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Prion Protein: Orchestrating Neurotrophic Activities
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Abstract
PrPC is highly expressed in both the central and peripheral 
nervous systems from early stages of development and in 
adulthood. Its major conformational change and conversion 
into an abnormal form (PrPSc) has been associated with the 
generation of prions, the infectious agent of transmissible 
spongiform encephalopathies (TSEs). The massive 
neurodegeneration presented by individuals suffering 
from these diseases has been associated with the gain 
of neurotoxic activity of PrPSc. On the other hand, major 
neurodegeneration is also observed in transgenic mice 
expressing PrPC molecules deleted of specific domains, 
which points to important functional domains within this 
molecule, and supports the hypothesis that loss-of PrPC 
function may contribute to the pathogenesis of TSEs. 
Furthermore, a large body of data demonstrates direct or 
indirect interaction of PrPC with extracellular matrix proteins, 
soluble factors, transmembrane proteins, G-protein coupled 
receptors and ions channels. The ability of PrPC to drive the 
assembly of multi-component complexes at the cell surface 
is likely the basis for its neurotrophic functions. These 
properties indicate that PrPC may be relevant for not only 
the spongiform encephalophaties, but also as an ancillary 
component of the pathogenesis of other neurodegenerative 
diseases, and therefore amenable to therapeutic targeting.

The prion protein and the neurotrophic theory
The neurotrophic theory originally referred to the idea that all 
body organs were dependent on nutritional factors secreted 
by the nervous system (Levine, 1992). However, and more 
akin with Cajal´s theories on the neurotrophic activity of the 
Schwann cell (Azmitia, 2002), the theory gained momentum 
upon the discovery of the properties of the nerve growth 
factor - NGF (Levi-Montalcini, 1987). Then, its central tenet 
became that the survival of neurons during development 
of the nervous system was determined by the limited 
availability of trophic molecules delivered by target organs 
to the nerve terminals (Oppenheim, 1989).

 In parallel with the discoveries concerning a wide range 
of effects of NGF (Levi-Montalcini et al., 1996), work in 
the 1980s and 1990s greatly expanded the scope of the 
neurotrophic theory. Adding to the original emphasis on the 
role of individual target-derived neurotrophins (Thoenen et 
al., 1993), current neurotrophic theory allows for the operation 
of multiple neurotrophic systems upon single neurons 
(Davies, 1996), the production and physiological release of 
neurotrophic factors by glia (Sariola and Saarma, 2003), the 
role of afferent-derived molecules (Linden, 1994), trophic 
effects of both neurotransmitters and neuromodulators 
(Linden et al., 2005; Martins and Pearson, 2008), as well 
as cytokines (Krieglstein and Unsicker, 1996; Middleton 
et al., 2000) and hormones (Datson et al., 2008; Williams, 
2008), and encompasses not only the survival but also the 
differentiation and functional integrity of components of 
the nervous system, among other complexities (Chao and 
Bothwell, 2002; Chao, 2003; Kalb, 2005; Levi-Montalcini 
and Calissano, 2006).
 Neurotrophic interactions are based on cell-cell 
communication through either the release or the presentation 
at the cell surface, of specific molecules that bind to other 
molecules present in a target cell. The latter may be either 
the same cell, providing for autocrine effects, a neighboring 
cell or even reside at a distance, depending on both the 
neurotrophic factor and the structure and diffusion properties 
of the tissue environment. Both cell surface (Huang and 
Reichardt, 2003; Blochl and Blochl, 2007) and intracellular 
(Datson et al., 2008), including nuclear (Williams, 2008) 
receptors, serve as docking elements for the neurotrophic 
agents, and activate multiple signaling pathways leading to
neurotrophic effects. Cell surface receptors constitute the 
majority of the targets of neurotrophic agents, and they 
can transfer signals through the plasma membrane either 
through their own intracellular domains, or via the activation 
of transmembrane partners (Yano and Chao, 2000; 
Runeberg-Roos and Saarma, 2007).
 Evidence that the prion protein (PrPC) is involved in 
neurotrophic activity first appeared from studies in which the 
expression of PrPC prevented cell death triggered by serum 
deprivation of a hippocampal cell line (Kuwahara et al., 
1999). It was subsequently shown that engagement of PrPC 
with antibodies triggered cell signaling (Mouillet-Richard 
et al., 2000), and that interaction of PrPC with a soluble 
binding partner induced neurotrophic-like effects mediated 
by the cAMP-protein kinase A and Mitogen activated protein 
kinase (MAPK) pathways (Chiarini et al., 2002; Zanata et 
al., 2002; Lopes et al., 2005). Evidence that PrPC mediates 
neurotrophic interactions is now both abundant and 
compelling (e.g. (Nishimura et al., 2004; McLennan et al., 
2004; Spudich et al., 2005; Coulpier et al., 2006; Rangel et 
al., 2007; Nazor et al., 2007; Weise et al., 2008; Rambold et 
al., 2008).
 The hypothesis has been put forward that the prion 
protein functions as a dynamic cell surface platform for the 
assembly of signaling modules, based on which selective 
interactions with many ligands and transmembrane 
signaling pathways translate into wide-range consequences 
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upon both physiology and behavior (Linden et al., 2008). 
Thus, PrPC may scaffold various sets of extracellular and 
transmembrane molecules, providing for distinct signaling 
events, depending on the cell type, developmental stage, 
level of expression of both PrPC and its partners, the 
availability of ligands in the immediate environment of 
the target cells, and endocytic trafficking (Linden et al., 
2008). The current review focuses upon the role of PrPC 
as a mediator of neurotrophic interactions, in the context 
of the hypothesis of loss-of-function components of prion 
diseases.
 Following the cleavage of a signal peptide, the 
mammalian prion protein is produced mostly in the form 
of an N-glycosylated, GPI-anchored protein of 208-209 aa 

(Riek et al., 1997; Lopez et al., 2000; Zahn et al., 2000; 
Hornemann et al., 2004; Calzolai et al., 2005; Lysek et 
al., 2005; Parkin et al., 2007), containing an N-terminal 
flexible, random coil sequence that spans approximately 
half of its aminoacid residues, plus a C-terminal globular 
domain that constitutes the other half. The globular domain 
of human  PrPC is arranged in 3 α-helices corresponding to 
aas 144-154, 173-194 and 200-228, interspersed with an 
antiparallel β-pleated sheet formed by β-strands at residues 
128-131 and 161-164. A single disulfide bond is formed by 
cysteine residues 179 and 214. The N-terminal residues 
23-124 constitute the flexible tail, while residues 229-230 
form a short flexible C-terminal domain (Zahn et al., 2000). 
Major structural features of PrPC are remarkably preserved 

Figure 1. A schematic representation of PrPC with ligand binding sites, human mutations leading to prion diseases, and 
transgenic mouse models presenting neurodegeneration.
A) Mouse PrPC binding sites for ligands with neurotrophic activity. Numbers in parentheses indicate residue position. B) 
Schematic drawing of mouse PrPC. During the post-translational modification, the N-terminal signal peptide (SP) and GPI 
sequence (GPS) are cleaved and a GPI anchor is attached to the C-terminal. The flexible N-terminal portion contains 
octapeptide repeats (OR) and a hydrophobic domain (dark grey). Orange boxes (H1, H2 and H3) represent regions of 
α-helical secondary structure. C) Mutations associated with inherited human prion diseases are indicated, CJD (green), GSS 
(Blue) and GSS/FFI (red). D) Deletions of PrPC expression which cause neurodegeneration in transgenic mice, ∆ numbers 
indicate the deleted domains.
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among both mammalian and non-mammalian species 
(Lopez et al., 2000; Hornemann et al., 2004; Calzolai et al., 
2005; Lysek et al., 2005).
 Full length PrPC is found in non-, mono- or di-
glycosylated forms, corresponding to the variable occupancy 
of residues Asn181 and Asn197 in human PrPC - Asn180 
and Asn196 in mice (Haraguchi et al., 1989). A rather 
large variety of N-glycans were found attached to both full-
length and truncated PrPC (Rudd et al., 1999), which may 
be differentially distributed in various areas of the central 
nervous system (CNS) (DeArmond et al., 1999; Beringue 
et al., 2003). Although neither the attached N-glycans nor 
most of the GPI anchor appear to significantly affect major 
structural features of the prion protein (Hornemann et al., 
2004), both may interfere upon the binding of physiological 
ligands, which, in turn, may be relevant for its neurotrophic 
properties (Linden et al., 2008).

