenged cultures of Streptococcus thermo-
philus (one type of bacteria used to make yogurt 
and cheese). In addition, Horvath’s research group 
reported that bacteria harbouring a particular viral 
sequence as a CRISPR spacer were resistant to that 
virus, and that the CRISPR arrays were certified to 
provide protection against invading viruses when 
combined with Cas genes (Doudna and Charpen-
tier, 2014). The mechanism of this immune system 
based on RNA-mediated DNA targeting was 
illustrated shortly thereafter (Brouns et al., 2008; 
Deltcheva et al., 2011; Garneau et al., 2010; Mar-
raffini and Sontheimer, 2008). In 2012, a research 
team led by Emmanuelle Charpentier and Jennifer 
Doudna devised the Type II CRISPR system from 
Streptococcus pyogenes for genome editing ( Jinek 
et al., 2012). Consequently, researchers can now 
utilize this mechanism to break the genome of most 
organisms, prokaryotic or eukaryotic, at almost any 
site (Fig. 7.1). The system requires only two com-
ponents: the Cas9 DNA endonuclease and a single 
guide RNA (sgRNA) encoding the reverse comple-
ment to the sequence in the DNA to be targeted. 
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The only restriction for designing a CRISPR/
Cas9 guiding sequence is a need for a protospacer 
adjacent motif (PAM) close to genomic target site 
( Jinek et al., 2012; Cong et al., 2013). Unlike ZFNs 
and TALENs, which achieve sequence recogni-
tion via protein–DNA interactions, Cas9 can be 
targeted to specific genomic loci with a guide RNA 
(gRNA). In addition, ZFNs and TALENs are costly, 
less reliable and time-consuming techniques than 
CRISPR/Cas9 for research. In eukaryotes, once the 
Cas9–sgRNA complex introduces a Double-Strand 
Break (DSB) at the target site, it is immediately 
repaired through the evolutionarily conserved path-
ways of error-prone non-homologous end joining 
(NHEJ) (which consists of re-ligation of the DSB 

resulting in loss or addition of a few nucleotides) 
or homology-directed repair (HDR) (when cells 
harbour a second copy of chromosomes) (Fig. 7.1) 
(Barnes, 2001; Van den Bosch et al., 2002). With 
the utilization of these repair processes, research-
ers have been able to disrupt specific genes, add 
exogenous DNA elements into intended genomic 
sites, introduce single-nucleotide substitutions, and 
perform many other applications.

Despite slight improvement by using traditional 
molecular biology tools, most organisms relevant 
to biomedical and biotechnological sciences still 
show resistance to genetic engineering which could 
be problematic from the viewpoint of breeding new 
energy producing industrial organisms. To date, 
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Figure 7.1 The CRISPR/Cas system. The CRISPR-associated endonuclease Cas9 could target specific DNA 
loci and make double-strand breaks (DSBs) under the guidance of the sgRNA. The presence of the Protospacer 
Adjacent Motif (PAM) at the target sequence is mandatory for successful Cas9 binding and catalysis – a 
protection mechanism to avoid self-cutting in CRISPR-containing organisms. DNA double strand breaks can 
be repaired by homologous recombination (HR) or non-homologous end joining (NHEJ). NHEJ re-ligates DSBs 
in an error-prone manner allowing for insertion or deletion of several bases at the DSB site. HR, on the hand, 
is a high-fidelity repair mechanism that uses an identical (or very similar) copy of the DSB region as a template 
for repair.
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CRISPR/Cas9 has been used to overcome the chal-
lenges with these organisms through its application 
for treatment of microbial disease (bacterial, fungal 
and viral), for generation of animal disease models 
and drug discovery, and for improvement of food, 
agricultural and energy sciences. However, one 
outstanding limitation to the technique is off-target 
mutations, in which Cas9-directed genome edit-
ing occurs at unintended DNA sites ( Jinek et al., 
2012; Cong et al., 2013; Fu et al., 2013). Although 
current works represent that these objections are 
not a major difficulty, precise qualification of Cas9 
is needed before direct usage of the technology in 
humans. Ethical concerns are a second leading issue 
(Webber, 2014). There are concerns about the risk 
of errors in heritable modifications and (unin-
tended) consequences. Moreover, S. pyogenes Cas9 
is the most widely used orthologue for genome 
editing and requires an NGG (PAM) ( Jiang et al., 

2013). Each of the GG dinucleotides is present 
on average in 1 of every 8 base pairs; therefore, 
extended genomic regions without PAM are very 
rare in most organisms (Cong et al., 2013).