PrPC deletions in mice and mutations in humans: a tip 
for neurotrophic functions?
Since the early 1990s, knockout constructions for PrP gene 
(Prnp0/0 or Prnp-/-) have emerged as an attempt to elucidate 
the PrPC functions in vivo (Bueler et al., 1992; Manson 
et al., 1994). However, the first study in PrPC-null mice 
did not reveal an obvious phenotype implying that PrPC 
is either not essential for normal development, or could 
be compensated by other molecules (Bueler et al., 1992; 
Manson et al., 1994). However, when distinct features of 
these animals were investigated in further studies, subtle 
changes have been noticed in certain biological processes 
such as neurotransmission and synaptic plasticity (Collinge 
et al., 1994; Maglio et al., 2004; Prestori et al., 2008), 
hippocampal spatial memory (Criado et al., 2005) and 
aversive hippocampal memory in aged animals (Coitinho et 
al., 2003), circadian rhythms (Tobler et al., 1996; Tobler et 
al., 1997) and immune responses (de Almeida et al., 2005; 
Bainbridge and Walker, 2005). Remarkably, PrPC-null mice 
also show higher sensitivity to various stress conditions  
which cause increased neuronal death (Walz et al., 1999; 
McLennan et al., 2004; Weise et al., 2004; Shyu et al., 2005; 
Weise et al., 2006; Rangel et al., 2007). Therefore, although 
compensatory mechanisms may balance the absence of 
PrPC, they are not sufficient and the threshold for neuronal 
death is lower when PrPC is deleted.
 Large and diverse phenotypic abnormalities were 
observed when PrPC deletion mutants were re-expressed 
in Prnp0/0 mice. PrPC mutants deleted either aas 32-121, 
(PrP∆32-121) or 32-134 (PrP∆32-134), led to severe ataxia 
and apoptosis in the cerebellum (Shmerling et al., 1998). 
Severe demyelination and axon loss in both the spinal 
cord and cerebellar white matter were also observed in 
PrP∆32-134 mice (Radovanovic et al., 2005) (Figure 1D). 
The leucodystrophy, but not the cerebellar granule cell 
degeneration, was rescued in these mice by oligodendrocyte-
specific expression of PrPC (Radovanovic et al., 2005). 
On the other hand, neuron-specific expression of PrPC 
partially rescued cerebellar granule cell degeneration but 
not demyelination (Radovanovic et al., 2005). This indicates 
that these diseases are distinct, and that endogenous 
expression of PrPC in both neurons and glia was required 
for complete reversion of the degenerative phenotype.
 Transgenic mice expressing truncated PrP∆94-134, 
but not those expressing a smaller deletion PrP∆114-121, 

also showed extensive central and peripheral myelin 
degeneration and early ataxia, which progressed to spastic 
paraparesis and full paraplegia (Baumann et al., 2007). 
This lethal phenotype was not associated with the presence 
of pathological aggregates, altered PrPC glycosylation, 
subcellular mislocalization or inappropriate membrane 
topology (Baumann et al., 2007). Interestingly, the most 
prominent phenotype was observed in animals expressing 
an even smaller truncation, PrP∆105-125. These mice 
developed an extremely severe illness within two weeks 
of birth, with decreased body size and weight, immobility, 
impaired righting reflexes, myoclonus and tremor, and died 
within one month. Histopathology demonstrated cerebellar 
atrophy, severe loss of cerebellar granule cells, gliosis 
and astrocytic hypertrophy (Li et al., 2007). It is important 
to point that the degenerative phenotype observed in 
mice expressing PrP∆32-121, PrP∆32-134, PrP∆94-134 
or PrP∆105-125 was rescued by introducing the wild-type 
Prnp gene (Shmerling et al., 1998; Baumann et al., 2007; Li 
et al., 2007).
 These deleted regions likely contain functional PrPC 
domains relevant for trophic interactions. They lay within 
the N-terminal and hidrophobic regions, which are the less  
structured domains and therefore more accessible regions. 
In fact, this is the interface for PrPC dimerization (Rambold 
et al., 2008) and the region where most of the binding sites 
for PrPC ligands such as Heparan Sulphate Proteoglicans 
(HSPG), vitronectin, low-density lipoprotein receptor related 
protein 1 (LRP1) and Stress Inducible Protein 1 (STI1) were 
identified (Figure 1A).
 Transgenic mice expressing truncated molecules at the 
C-terminal of PrPC, also presented an altered phenotype. 
The expression of truncated PrPC molecules, PrP∆177-200 
or PrP∆201-217, associated with another deletion at aas 
23 to 88, which is by itself innocuous, caused a neuronal 
storage disease associated with neurodegeneration and 
signals of cerebellar disorder (Muramoto et al., 1997). Both 
deletions caused PrPC accumulation within cytoplasmatic 
inclusion bodies in enlarged neurons. Relative smaller 
number of axons in the white matter tracks were observed 
in PrP∆177-200 while PrP∆201-217 animals presented 
extensive nerve cells loss in the CA1 region of the 
hippocampus (Muramoto et al., 1997) (Figure 1D).
 The PrPC ligands at the C-terminal domain of 
PrPC characterized until recently are laminin, 37 kDa 
Laminin Receptor Precursor/ 67 kDa Laminin Receptor 
(37LRP/67LR), and the K+ channel, TREK1 (Figure 1A). 
All these ligands present neurotrophic properties, and 
particularly the association of laminin with PrPC allows for 
neuritogenesis and maintenance of growth cones (see 
below).
 In turn, a large spectrum of clinical symptoms and 
pathological features are found in patients presenting 
genetic prion diseases. A series of at least 55 pathogenic 
mutations are distributed along the PrPC sequence, and 
respond for 3 distinct illnesses: Creutzfeldt - Jakob disease 
(CJD), Gerstmann-Sträussler-Scheinker (GSS) Syndrome, 
and Fatal Familial Insomnia (FFI) (Figure 1C).
 Two octapeptide deletions and 29 insertions were 
described in the octarepeat region, with the former being 
associated with a CJD phenotype and later often linked with 
GSS (Kong Q et al., 2003). Seven point mutations are found 
in the N-terminal domain and Helix 1 (H1) of PrPC and 6 of 
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them cause GSS (Figure 1C). On the other hand, 11 out of 
17 mutations described in the C-terminal domain of PrPC 
cause CJD and most of them are clustered in helices 2 and 
3 (H2 and H3) (reviewed by Kong et al., 2003; Rodriguez 
et al., 2005; Ye et al., 2008). Thus, there is a preferential 
cluster of GSS phenotypes associated with the N-terminal 
and H1 regions and a preferential CJD phenotype linked to 
the C-terminal domain of PrPC.
 The human PrPC domain comprehending aas 95 
to 135 (equivalent to mouse 94 to 134) presents 5 point 
mutations (P102L, P105L, G114V, A117V and G131V) 
all of each associated with GSS. This is exactly the PrPC 
domain the deletion of which causes neurodegeneration 
in mice, as discussed above. Remarkably, although brain 
homogenates obtained from GSS patient with P102L 
mutation induced spongiform encephalopathy in recipient 
animals (Masters et al., 1981), mice overexpressing the 
transgene P101L (corresponding to the human 102) 
showed spontaneous neurodegeneration without any 
detectable protease-resistant PrPSc (Telling et al., 1996). 
In addition, the mutation A117V which appears to induce 
the formation of a transmembrane form (Ctm) of PrPC, 
produced neurodegenerative changes in mice but does not 
cause either PrPSc deposition or infection in rodents (Hegde 
et al., 1998). Conversely, the expression of the CJD-linked 
mutations T183A (DeArmond et al., 1997) or E199K (human 
E200K) (Telling et al., 1996) in PrPnull mice did not cause 
any pathological signals.
 In cell cultures, the PrPC hydrophobic domain 113-123 
was required for the stress-protective activity of PrPC 
(Rambold et al., 2008). In addition, some PrPC mutants 
associated to genetic prion diseases and presenting codon 
129M are unable (D178, V181I, E196K, V210I, M232R 
and P238S) or only partially effective (R208H, E211Q) 
to protect against Bax-mediated cell death (Jodoin et al., 
2007). Interestingly, the presence of 129V renders mutated 
proteins into less active forms (A117V, V203I and T188A) or 
inactive (E200K, R208H, E211Q) for this phenptype (Jodoin 
et al., 2007).
 The truncation of specific PrPC domains in transgenic 
mice or the presence of PRNP mutations associated with 
human genetic prion diseases may alter the recruitment of 
specific proteins to a PrPC-based multi-component complex 
(Martins et al., 2002; Linden et al., 2008) in particular those 
already known to interact with specific PrPC domains and 
promote neurotrophic functions. In addition, the composition 
of these complexes may vary among neurons and glial cells 
which may explain, at least in part, the diverse degenerative 
phenotypes observed in transgenic mice and in patients 
expressing mutated PrPC.