Application of CRISPR 
technology to treatment of 
microbial infection

Application of CRISPR technology to 
the treatment of fungal infection
Mycosis is a fungal infection of animals and 
humans (Kirk et al., 2008). Mycoses are common 
and a variety of environmental and physiological 
conditions can contribute to the development of 
fungal diseases. Fighting mycosis is an increas-
ingly important global health concern and involves 
dominating both emerging infectious agents and 

Table 7.1 Application of CRISPR/Cas9 to industrially important organisms
Organism Cell type Industry Reference

Fungi
Saccharomyces cerevisiae CEN.PK Energy Ronda et al., 2015
Candida albicans SC5314 Health care Vyas et al., 2015

SC5314, BWP17, SN152 Health care Min et al., 2016
Trichoderma reesei Qm6a Chemical Liu et al., 2015
Aspergillus oryzae Brewing Katayama et al., 2016
Yarrowia lipolytica NS18 and NS432 Energy Friedlander et al., 2016
Streptomyces coelicolor A3(2) Energy Tong et al., 2015

Bacteria
Escherichia coli BL21 and BW25113-T7 Health care Ahmed et al., 2014

IYB5670 and IYB5671 Health care Yosef et al., 2015
DH5α Health care Stovicek et al., 2015

Clostridium autoethanogenum DSM10061 Energy Nagaraju et al., 2016

Virus
HIV-1 T cells Health care Ebina et al., 2013

Microglia, promonocytes, T cells Health care Hu et al., 2014a
HPV18 HeLa Health care Kennedy et al., 2014
HPV16 SiHa Health care Kennedy et al., 2014
HPV16 SiHa and CaSki Health care Hu et al., 2014b
HBV HepAD38 Health care Kennedy et al., 2015
HBV HepG2.2.15 Health care Zhen et al., 2015
EBV Raji Health care Wang and Quake, 2014
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newly drug-resistant strains. Among microbial 
infection, mycosis accounts for more deaths 
annually than even either tuberculosis or malaria 
(Denning and Bromley, 2015). Therefore, new 
biological leads for pathogen identification and 
therapeutics are required, and researchers have 
developed new genome engineering tools for the 
study of pathogenic fungi such as those that are 
recombination-based techniques (Krappmann et al., 
2006; Takahashi et al., 2008). By using these tech-
niques, a major limitation for functional analysis of 
genome in fungal pathogens has been the low rates 
of homologous recombination between exogenous 
DNA sequences and recipient genomes. On the 
other hand, because there are a limited number of 
validated selectable markers for transformation and 
making knockouts of multiple genes, it is imprac-
tical for large numbers of genes to be analysed in 
a single-strain background. To circumvent these 
problems several site-specific recombinase systems 
have been developed (Hartmann et al., 2010; Sha-
hana et al., 2014; Khrunyk et al., 2010). However, 
among all genome editing tools the CRISPR/Cas9 
system has been exhibiting to be a rapid and facile 
genome manipulation for both yeasts (Ronda et al., 
2015; Laughery et al., 2015; DiCarlo et al., 2013; 
Vyas et al., 2015; Min et al., 2016) and filamentous 
fungi (Liu et al., 2015; Arazoe et al., 2015; Nødvig 
et al., 2015; Fuller et al., 2015; Zhang et al., 2016; 
Katayama et al., 2015; Matsu-ura et al., 2015). For 
example, Candida albicans is pathogenic yeast that 
causes mucosal and systematic infections with high 
mortality. Gerald R. Fink’s group used the CRISPR 
system to create homozygous gene knockouts, 
mutations in multiple genes and genes that encode 
essential function. The ability to analyse essential 
genes provides an opportunity to explore potential 
antifungal targets in C. albicans (Vyas et al., 2015). 
Their finding that CRISPR works effectively in a 
recent antifungal resistant clinical isolate suggests a 
new route to characterize clinical isolates of drug-
resistant strains of Candida.

Application of CRISPR technology to 
the treatment of viral infection
Viral infections are of therapeutic challenge since 
viral life cycles occur within the host cells. Recent 
years have seen the rapid development of novel 
application for genetic-engineering technologies 
including those for the treatment of viral infections. 

Studies have shown that the CRISPR/Cas9 system 
can clear the HIV-1 genome and prevent new HIV 
infection (Ebina et al., 2013; Hu et al., 2014a). In 
fact, sgRNA expression vector targeting the long 
terminal repeats (LTR) of HIV-1 efficiently cleaves 
and mutates LTR target sites and suppresses LTR-
driven viral gene expression. In addition, Ebina 
group showed that this system can delete viral 
genes from the host cell chromosome (Ebina et 
al., 2013). The high specificity of Cas9/sgRNAs 
in editing the HIV-1 target genome has also been 
recently demonstrated (Hu et al., 2014a). Cas9/
sgRNAs efficiently inactivate HIV gene expression 
and replication in latently infected cells, including 
microglial, promonocytic and T cells. Significantly, 
Cas9/sgRNA mediated genome editing has been 
shown to immunize cells to prevent HIV-1 infec-
tion (Hu et al., 2014a). These results indicate 
that the CRISPR/Cas9 technology can serve as a 
potential tool for clinical applications to cure viral-
based infectious diseases. CRISPR system has also 
been exhibited the potential to be developed as an 
effective therapy for human papillomavirus (HPV)-
associated tumours (Kennedy et al., 2014; Hu et 
al., 2014b), hepatitis B virus (HBV)-associated 
diseases (Kennedy et al., 2015; Zhen et al., 2015) 
and Epstein–Barr virus (EBV) (Wang and Quake, 
2014) in the clinic.

Application of CRISPR technology to 
drug design
So far, drug design investments have not been 
returned as medicines and budgets are being cut 
(Paul et al., 2010), partly because some clinical fail-
ures happen due to molecule quality and in some 
cases therapeutic hypothesis is without foundation 
(Arrowsmith, 2011; Prinz et al., 2011). However, 
the abilities to apply biomedical knowledge in 
drug discovery have been improving; availability 
of knock-out and knock-in mice has helped model 
generation (Heck, 2004) and RNA interference 
(RNAi) has aided target validation (Bartz and 
Jackson, 2005). However, RNAi has its drawbacks, 
including partial knock-down that can fail to pro-
duce a measurable phenotype (Sachse et al., 2005) 
and off-target effects (Marine et al., 2012). Despite 
these drawbacks, both short hairpin RNA (shRNA) 
and small interfering RNA (siRNA) genome-wide 
screens have been used to look for new therapeutic 
targets in a number of diseases.
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The discovery of the Cas9 nuclease removed 
many of the technical and financial barriers to high-
throughput knock-out screens (Malina et al., 2013; 
Wang et al., 2014; Shalem et al., 2014; Koike-Yusa 
et al., 2014; Zhou et al., 2014; Sanjana et al., 2014; 
Doench et al., 2014): specific endonucleases can be 
assembled in cells simply by co-expressing Cas9 and 
an sgRNA, which is short enough to be encoded by 
oligonucleotides that can be synthesized in large-
scale arrays. Antibiotic overuse in medicine and 
abuse in animal agriculture has led to the rise of 
multidrug-resistant pathogens that are increasingly 
tolerant to the current antibiotic arsenal. Accord-
ingly, there is a need for novel antimicrobials that 
can bypass common modes of multidrug resistance 
while being selective for individual strains. Because 
CRISPR/Cas9 is a more precise and a sequence-
specific technique than previous similar ones, it is 
possible to use its specificity to design it to target 
a single bacterial species. It will only cut up essen-
tial genes from that one species, even when the 
target species is mixed up with others. Therefore, 
antimicrobial CRISPR/Cas systems may be better 
weapons against bacteria than antibiotics. In this 
regard, the Marraffini group in their work suggested 
that CRISPR/Cas systems could be used for the 
sequence-specific killing of bacteria (Bikard et al., 

2012). Later studies by Bikard et al. (2014), Citorik 
et al. (2014) and Gomaa et al. (2014) offered a 
promising solution to the problem of antibiotic 
resistance by using CRISPR/Cas9 system. Yosef et 
al. (2015) also designed a CRISPR-based system 
that could selectively kill antibiotic-resistant 
bacteria. They used temperate phages to deliver a 
functional CRISPR/Cas system into the genome 
of antibiotic-resistant bacteria. The delivered 
CRISPR/Cas system destroyed both antibiotic 
resistance-conferring plasmids and genetically 
modified lytic phages. With further development, 
CRISPR has the potential to treat multidrug-
resistant infections without impacting beneficial 
microbes, to remove contaminating microbes from 
industrial fermentations (Stovicek et al., 2015) and 
to provide further insights into microbial commu-
nities.