The PrPC ligands mediating neurotrophic activity
Several dozen proteins have been described to bind PrPC 
in various cellular compartments, but in most cases there 
is still no known associated biological function for these 
interactions (Linden et al., 2008). PrPC is normally localized 
at the cell surface and traffics along the endocytic pathway 
(Prado et al., 2004), consistent with the idea that its 
association with other proteins in these compartments may 
be relevant for its neurotrophic activity.
 Extracellular matrix (ECM) components, as well as their 
receptors at the cell surface, are known to create a milieu 
necessary for survival and differentiation in the developing 

nervous system (Pires Neto et al., 1999; De and Georges-
Labouesse, 2000) and in the remodeling of adult brain in 
both normal (Grimpe and Silver, 2002) and pathological 
conditions (Rauch, 2004; Theodosis et al., 2004). PrPC is 
able to associate with ECM proteins such as laminin (Graner 
et al., 2000a; Graner et al., 2000b) and vitronectin, but not 
to fibronectin or collagen (Hajj et al., 2007). PrPC also binds 
to ECM glycosaminoglycans such as heparin and heparan 
sulfate (Warner et al., 2002) and to ECM receptors such as 
the 37 kDa Laminin Receptor Precursor/ 67 kDa Laminin 
Receptor (37LRP/67LR) (Rieger et al., 1997).
 Laminins are large (400–900 kDa) extracellular 
heterotrimeric glycoproteins composed of various 
combinations of α, β, and γ chains. To date, five α, four β, 
and three γ chains have been identified, which may combine 
into sixteen known forms of laminins in mammals. The 
individual chains present diverse biological active domains 
and interact with a large number of receptors, such as at 
least eight different integrins, 37LRP/67LR, dystroglycan, 
67 kDa elastin-laminin receptor, galactoside-binding lectin, 
galactosyltransferase, heparan sulfate proteoglycans and 
immunoglobulin-related basal cell adhesion molecule 
(Tzu and Marinkovich, 2008). These varied interactions 
are crucial to promote the diverse biological functions 
attributed to laminin in distinct cell types, particularly in 
the nervous system (Colognato and Yurchenco, 2000). 
For example, laminin is one of the most important ECM 
proteins responsible for axonal growth (Luckenbill-Edds, 
1997). In addition, defects in both the peripheral and central 
nervous system frequently accompany mutations in laminin 
isoforms. Also, the loss of interneuronal laminin in the 
hippocampus due to proteolysis induced by excitotoxicity, 
leads to neuronal death (Colognato et al., 2005).
 PrPC binds to a laminin domain at the γ-1 chain (Graner 
et al., 2000a; Graner et al., 2000b), a region previously 
demonstrated to promote neuritogenesis (Liesi et al., 1989). 
The laminin binding site resides within amino acids 173-182 
of the PrPC molecule (Coitinho et al., 2006). Using primary 
hippocampal neuron cultures from either wild-type or PrPC-
null mice, it was shown that the interaction of PrPC with the 
laminin γ-1 chain induces neuritogenesis (Graner et al., 
2000a). Inactivation of PrPC by chromophore-assisted laser 
inactivation (CALI) in PC-12 cells also impaired neurite 
extension induced by laminin. Furthermore, retraction of 
growth cones was observed when micro-CALI was used to 
inactivate PrPC in these structures (Graner et al., 2000b).
 The importance of the interaction of PrPC and laminin 
was also demonstrated in vivo. Antibodies against either 
the entire PrPC and laminin molecules, or against peptides 
representing the binding sites either in PrPC or in laminin 
γ-1 chain, blocked memory consolidation when infused 
in the rat hippocampus. In addition, the γ-1 chain peptide 
competed with antibodies against the PrPC 170-183 
peptide, and reversed the latter’s inhibitory activity upon 
memory consolidation (Coitinho et al., 2006). Thus, PrPC-
aminin interaction in the hippocampus is associated with 
neuritogenesis, with an impact upon neuronal plasticity and 
memory consolidation.
 PrPC also interacts with 37LRP/67LR, one of the first 
ligands of PrPC identified by using a two-hybrid system 
(Rieger et al., 1997). The 37LRP/67 LR is a membrane 
associated protein, first discovered by laminin–sepharose 
affinity chromatography. At first, 37LRP/67LR interaction 
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with laminin was considered to be simply adhesive. However, 
it is now clear that activation of the 37LRP/67LR induces 
dynamic events (increased filopodia, directional motility 
and modulation of gene expression), as a consequence of 
hitherto poorly understood signal transduction. In addition 
to direct interactions with laminin, it has been proposed 
that the 67LR facilitates interactions between laminin and 
integrins (Nelson et al., 2008).
 The interaction between PrPC and the 37LRP/67LR 
was confirmed in mammalian cells, where it was shown 
that 37LRP/67LR co-localizes with PrPC at the cell surface. 
Recombinant or purified PrPC bind 37kDa LRP/ 67kDa LR at 
the cell surface, where the latter mediates the internalization 
of exogenous added PrPC (Gauczynski et al., 2001). It should 
be noted, however, that this exogenous added PrPC lacks 
the localization in rafts and is of course not GPI-anchored at 
the membrane. The binding residues for 37kDa LRP/ 67kDa 
LR have been identified between amino acids 144-179 in 
PrPC (Hundt et al., 2001), which partially overlaps the 
binding site for laminin itself (Coitinho et al., 2006). Thus, it 
is likely that interaction of PrPC either with the 37LRP/ 67LR 
or laminin may be mutually exclusive at this PrPC domain. 
Although this competitive interaction has yet to be tested, 
such an overlap, together with the coincidence of binding 
sites in 37LRP/ 67LR for both laminin and PrPC (Rieger 
et al, 1999), should have important consequences for the 
effects of PrPC upon neurite growth and differentiation.
 Binding of 37LRP/67LR to an additional binding site at 
PrPC amino acids 53 to 93 is mediated by the presence of 
heparan sulfate proteoglycans at 37LRP/67LR. Interestingly, 
the 37LRP/67LR domain which contains heparan sulfate 
proteoglycans maps to between amino acids 101–160 or 
180–295 (Hundt et al., 2001), the latter of which straddles 
a laminin binding region (205-229) (Nelson et al., 2008). 
Indeed, two out of three laminin binding sites at the 
37LRP/67LR may compete by the latter’s interaction with 
PrPC.
 Remarkably, barring steric hindrance constrains, laminin 
may be able to simultaneous bind the 37LRP/67LR (using 
its third available binding site located within the cysteine-
rich EGF-like repeat in the β1 subunit) (Nelson et al., 2008), 
PrPC (at the C-terminal portion of the γ1 chain), as well as 
other receptors, such as integrins (most of which bind to 
the α chain of laminin) (Tzu et al., 2008). These multiple 
interactions would lead to the assembly of a molecular 
cluster of cell membrane receptors, which may promote 
neurotrophic signaling by both integrin-mediated signal 
transduction, as well as through signals initiated by activation 
of PrPC by laminin, followed by its possible internalization 
mediated by the 37LRP/67LR (Figure 2A). This is but one 
of the multicomponent signaling modules that may be 
assembled through molecular interactions mediated by the 
prion protein (Martins et al., 2002; Linden et al., 2008).
 Interaction of PrPC with glycosaminoglycans, particularly 
heparan sulfate, has been extensively documented (Priola 
and Caughey, 1994). In addition, in vitro binding studies 
demonstrated that PrPC directly interacts with heparan 
sulfate through domains 23–52, 53–93, and 110–128 
(Warner et al., 2002). Although no functional consequence 
of this interaction has been addressed so far, it may have 
important consequences especially for the binding and 
internalization of the 37LRP/ 67LR.

 The PrPC role as an ECM receptor/co-receptor is not 
limited to laminin. PrPC also binds another ECM protein, 
vitronectin (Vn), through amino acids 106-116 (Hajj et al., 
2007). This PrPC-Vn interaction is important for the growth 
of axons in dorsal root ganglia during embryogenesis (Hajj 
et al., 2007) (Figure 2A). Interestingly, vitronectin has 
been described to have important roles in motor neuron 
differentiation in association with the morphogen Sonic 
Hedgehog (Pons and Marti, 2000; Pons et al., 2001). 
Also during development of the cerebellum, the migration 
of granular neurons is regulated by an ECM transition. 
When cells are in the external granule cell layer, the most 
predominant ECM molecule is laminin, which stimulates 
granule cells to proliferate. When cells start to migrate to 
the internal granule cell layer, they move towards an ECM 
region rich in vitronectin. Cells that reach vitronectin stop 
proliferating and differentiate, forming the layers of the fully 
differentiated cerebellum (Pons et al., 2001). Since PrPC 

binds both laminin and vitronectin it may be involved in the 
development of the cerebellum, by regulating the precise 
moment of each association and thus influencing the fate of 
the cells.
 Remarkably, knocking down PrPC in cerebellar neural 
circuits and in particular on granule cells, compromises the 
function of these cells causing behavioral alterations such 
as low performance in rotarod and runway tests. It was 
demonstrated that cerebellar granule cells from wild-type 
mice stop their division by the second post-natal week, as 
expected, while PrPC-null granule cells divide until post-natal 
week three. With older age, these differences disappear 
indicating that the absence of PrPC can be compensated 
during the development (Prestori et al., 2008).
 Perhaps the most extensively studied PrPC-binding 
protein, so far, is Stress Inducible Protein 1 (STI1). 
Interaction of PrPC with a 66kDa protein was discovered in 
1997, and the latter was proposed as a PrPC receptor, which 
might be responsible for mediating PrPC internalization and 
inhibiting the toxicity of the PrPC peptide 106-126 (Martins 
et al., 1997). It was subsequently found that the interaction 
between the 66kDa protein and PrPC triggered protection 
against apoptosis in an in vitro retina model (Chiarini et al., 
2002). Notwithstanding the lack of evidence for its functioning 
as a PrPC receptor (Zanata et al., 2002), the role of STI1 as 
an important inducer of PrPC-mediated neurotrophic effects 
was further supported by the demonstration that their binding 
promoted both protection against neuronal death as well 
as neuritogenesis, through the PKA and ERK1/2 signaling 
pathways, respectively (Lopes et al., 2005) (Figure 2B).
 Recent work in astrocytes has shown that STI1 is 
a secreted PrPC ligand. STI1 is released by cultured 
astrocytes in large amounts by still unknown mechanisms, 
and interacts with neuronal PrPC, promoting protection 
against cell death (Lima et al., 2007). Effects of STI1 in 
vivo have also been demonstrated. Experiments with rats in 
an inhibitory avoidance task demonstrated that antibodies 
against STI1 and PrPC, when injected directly into the 
hippocampus, impair memory formation and consolidation. 
Remarkably, the STI1 peptide that represents the PrPC 
binding site improves memory formation and consolidation 
(Coitinho et al., 2007). It is, however, still unknown whether 
the effects upon memory are related to neurotrophic effects 
of the interaction of STI1 with PrPC.
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 PrPC modulates expression and/or activity of 
transmembrane receptors associated with neurotrophic 
activities. Since so many ligands have been ascribed to 
PrPC, the fundamental question remaining about PrPC 
is how the signal is transduced through the membrane. 
PrPC is a GPI-linked protein known to be preferentially 
localized in membrane domains enriched in sphingolipids 
and cholesterol (lipid rafts) (Fivaz et al., 2002). These raft 
domains contain several molecules which recruit specialized 
proteins for intracellular signaling (Gorodinsky and Harris, 
1995) and it is possible that PrPC can modulate the activity 
of these proteins by either direct or indirect interaction.
 In fact, several transmembrane proteins with neuro-
trophic activities were shown to be modulated by PrPC, 
leading to the activation or inhibition of intracellular signal 
pathways. These proteins include the neural cell adhesion 
molecule (NCAM) (Santuccione et al., 2005), integrins (Hajj 
et al., 2007), G protein coupled receptors (Kristensson et 
al., 1993; Wong et al., 1996; Mouillet-Richard et al., 2000; 
Brini et al., 2005) and membrane ion channels (Whatley et 
al., 1995; Colling et al., 1996; Herms et al., 2001; Azzalin et 
al., 2006; Khosravani et al., 2008).
 NCAM plays crucial roles in brain development, synaptic 
plasticity and regeneration and is considered an inducer 
of complex intracellular signaling cascades in response 
to extracellular cues triggered by either homophilic or 
heterophilic binding (Ditlevsen et al., 2008). PrPC-NCAM 

interaction is direct (Schmitt-Ulms et al., 2001) and occurs 
in either cis or trans, i.e. both molecules in the same cell 
or in distinct cells, respectively. This interaction takes place 
in raft microdomains, where NCAM uses its PrPC-guided 
enrichment in lipid rafts to activate p59fyn kinase and 
inducing neuritogenesis (Santuccione et al., 2005) (Figure 
2C). These data are especially interesting, since it has been 
demonstrated that Fyn kinase pathway is the most relevant 
for NCAM-induced neurite outgrowth and synaptic functions 
(Ditlevsen et al., 2008). On the other hand, NCAM-induced 
signaling also engages other signaling molecules, such as 
focal adhesion kinase, growth-associated protein-43, the 
mitogen-activated protein kinase (MAPK), intracellular Ca2+, 
and protein kinases A, C, and G (reviewed by (Ditlevsen et 
al., 2008). In fact, it has been recently demonstrated that 
PrPC accumulates is focal adhesions, modulationg cell-
substrate interactions both in cells from mammals and 
Drosophila. When PrPC is highly expressed it modulates 
cell spreading and filopodia formation while in low levels of 
PrPC lamellipodia is more abundant (Schrock et al., 2009).
 The major role of PrPC in cell adhesion and cell-cell 
communication has also been elegantly demonstrated 
in zebrafish which presents two PrPC gene orthologues 
(PrP1 and PrP2). Deletion of PrP1 caused impairment of 
embryonic cell adhesion and arrested gastrulation (Malaga-
Trillo et al., 2009) while PrP2 removal affects latter stages 
of neuronal development possibly affecting proliferation and 

Figure 2. The PrPC ligands mediating neurotrophic activity.
A) PrPC directly interacts with the ECM proteins: Laminin (Ln) and Vitronectin (Vn), and with the laminin receptor (37LRP/67LR), 
possibly forming a large complex involved in neuritogenesis and memory formation. Interaction of the laminin receptor with 
PrPC is also mediated by Heparan Sulfate Proteoglycans (HSPG). Integrins are ECM receptors, and may also take part in 
this complex. B) PrPC interacts with the secreted Stress Inducible Protein 1 (STI1), which mediates neuroprotection and 
neuritogenesis through independent signaling pathways (PKA and ERK1/2). C) NCAM is a transmembrane protein that 
interacts with PrPC either in cis or in trans, and promotes neuritogenesis through the activation of Fyn kinase.
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differentiation of developing neurons (Malaga-Trillo et al., 
2009 and unpublished results). The alterations related to 
PrP1 are caused by deficient cell movements modulated 
by E-cadherin–based adhesion and signaling which are 
conserved across vertebrates.
 As described above PrPC is able to interact with 
vitronectin. The vitronectin peptide which represents the 
PrPC binding site promotes axonal growth in wild-type but 
not in PrPC-null neurons. Vitronectin, on the other hand, 
supports axonal growth in both wild-type and PrPC-null 
neurons, suggesting that other vitronectin ligands can 
compensate for the absence of PrPC. In fact, the conduction 
of functional assays showed that neurons derived from two 
different PrPC-null mouse strains presented higher activity 
of the integrin ανβ3 (Hajj et al., 2007), a classical vitronectin 
transmembrane receptor. Although, a direct interaction of 
ανβ3 with PrPC has never been demonstrated, β3 integrin 
immunoprecipitates with PrPC (Hajj G and Martins VR, 
unpublished results) and β1 integrin is engaged by antibody 

crosslinking-mediated neuritogenesis (Pantera et al., 2009), 
indicating that they can associate in the same protein 
complex (Figure 2A).
 Integrins are a large group of heterodimeric surface 
membrane receptors widely expressed in the nervous 
system and have been shown to have diverse roles in axon 
extension, neural development and, in addition, they are 
key regulators of synaptic plasticity involved in memory and 
learning in the adult nervous system (reviewed by (Clegg 
et al., 2003). The negative control of integrin activity by 
PrPC may represent an important regulation of neurotrophic 
functions.
 In the neuroectodermal progenitor 1C11 cell line, that 
can be differentiated into either serotonergic (1C115-HT) or 
noradrenergic (1C11NE) phenotype, the engagement of PrPC 
with antibodies had a high impact on signal transduction 
(Mouillet-Richard et al., 2000). This effect was restricted 
to cell processes and most likely on varicosities of the 
neurites (Mouillet-Richard et al., 2000). PrPC engagement 
with G-protein coupled serotonergic receptors (GPCR) 
5-HT, 5HT2A, 5HT1B/D and 5-HT2B simultaneously with 
their stimulation by agonists, altered the intensities and/or 
dynamics of G protein activation (Mouillet-Richard et al., 
2005). In particular, PrPC binding with antibodies impaired 
phospholipase Cβ (PLCβ) activation by 5-HT2A receptors, 
partially blocked the reduction of cAMP promoted by agonist 
binding to 5-HT1B/D and potentiated the Phospholipase A2 
response through 5-HT2A (Mouillet-Richard et al., 2005). 
In addition, the same procedure triggered transduction 
cascades controlling the cellular redox state and the 
ERK1/2 kinases (Mouillet-Richard et al., 2007), leading 
to CREB activation followed by transcription of Egr-1 and 
c-fos. These factors have been previouly associated with 
the control of neuronal survival (Zhang et al., 2002; Thiel 
and Cibelli, 2002). On the other hand, the transcription of 
the metalloproteinase TIMP-1 was enhanced by CREB 
while the transcription of MMP-9 was reduced, decreasing 
the processing of β-dystroglycan. Since MMP-9 process 
laminin, which is also a ligand for β-dystroglycan, it has 
been suggested that the PrPC-mediated control of MMP-9 
stabilizes the interaction between PrPC and its cell/ECM 
partners, and may potentiate synaptic efficacy (Pradines et 
al., 2008) (Figure 3).
 The transfection of the PrPC gene into CHO cells 
affects intracellular calcium dynamics following activation of 
purinergic receptors (P2Y). In transfected cells treated with 
ATP, Ca2+ mobilization from endoplasmic reticulum and Ca2+ 
uptake by mitochondria were lower than in non-transfected 
cells (Brini et al., 2005). These alterations are known to 
reduce cellular sensitivity to Ca2+-mediated apoptosis and 
therefore, are cytoprotective (Giacomello et al., 2007; 
Marchi et al., 2008). In addition, the expression of PrPC in 
CHO cells also increased the the Ca2+ influx through the 
plasma membrane after ATP treatment (Brini et al., 2005). It 
was speculated that the latter effect was mediated by PrPC 
activation of store operated calcium channels (SOCCs) 
(Brini et al., 2005). These channels are functionally coupled 
with the activation of adenyl cyclase (Fagan et al., 2000) 
which has been associated with PrPC-mediated neuronal 
survival (Chiarini et al., 2002; Lopes et al., 2005) (Figure 
4). Whether Ca2+ hadling of the main intracellular stores 
and entry from extracellular space depend on the direct 
interaction of PrPC with P2Y receptors or SOCCs is still 
unknown.