Application of CRISPR technology to 
generation of animal models
Cas9-mediated genome editing has enabled accel-
erated generation of transgenic models and expands 
biological research beyond traditional, genetically 
tractable animal model organisms (Sander and 
Joung, 2014). For generation of cellular models, 
Cas9 can be easily introduced into the target cells 

Figure 7.2 Applications of Cas9. (A) Expression plasmids encoding both the Cas9 gene and a short sgRNA 
cassette driven by the U6 RNA polymerase III promoter can be directly transfected into any cell line of interest. 
(B) Purified Cas9 protein and in vitro transcribed sgRNA can be microinjected into fertilized zygotes for rapid 
generation of transgenic animal models. (C) In order to perform somatic genetic modification, high-titre viral 
vectors encoding CRISPR reagents can be transduced into tissues or cells of interest.
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using transient transfection of plasmids carrying 
Cas9 and the appropriately designed sgRNA (Fig. 
7.2A). Additionally, the multiplexing capabilities 
of Cas9 offer a promising approach for studying 
common human diseases – such as diabetes, heart 
disease, schizophrenia, and autism – that are typi-
cally polygenic. For generation of transgenic animal 
models, Cas9 protein and transcribed sgRNA can 
be directly injected into fertilized zygotes to achieve 
heritable gene modification at one or multiple 
alleles in models such as rodents and monkeys 
(Wang et al., 2013; Li et al., 2013; Yang et al., 2013; 
Niu et al., 2014) (Fig. 7.2B). Successful multiplex 
targeting in cynomolgus monkey models was also 
recently reported (Niu et al., 2014), suggesting the 
potential for establishing more accurate modelling 
of complex human diseases such as neuropsychi-
atric disorders using primate models. Additionally, 
Cas9 could be harnessed for direct modification of 
somatic tissue, obviating the need for embryonic 
manipulation (Fig. 7.2C) as well as enabling thera-
peutic use for gene therapy.

Studies to date have typically relied on the 
injection of Cas9 mRNA into zygotes (fertilized 
embryos at the single-cell stage). However, because 
transcription and translation activity is suppressed 
in the mouse zygote, Cas9 mRNA translation into 
active enzymatic form is likely delayed until after 
the first cell division (Oh et al., 2000). Because 
NHEJ-mediated repair is thought to introduce 
indels of random length, this translation delay 
likely plays a major role in contributing to genetic 
mosaicism in CRISPR-modified mice. To over-
come this limitation, Cas9 protein and sgRNA 
could be directly injected into single-cell fertilized 
embryos. The high rate of non-mutagenic repair by 
the NHEJ process may additionally contribute to 
undesired mosaicism because introducing indels 
that mutate the Cas9 recognition site would then 
have to compete with zygotic division rates. To 
increase the mutagenic activity of NHEJ, a pair of 
sgRNAs flanking a small fragment of the target gene 
may be used to increase the probability of gene dis-
ruption. Tan and colleagues (Tan et al., 2013) used 
CRISPR system to produce biomedical model pigs 
to enhance productivity in the livestock industry. 
Xue et al. (2014) used hydrodynamic injection to 
deliver plasmids encoding sgRNA and Cas9 to the 
murine liver where simultaneous targeting of the 
Pten and Trp53 led to the development of liver 

tumours in all five mice treated within 3 months. 
Platt et al. (2014) generated a Cre-dependent Cas9 
knock-in mouse, which could be crossed with a 
variety of Cre-driver strains to enable the expres-
sion of Cas9 either constitutively or in various 
tissues. Multiple reports describe the use of custom 
nucleases to engineer cultured human stem cells. 
Cas9-sgRNA and a plasmid donor were employed 
to correct the cystic fibrosis transmembrane 
conductance receptor by homologous recombina-
tion in cultured intestinal stem cells from cystic 
fibrosis patients: organoids derived from these 
cells restored the normal cAMP-induced swelling 
phenotype (Schwank et al., 2013).

Application of CRISPR 
technology to food and 
agricultural sciences
One of the major goals in the food and agricul-
tural sciences is to get technologies to develop 
health-promoting products for a growing world 
population. In this regard, the use of recombinant 
genetic technologies has profoundly impacted 
molecular biology research and applications in 
fields such as biosynthesis of vitamins, enzymes, 
pharmaceuticals, antibiotics, and bioactive pep-
tides. The CRISPR/Cas9 technology is a modern, 
fashionable method in plant research. Immediately 
after its early use to edit the genomes of animals 
and bacteria (Hwang et al., 2013; Jiang et al., 2013; 
Mali et al., 2013), in August 2013, five reports 
were published discussing the first application of 
CRISPR/Cas9-based genome editing in plants 
(Feng et al., 2013; Li et al., 2013; Nekrasov et 
al., 2013; Shan et al., 2013; Xie and Yang, 2013). 
Subsequent work focused on additional crop spe-
cies such as sorghum ( Jiang et al., 2013), wheat 
(Upadhyay et al., 2013; Wang et al., 2014) and 
maize (Liang et al., 2014). Two research groups 
simultaneously proposed a possible strategy to 
make plants virus resistant using CRISPR/Cas9 
technology (Baltes et al., 2015; Ji et al., 2015). In 
addition, the application of CRISPR/Cas9 could 
extend to a direct knock-out strategy in the disease 
susceptible genes, often termed ‘S-genes’, of a host 
genome; the result is the development of durable 
disease-resistant crops. The S-gene knock-out 
strategy was employed successfully in hexaploid 
bread wheat using the TALEN and CRISPR/Cas9 
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system, and the fungi-resistant wheat was generated 
(Wang et al., 2014). Thus, novel and valuable plants 
generated by CRISPR/Cas9 can regain useful traits 
overlooked during domestication; these traits help 
plants survive unpredictable global environmental 
changes.