Figure 3. Engagement of PrPC with specific antibodies 
modulates signal transduction by altering the activity of G 
protein-coupled serotonergic receptor. The serotonergic 
receptor (SRR) in the cell membrane is associated with a 
calcium stimulatory G protein (Gq), to the Phospholipase 
Cβ (PLCβ and with a cAMP inhibitory G protein (Gi). This 
complex responds to serotonin (S) by activating PKC, 
modulating the levels of cAMP/ERK1/2 (Extracellular 
Signal-Regulated Kinases 1/2) and CREB (cAMP response 
element binding protein) pathways. PrPC binding to specific 
antibodies (Ab) impaired PLCβ/PKC signaling pathway 
and partially blocked the reduction of cAMP, up modulates 
ERK, CREB and Egr-1/c-Fos. These factors may contribute 
to neuronal survival. On the other hand, up modulation of 
CREB increases the transcription of TIMP-1 and decreases 
MMP-9 levels. MMP-9 is a secreted metalloproteinase 
that cleaves β-dystroglycan (BDG) reducing cell-matrix 
adhesion. Upon PrPC ligation, MMP9 levels are diminished 
and β-dystroglycan interaction with the extracellular matrix 
is stabilized, what may increase neuritogenesis.



70   Martins et al.

 Prion infection reduced the effect of bradykinin on the 
increase of intracellular Ca2+ (Kristensson et al., 1993). 
This alteration occurs by a reduced affinity of BK for its 
receptor and also by a modification of lipid composition in 
the plasma membrane with the diminished availability of 
phosphatidylinositol-bisphosphate (PIP2). Bradykinin is a 
9-amino acid peptide with a wide range of biological actions 
mediated through B1 and B2 subtypes of G-protein-coupled 
receptors (reviewed by (Calixto et al., 2004). Activation of 
these receptors induces a transient increase in the cytosolic 
concentration of calcium caused by both its mobilization from 
intracellular stores and influx from extracellular environment 
(Kristensson et al., 1993 ; Martins et al., 2005). This has 
been associated with neuroprotection after ischemia (Ping 
et al., 2005; Yan-Feng et al., 2008; Danielisova et al., 
2008). Whether PrPC modulates the activity of bradykinin 
receptors, and the suppression of bradykinin activity in prion 
infected neurons is due to PrPC-loss-of-function deserves 
further investigation (Figure 5).
 PrPC also interacts with ionic channels activated by 
conformational modification promoted by either voltage and/
or binding to a specific ligand. Once activated, these proteins 

promote changes in the concentrations of Na+, K+, Ca2+ 
or Cl-, thus modulating a variety of electrophysiologically-
dependent cellular responses. An interaction between PrPC 
and a two-pore potassium channel protein, TREK (TWIK-
1-related K+ channel), has been demonstrated using a 
bacterial two-hybrid approach (Azzalin et al., 2006). TREK-1 
(Fink et al., 1996) is a protein that forms a mechanically-
gated channel activated by temperature, membrane stretch 
and internal acidosis, and involved in neuroprotection via 
activation of PKA (Patel and Honore, 2001; Franks and 
Honore, 2004). Immunoprecipitation assays confirmed the 
association between both proteins, and that the binding 
site for TREK localizes at the carboxy-terminal of PrPC 
(aas 128-230). Confocal analysis demonstrated that 
fluorescent transfected PrPC and TREK co-localized and, 
more importantly, that endogenous proteins exhibited co-
localization in cerebellar Purkinje cells (Azzalin et al., 2006) 
(Figure 6A).
 The involvement of PrPC with L-type voltage-gated 
calcium channels (VGCC) has been first claimed some 
years ago (Whatley et al., 1995). Reduction of calcium 
influx, through VGCC, was observed in both cerebellar 
granule cells and hippocampal neurons slices of PrPC-null 

Figure 4. Expression of PrPC modulates intracellular Ca2+ 
homeostasis and signaling transduction through G protein-
coupled purinergic receptors. The purinergic receptors 
(P2Y) are transmembrane proteins coupled to calcium 
stimulatory G protein (Gq) and to phospholipase Cβ (PLCβ). 
P2Y receptors are activated by ATP, promoting cleavage of 
phosphatidylinositol-bisphosphate (PIP2) into Inositol-3-
Phosphate (InsP3) by the PLCβ. InsP3 promotes a calcium 
release from the endoplasmic reticulum (ER), and released 
calcium can be sequestered by the mitochondria, leading 
to cell death. The expression of PrPC leads to a reduction 
of Ca2+ mobilization from the ER and Ca2+ uptake by the 
mitochondria what can contribute to neuronal protection. 
In contrast, there is an increasing of calcium influx through 
the plasma membrane, probably by the activation of Store 
Operated Calcium Channels (SOCCs) and increase of the 
activity of adenylate cyclase. The latter has been associated 
with PrPC-mediated neuroprotection.

Figure 5. Prion infection impairs mobilization of intracellular 
Ca2+ by bradykinin. The bradykinin receptor (BKR) is a cell 
membrane protein coupled to calcium stimulatory G protein 
(Gq) and to Phospholypase Cβ (PLCβ). When bradykinin 
(BK) binds to its receptor, it promotes the PLCβ-catalysed 
cleavage of phosphatidylinositolbisphosphate (PIP2) into 
Inositol-3-Phosphate (InsP3). InsP3 promotes calcium 
release from endoplasmic reticulum (ER), which has been 
attributed a role against ischemia. In cells infected with 
PrPSc, there is an increase in BKR expression. Paradoxically, 
there is a reduction of 90% in InsP3 production, resulting 
in a decrease of Ca2+ mobilization from the endoplasmic 
reticulum (red arrows). These effects are attributed to both 
reduced affinity of BK for its receptor in this condition, and to 
a modification of lipid composition in the plasma membrane, 
with diminished availability of PIP2.
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mice when compared to wild-type neurons (Herms et al., 
2000; Fuhrmann et al., 2006). In fact, it is known that VGCC 
are modulated by PI3K/AKT (Viard et al., 2004), whose 
activation is fundamental to increase VGCC insertion or 
prolong their expression at the plasma membrane. There 
is no evidence of a direct interaction of PrPC with VGCC. 
However, it is known that activity of PI3K/AKT is diminished 
PrPC-null mice (Weise et al., 2006), which may contribute 
either to a lower insertion or to abbreviate the surface 
expression of these receptors. One of the most relevant 
roles of VGCCs is to regulate mechanisms of calcium 
ions delivery into specific intracellular compartments for a 
variety of calcium-dependent processes; including dendritic 
development, neuronal survival, and synaptic plasticity 
(reviewed by (Moreno, 1999). PrPC could then modulate 
neurotrophic functions indirectly through its positive effect 
on the activation on VGCC (Figure 6B).
 Several studies demonstrated that hippocampal neurons 
from PrPC-null mice presented increased excitability when 
compared to wild-type animals (Collinge et al., 1994; 
Colling et al., 1996; Mallucci et al., 2002). In vivo studies 
also showed that, when compared to wild-type mice, PrPC-
null animals show a lower seizure threshold and higher 
mortality after treatment with convulsant drugs such as 
the ionotropic glutamate analog, kainic acid (Walz et al., 
1999). Interestingly, PrPC-null mice presented an elevated 
susceptibility to neuronal damage induced by kainic acid 
which is inhibited by the N-methyl-D-aspartate (NMDA) 
receptor blocker MK-801 (Rangel et al., 2007). NMDA 
receptors are formed by a tetrameric channel (two NR1 and 

two NR2 subunits), which are activated by glutamate and 
are permeable to both sodium and calcium ions (Meldrum, 
2000). The expression of NMDA subtypes can be regulated 
by PrPC (Maglio et al., 2004). Remarkably, PrPC associates 
with NMDA receptors containing NR2D and downregulates 
their function, preventing depolarization and calcium influx, 
thus playing a neuroprotective role (Khosravani et al., 2008) 
(Figure 6C).

PrPC shedding and secretion: PrPC as a neurotrophic 
factor
Despite the preferential PrPC localization at the cell surface, 
as a glycosylphosphatidylinositol (GPI)-anchored protein, 
this molecule presents alternative topologies that may have 
inherent physiological functions. Soluble forms of PrPC 
have been identified not only in the medium of cultured cells 
(Borchelt et al., 1993; Harris et al., 1993; Parizek et al., 2001; 
Mattei et al., 2009) but also in human cerebrospinal fluid 
(Tagliavini et al., 1992), human and murine serum (Parizek 
et al., 2001; Mattei et al., 2009), and released by human 
platelets (Perini et al., 1996). At least four mechanisms 
have been associated to “soluble” forms of PrPC: 1) release 
to the extracellular space after removal of its GPI-anchor 
by post-translational modifications possibly caused by 
escape of glycolipidation (Borchelt et al., 1993; Harris et 
al., 1993) (Figure 7A); 2) shedding from the cell surface via 
phospholipase C cleavage of the GPI anchor (Parkin et al., 
2004) (Figure 7A); 3) secretion by exosomes (Fevrier et 
al., 2004) (Figure 7B) and 4) endoproteolytic cleavage by 
ADAMs (A Disintegrin And Metalloproteases) (Vincent et al., 
2001; Cisse et al., 2005) (Figure 7C).

Figure 6. PrPC interacts with or modulates the activity of ionic channels.
A) PrPC interacts with a two-pore potassium channel protein (TREK-1), which forms a mechanically-gated K+ channel, 
and reportedly promotes neuroprotection via PKA. B) Voltage gated calcium channels (VGCCs) promote an increase in 
a cytoplasmic calcium. Cells from PrPC-null mice present a reduction in calcium influx by VGCCs, probably caused by the 
impairment in AKT activity and phosphorylation of the VGCC subunits which is an essential step for their insertion in the 
membrane. C) PrPC interacts with the NR2D subunit of NMDA (N-methyl-D-aspartic acid) receptors, which are ionotropic 
glutamate receptors permeable to Ca2+. When PrPC is absent, the NMDA channel is more sensitive to NMDA, which promotes 
an increase of calcium influx leding to neuronal cell death.
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 Soluble PrPC can act as a ligand triggering neurotrophic 
functions, and these functions were mimicked in cell cultures 
by recombinant protein. When mouse primary cerebellar 
granule neurons were grown in the presence of recombinant 
PrPC, signal transduction components such as PKA, Src-
related tyrosin kinases, phosphatidylinositol3-kinaseAkt, 
and MAPK/Erk kinases were activated, promoting neurite 
outgrowth and neural survival (Chen et al., 2003). In addition, 
in vitro experiments demonstrated that recombinant PrPC 
induces both neuronal survival in mouse cortical neurons 
(Lima et al., 2007), and rapid neuronal polarization and 
development of synapses in embryonic rat hippocampal 
neurons (Kanaani et al., 2005).
 Although secreted forms of PrPC were identified in 
exosomes and microvesicles from neuronal cells, (Fevrier 

et al., 2004; Mattei et al., 2009), platelets (Robertson et al., 
2006) and ovine cerebral spinal fluid (Vella et al., 2008) 
their biological functions are unknown. Remarkably, PrPC 
secreted from astrocytes has been associated with neuronal 
survival (Lima et al., 2007), and vesicular structures 
containing PrPC were identified by biochemical methods 
and ultrastructural criteria following immunohistochemistry 
of astrocyte conditioned media (C. Arantes, G. Hajj, M. 
H. Lopes, I. Porto-Carreiro, R. Linden and V.R. Martins, 
unpublished observations) (Figure 7B).
 GPI-anchored PrPC is not a partner for soluble PrPC, 
since similar effects were observed when the latter was 
used to treat either wild-type or PrPC-null neurons (Chen 
et al., 2003; Kanaani et al., 2005; Santuccione et al., 
2005; Lima et al., 2007). Conversely, NCAM-null neurons 

Figure 7. PrPC can reach the extracellular space either in exosomes or in soluble forms, and mediate neurotrophic activities. 
PrPC can be released from cells through distinct mechanisms. A) The PrPC GPI-anchor can be removed by posttranslational 
modification or cleaved by phospholipase C. The anchorless PrPC found in the extracellular space, as well as exogenous 
recombinant PrPC, can bind NCAM and modulate neurotrophic functions. B) PrPC is associated with exosomes, which are 
released by cells upon fusion of multivesicular bodies (MVB) with the plasma membrane. PrPC in exosomos can interact 
with transmembrane proteins, i.e. NCAM, to transduce neuroprotective effects. C) Metaloproteases cleave PrPC at residues 
110/111 generating a soluble N-terminal fragment (N-1) and a C-terminal fragment (C-1) tethered to the plasma membrane. 
The soluble N-1 fragment induces neuronal survival probably by interacting in either cis or trans with an unidentified cell 
surface receptor. The C-1 fragment tethered to the plasma membrane has pronounced pro-apoptotic activity.
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were unable to respond to soluble PrPC (Santuccione et 
al., 2005), thus indicating that NCAM is required for the 
neurotrophic functions mediated by physiologically secreted 
PrPC molecules or recombinant PrPC (Figures 7A and B).
 PrPC is endo-proteolytically cleaved at the N-terminal 
side, at the 110/111 residues, thus producing a 17-kDa 
C-terminal fragment C1 tethered to the plasma membrane 
(Harris et al., 1993; Chen et al., 1995; Laffont-Proust et al., 
2005). The 9-kDa soluble N-terminal counterpart referred 
as N-1 is constitutively released in the extracellular medium 
depending on protein kinase C (Vincent et al., 2000). Three 
disintegrins contribute to this processing, either directly such 
as ADAM-10 and -17 (Vincent et al., 2001) or indirectly such 
as ADAM-9 (Cisse et al., 2005). The activation of muscarinic 
receptor increases the physiological processing of PrPC 
through upregulation of the phosphorylation and activity of 
ADAM-17 (Alfa et al., 2007).
 The C-terminal fragment that remains attached to the 
cell membrane (C-1) displays pro-apoptotic functions and 
regulates p53 mRNA transcription and activity (Sunyach 
et al., 2007) (Figure 7C). Conversely, a recombinant N-1 
fragment protected cells from staurosporine-induced 
apoptosis, by reducing caspase-3 activity, p53 promoter 
trans-activation and activity as well as p53 mRNA levels 
(Sunyach in preparation, cited in (Vincent et al., 2008) 
(Figure 7C). These data indicate that opposite effects of 
C-1 and N-1 domains may maintain an appropriate balance 
between cell survival and death.
 The mechanisms associated to the pro- and anti-
apoptotic effects of the C-1 and N-1 PrPC fragments remain 
unknown, and deserve further investigation. These effects 
may be due to the inability of the membrane-bound C-1 to 
bind and/or to modulate certain PrPC partners such as GAG, 
vitronectin, ligands involved in the neurotrophic role of PrPC, 
or LRP1, which binds PrPC between amino acids 23-107 and 
is involved with internalization of PrPC (Parkyn et al., 2008). 
However, the anti-apoptotic role of PrPC has been ascribed 
to the cAMP/PKA pathway (Lopes et al., 2005), and neither 
the activation of this pathway nor its survival-promoting 
role appear to be dependent on endocytosis (Caetano et 
al., 2008). On the other hand, the protective effects of N-1 
fragment can occur after its interaction in either cis or trans 
with unidentified cell surface proteins (Figure 7C).
 Therefore, both GPI-anchored and soluble PrPC, present 
overlapping neurotrophic properties. This is consistent 
with the hypothesis that PrPC functions as a cell surface 
scaffolding protein, since the relative preservation of the 
structure of PrPC irrespective of its anchoring into the plasma 
membrane would allow similar molecular interactions of 
either the membrane-bound or the released forms (Linden 
et al., 2008). Nonetheless, small structural changes of PrPC 
upon interaction with lipids (Morillas et al., 1999; Eberl et 
al., 2004; Hicks et al., 2006) may affect interaction of PrPC 
with its ligands. It is possible that neurotrophic effects of 
the GPI-anchored PrPC may be complemented by specific 
regulation of PrPC secretion, shedding and cleavage.

PrPC localization in specific membrane microdomains 
and PrPC cellular traffic modulate neurotrophic 
functions
Lipid rafts form an ordered phase in membranes rich in 
cholesterol and sphingolipids and are likely to be the sites 
where GPI-anchored proteins are preferentially partitioned. 