Application of CRISPR 
technology to energy sciences
Because CRISPR/Cas9 has been shown to lead to 
precise and affordable genome edition in bioen-
ergetics systems, then it can be very powerful tool 
in energy sciences. Yarrowia lipolytica is valuable 
oleaginous microbial host for chemical production 
known for converting sugars to lipids and hydro-
carbons as energy source that are difficult to make 
synthetically (Friedlander et al., 2016). Genome 
of the Y. lipolytica has been hard to manipulate at 
the genetic level by old genome engineering tools. 
In a recent work, however, a research team could 
adapt CRISPR/Cas9 system for Y. lipolytica, show-
ing that the system could be used for markerless 
gene knock-out and introduction of new genes 
(Schwartz et al., 2016). This approach, based on the 
team’s claim, is the first step of a project to create 
long chain hydrocarbons – used to make specialty 
polymers, adhesives, coatings and fragrances – from 
yeast rather than synthetically.

Bacteria are almost unlimited source of enzymes, 
and they are extensively used in industry in various 
ways for the manufacture of dairy products, and 
the production of biological substances such as 
enzymes, vaccines, antibiotics and biofuels. In this 
regard, Clostridium autoethanogenum is a model 
acetogen that is being pursued for fuel (ethanol) 
and chemical (2,3-butanediol) production at com-
mercial scale (Liew et al., 2016; Daniell et al., 2016). 
Recently, Nagaraju et al. (2016) constructed and 
screened a small library of tetracycline-inducible 
promoters in CRISPR/Cas9 system and reported 
that they could improve the efficiency of CRISPR/
Cas9-mediated desired gene deletion to over 50%, 
making a viable tool for engineering C. autoethano-
genum.

Sustainable and cost-effective biofuels are attrac-
tive sources for renewable energy. This could be 
achieved by either creating of efficient metabolic 
pathways for ethanol production in organisms 
such as algae or by engineering of yeast, mould 

and bacteria which have shown the potential to 
generate biofuel from plant biomasses like maize 
biomass. Despite some improvement, most of these 
organisms show resistant to engineer by traditional 
molecular biology tools which could be problem-
atic from the viewpoint of breeding new energy 
producing industrial strains. CRISPR/Cas9 has 
been used to overcome those genome editing draw-
backs and limitations with organisms (DiCarlo 
et al., 2013; Min et al., 2016; Nødvig et al., 2015; 
Matsu-ura et al., 2015; Stovicek et al., 2015; Shan 
et al., 2013; Mans et al., 2015; Jacobs et al., 2014; 
Ninomiya et al., 2004; Huang et al., 2015; Tong et 
al., 2015; Kim et al., 2015; Feng et al., 2016).

Future direction
Cas9-based technology is becoming an ultimate 
molecular powerful tool for studies in basic, 
biomedical and biotechnological sciences. This 
technology has been successfully applied for 
genetic manipulation in numerous bacterial, fungal, 
viral and other species. Adapting CRISPR/Cas to 
industrially and medically important organisms is 
highly desirable because they are the central core 
in energy, pharmaceutical and health care indus-
tries. Therefore, for those host organisms a better 
characterization of genetics and subsequently a 
more validated Cas9-based engineering package 
are essential (Crook and Alper, 2012). In this way, 
one major obstacle might be off-target effects and 
their consequences. In the future, the use of high-
throughput methods that enable comprehensive 
profiling of off–target cleavage sites ( Jinek et al., 
2012; Cong et al., 2013; Fu et al., 2013) should pro-
vide low-cost and high-speed engineering in each 
host system. In case of ethical issues as one of the 
increasingly important concerns, the possibility of 
modifying the germline – in particular the human 
germline – should be considered carefully.
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