It has long been recognized that PrPC, as other GPI-
anchored proteins (Fivaz et al., 2002), is present in lipid 
rafts (Naslavsky et al., 1997). Early work indicated that 
PrPSc was present in caveole-like domains in brain tissue 
(Vey et al., 1996), however pioneer studies using chicken 
PrPC showed that the protein is sequestered from the cell 
surface in clathrin-coated pits (Shyng et al., 1994). This 
work received some initial criticism, due to the perceived 
default pathway of internalization of GPI-anchored proteins 
by caveolae and other non-clathrin mediated pathways 
(Vey et al., 1996). However, recent work has shown that 
PrPC in neurons and neuronal cells is indeed predominantly 
sequestered by a clathrin-mediated pathway (Sunyach 
et al., 2003). Both dynamin K44A, a dominant-negative 
inhibitor of dynamin activity (Magalhaes et al., 2002), 
and AP-180C, the C-terminal fragment of the endocytic 
protein AP180, when overexpressed in cells block the 
internalization of PrPC (Taylor and Hooper, 2007). Both 
these treatments have been suggested to block selectively 
clathrin-mediated endocytosis, albeit dynamin K44A also 
appears to interfere with caveolae-dependent endocytosis 
(Prado et al., 2004). Co-localization experiments in neurons 
shows that mammalian PrPC is found in clathrin-coated 
vesicles that also internalize transferrin (Sunyach et al., 
2003). In addition, a motif in the N-terminus of cellular prion 
(23KKRPKP28) appears to be critical for clathrin-mediated 
endocytosis (Sunyach et al., 2003). These results agree 
with earlier assessment that found GFP-PrPC in Rab5-
positive endocytic vesicles (Magalhaes et al., 2002).
 These observations raise the possibility that PrPC 

uses alternative mechanisms other than its GPI-anchor for 
internalization. A minimum GPI-anchored protein GFP-GPI, 
utilizes non-clathrin mediated endocytosis as a pathway for 
internalization (Nichols et al., 2001). Hence, it appears that 
the GPI-anchor of PrPC does not contribute majorly for its 
sequestration from the cell surface. Alternative mechanisms 
of internalization for GPI-anchored proteins have been 
suggested. For example, the urokinase plasminogen 
activator receptor (uPAR, a GPI-anchored protein) 
piggybacks onto the low-density lipoprotein receptor-related 
protein (LRP1, a transmembrane scavenger protein that can 
interact with intracellular adaptor proteins) to be internalized 
(Nykjaer et al., 1992; Conese et al., 1995; Czekay et al., 
2001). Manipulations that alter LRP1 expression or its 
interaction with ligands (using the chaperone RAP for 
example) decrease the internalization of PrPC, suggesting 
that PrPC may follow a similar internalization pathway by 
piggybacking with LRP1 (Taylor et al., 2007; Parkyn et 
al., 2008). Since PrPC is found in clathrin-coated vesicles 
(Sunyach et al., 2003) it might be possible that this is 
the patway used to internalize PrPC-LRP1 (Figure 8A). 
Moreover, LRP1 appears to have additional roles in PrPC 
trafficking, as this scavenger receptor appears to interact 
with PrPC during its biosynthesis, perhaps acting like a 
chaperone for PrPC (Parkyn et al., 2008).
 The 37LRP/67LR also promotes PrPC internalization, 
even though this has been observed only for the recombinant 
protein and no internalization pathway has been described 
(Gauczynski et al., 2001) (Figure 8B).
 Recent work from our laboratories suggested that at least 
for one PrPC ligand, STI1, their binding triggers endocytosis 
of the prion protein (Caetano et al., 2008). Copper has 
been previously shown to interact with PrPC and to trigger 
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its endocytosis (Pauly and Harris, 1998; Lee et al., 2001; 
Perera and Hooper, 2001). Hemin (iron protoporphyrin IX) 
added to culture media can also evoke PrPC internalization 
and recycling (Lee et al., 2007b). However, to the best of our 
knowledge, STI1 is the first ligand, which triggers cellular 
signaling by interacting with PrPC that can also evoke 
sequestration of this protein. Internalization of cell surface 
receptors is usually considered a mechanism for modulation 
of cellular responses (Ferguson, 2001), suggesting the 
possibility that endocytosis of PrPC triggered by STI1 may 
be involved in cellular signaling.
 This possibility received initial support when it was found 
that treatments known to decrease endocytic activity in cells 
diminished STI1 mediated signaling (Americo et al., 2007). 
Recent work showed that a PrPC mutant (23KKRPKP28 
to 23KQHPSP28), that fails to undergo clathrin-mediated 
endocytosis (Sunyach et al., 2003), can reconstitute 
PrPC mediated activation of PKA in response to STI1, but 
not activation of ERK1/2 activation in the same condition 
(Caetano et al., 2008). The most parsimonious explanation 
for these results is that activation of ERK1/2, but not 
PKA triggerd by STI1-PrPC interaction depends on the 

internalization of PrPC into clathrin-coated vesicles (Figure 
8C).
 Interestingly, the activation of ERK1/2 induced by STI1 
is fast and transient, lasting no more than a few minutes 
(Lopes et al., 2005; Caetano et al., 2008). This observation 
has led us to investigate if STI1 trafficking in cells could 
explain the short activation time of ERK1/2. Indeed, STI1 
is also internalized by cells in a PrPC independent-way. 
A fraction of STI1 appears to be internalized with PrPC 

and, in the initial moments of internalization part of STI1 
is found in clathrin-coated vesicles. However, shortly 
after internalization STI1 and PrPC appear to be sorted to 
distinct intracellular paths, and upon prolonged chase they 
distribute to distinct intracellular compartments (Caetano et 
al., 2008). Remarkably, most internalized STI1 is eventually 
found in flotillin/reggie-positive vesicles (Figure 8C). We 
have speculated that the divergence in intracellular roads 
taken by the two proteins may function to attenuate ERK1/2 
signalling (Caetano et al., 2008).
 PrPC was also found in flotillin/reggie-1 lipid rafts in 
non-neuronal cells, suggesting that, at least in certain 
circumstances PrPC and STI1 could share the same 

Figure 8. Distribution of PrPC in specific membrane microdomains and endocytic vesicles mediates neurotrophic functions. A) 
LRP interacts with PrPC located in lipid rafts and triggers the latter’s internalization. B) 37LRP/67LR promotes the internalization 
of recombinant PrPC through an unknown mechanism. C) STI1 induces PrPC internalization by clathrin coated pits. ERK1/2 
activation depends of PrPC internalization. D) PrPC and STI1 were also found in flotillin/reggie1 vesicles, recycling vesicles 
and lysosomes.
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internalization pathway. PrPC was targeted to these 
domains through antibody cross-linking, leading to actin 
polymerization, ERK1/2 phosphorylation and a distinct brief 
Ca2+ signal (Stuermer et al., 2004). These results also imply 
that PrPC sequestration and activity are coupled events. 
Reggie/flotilins are cytoplasmic proteins involved in the 
capping of raft derived vesicles, and can also be found in 
the nervous system. Their ablation induces morphological 
defects in the nervous system during embryogenesis 
(Stuermer and Plattner, 2005), and they are involved in the 
secretion of morphogens such as Hedgehog and Wnt in 
Drosophila (Katanaev et al., 2008). Since both PrPC and 
STI1 can be secreted, the interaction of these proteins 
with reggie/flotillin-positive organelles may have important 
implications for the availability of secreted PrPC or STI1 
(Figure 8D).
 The possibility that PrPC endocytosis is a triggered event 
related to cellular signaling merits further investigation. For 
example, as demonstrated in Figure 6C, PrPC at the cell 
surface has been shown recently to constitutive silence 
the NR2D receptor subunit in hippocampal neurons 
(Khosravani et al., 2008). This subunit, when incorporated 
to functional NMDA receptors generates currents with long 
decay kinetics, which may be responsible for increased 
sensitivity to excitotoxicity in PrPC-null neurons (Khosravani 
et al., 2008). It could be envisioned that sequestration of cell 
surface PrPC may be a mechanism to transiently increase 
NMDA currents in hippocampal neurons. Another potential 
site for regulation is the β-secretase pathway involved 
in APP processing that has been recently shown to be 
regulated by the presence of PrPC in lipid rafts (Parkin et 
al., 2007). Future experiments aimed at dissecting signaling 
complexes involved in PrPC function, should also target the 
mechanisms through which these complexes regulate and 
are regulated by cellular prion trafficking.

PrPC in astrocytes promoting neuronal survival and 
differentiation
Astrocytes and neurons interact in various neurophysio-
logical events and represent an integral unit in brain 
function. Astrocytes are key elements in both the production 
of neurotrophic molecules and controlling the levels of 
neurotoxic substances. They can also modulate the 
production of extracellular matrix that supports neuronal 
development and differentiation (Theodosis et al., 2008).
 The functions of PrPC in astrocytes are largely unknown. 
It was shown that PrPC associates with both the GluR2 
subunit of AMPA receptors and 2α/β2 Na+/K +ATPase. The 
latter binds to basigin, a cell adhesion molecule (Kleene 
et al., 2007), which is tightly associated with the lactate 
monocarboxylate transporter 1 (MCT1). In the absence of 
glutamate, the 2α/β2 Na+/K +ATPase is less active, and MCT1 
does not transport lactate. Conversely, when glutamate is 
present, MCT1 is active, leading to either increased release 
or uptake of lactate, depending on the concentration of the 
latter inside and outside of the astrocyte. Intense synaptic 
activity implies an increased energy demand, and lactate 
provided by astrocytes may be a necessary alternative 
substrate for balancing the energetics of neuronal activity. 
Deletion of PrPC is followed by inactivation of 2α/β2 Na+/K 
+ATPase, and an interruption on the control of MCT1, 
which becomes permanently active even in the absence of 
glutamate. It was suggested that the deletion of PrPC may 

result in increased levels of extracellular lactate, and lactate-
induced acidosis leading to neuronal damage (Kleene et 
al., 2007). The PrPC-dependent protein complex involved in 
lactate transport may therefore play an important role upon 
synaptic function (Figure 9A).
 The role of PrPC in neurotrophic interactions between 
astrocytes and neurons has also been addressed (Lima 
et al., 2007). Prominent neurite outgrowth was observed 
when wild-type neurons were co-cultured with wild-type 
astrocytes, while poor differentiation was present when both 
cells were derived from PrPC-null mice. It is possible that 
PrPC in astrocytes contributes to neurite outgrowth by trans-
activating a ligand such as NCAM in neurons (Figure 9B). 
In addition, astrocytes produce and secrete laminin, among 
other ECM proteins. Laminin secreted and deposited at the 
ECM by wild-type astrocytes showed a fibrilar organization 
(Figure 9B), while that secreted from PrPC-null astrocytes 
has a punctate pattern (Figure 9C). The pattern of laminin 
matrix has been shown to influence neurite outgrowth (Freire 
et al., 2002), either through modulation of its binding to PrPC 

(Graner et al., 2000a) or to other cell surface receptors 
(Denda and Reichardt, 2007; Nelson et al., 2008).
 Astrocytes also release soluble neurotrophic factors and 
proteins such as STI1 and PrPC (Lima et al., 2007) and these 
proteins can bind to neuronal PrPC and NCAM respectively, 
mediating neuronal survival and differentiation (Lima et 
al., 2007). Neuronal survival was higher when cells where 
treated with conditioned medium from wild-type astrocytes, 
as compared with medium from PrPC-null astrocytes. These 
data clearly show that PrPC in astrocytes is critical to sustain 
cell-cell interaction, organization of extracellular matrix and 
secretion of soluble factors, thus helping to maintain a 
healthy environment for neuronal survival and differentiation 
(Figures 9B and C).
 Therefore, PrPC not only works as a neurotrophic factor 
for neuronal cells, but also modulates astrocyte performance 
on neuronal survival and differentiation.

PrPC as a therapeutic target for degenerative illnesses
Given that PrPC interacts with several classes of molecules 
triggering neurotrophic functions, and the high expression 
of PrPC in the nervous system, it is conceivable that the 
modulation of PrPC activity and its interaction with specific 
ligands may constitute therapeutic targets not only for prion 
diseases, but also for other chronic degenerative diseases.  
 The pathogenesis of prion diseases can be explained, 
at least in part, by "loss-of-function" mechanism, which 
consists in the depletion of the neuroprotective function of 
PrPC, when converted to PrPSc. However, this mecanism 
is still debatable, due to some noteworthy results. For 
example, the deletion of neuronal PrPC in adult mice 
causes changes in some hippocampal properties, but no 
neurodegeneration (Mallucci et al., 2002). Spongiosis, 
neuron loss, cognitive and behavioral deficits, as well as 
impaired neurophysiological function, were reverted upon 
deletion of PrPC in early stages of the disease in mice 
(Mallucci et al., 2003; Mallucci et al., 2007). Remarkably, 
these results were reproduced when the expression of 
PrPC was inhibited by a lentiviral vector containing an anti-
PrPC shRNA in prion infected mice (White et al., 2008). 
This treatment also significantly prolonged the survival of 
those animals (White et al., 2008). Thus, despite limitations 
such as treatment in early stages of prion disease, the need 
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Figure 9. PrPC modulates neurotrophic properties in astrocytes. A) Glutamate released in synapses is taken up by astrocytes 
via glial glutamate transporters (GLAST/GLT-1). Na+ dependent transport of glutamate causes a massive Na+ influx into 
the cell, leading to the activation of the Na+/K+ ATPase. In order to maintain a high glycolitic flux, lactate is released from 
astrocytes into the extracellular space via the monocarboxylate trasporter (MCT-1). Lactate is taken up by neurons. PrPC 

associates with a protein-complex involved in lactate transport in the astrocytic membrane. PrPC can directly interact with 
both, the GluR2 subunit of AMPA receptors and 2α/β2 Na+/K +ATPase. The latter binds a cell adhesion molecule, basigin, 
required as an auxiliary protein to maintain the catalytic activity of the lactate receptors. The lack of PrPC reduces the 2α/β2 
Na+/K +ATPase pump activity and activates basigin/MCT1associate lactate transport. B and C) PrPC and STI1 as neurotrophic 
factors in neuron-glia interaction. A prominent neuritogenesis is observed when wild-type neurons are co-cultured with wild-
type astrocytes (B) neurite outgrowth is impaired when both cell types are derived from PrPC-null mice (C). Laminin secreted 
and deposited at the ECM by wild-type astrocytes has a fibrillar organization and promotes more intense neurite outgrowth 
than the puctated laminin secreted from PrPC-null astrocytes. Astrocytes also release STI1 and PrPC, which induce neuronal 
survival and differentiation.
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for transport across the blood-brain barrier, and off-target 
effects, anti-PrPC siRNA seems to be a promising approach 
to treat prion diseases. Notwithstanding, its effect regarding 
PrPC loss-of-function in humans need to be considered. 
Still, short lived side effects may be acceptable, due to the 
devastating characteristics of prion diseases. 
 The use of anti-PrPC antibodies to block prion infection 
in vivo has also been addressed, but some of the data 
are contraditory, particulary regarding the toxicity of the 
treatment. The expression of a transgenic anti-PrPC IgMa µ 
chain prevented pathogenesis of prions directly inoculated 
into brain or spleen (Heppner et al., 2001). In addition, 
peripheral infection was markedly reduced by treatment with 
anti-PrPC antibodies (White et al., 2003). Extracerebrally 
infected CD-1 mice also presented effective suppression of 
PrPSc replication in the lymphoreticular system, lengthening 
of the incubation period and a significant decrease in 
CNS pathology after treatment with anti-PrPC antibodies 
(Sadowski et al., 2009). However, important concerns 
about intracerebral treatment with antibodies to PrPC were 
raised (Tayebi and Hawke, 2006). The cross-linking of PrPC 
in vivo with specific monoclonal antibodies triggers rapid 
and extensive apoptosis in hippocampal and cerebellar 
neurons (Solforosi et al., 2004). Prolonged treatment with 
PrPC antibodies also causes extensive neuronal loss, 
strong astrogliosis and microglial activation, even when 
IgG Fab fragments were applied (Lefebvre-Roque et al., 
2007). In addition, this treatment was not protective against 
the development of BSE in transgenic mice overexpressing 
PrPC  (Lefebvre-Roque et al., 2007).
 Blockade of PrPC-PrPSc conversion without altering 
PrPC function is also an interesting alternative for prion 
diseases. This has been approached through the targeting 
of physiological ligands already characterized as inhibitors 
of PrPC conversion into PrPSc. A trans-dominant negative 
37LRP/67LR mutant reportedly had an inhibitory effect 
on PrPC-PrPSc conversion in vitro (Vana and Weiss, 
2006). Preclinical studies demonstrated that passive 
immunotransfer of single chain Fv antibodies directed against 
the 37LRP/67LR reduced PrPSc levels in the spleen of prion 
infected mice (Zuber et al., 2008). Stereotatic intracerebral 
microinjection of adeno-associated virus (AAV) vectors 
expressing single chain Fv antibodies against this receptor 
leads to a reduction of peripheral PrPSc, however without 
a significant lenghtening of incubation times and survival 
(Zuber et al., 2008). In this line, other candidate targets 
may be glycosaminoglycans (GAGs), which have both high 
affinity for PrPC and demonstrated anti-scrapie activities 
(Caughey et al., 1994; Warner et al., 2002; Schonberger et 
al., 2003; Kocisko et al., 2006; Caughey et al., 2006; Silva 
et al., 2008). Further studies are required to test how the 
modulation of these molecules for the treatment of prion 
diseases may affect physiological functions of PrPC.
 PrPC may also be approached as a candidate 
neuroprotective agent in Alzheimer’s disease, due to 
its effect of downmodulating the activity of β-secretase, 
therefore decreasing the production of the toxic amyloid-β 
(Aβ) peptide, the main component of senile plaques (Parkin 
et al., 2007). On the other hand, PrPC was also found to be 
the major receptor for Aβ oligomers in neurons and their 
interaction is important for the effects of Aβ on synaptic 
disfunction (Lauren et al., 2009). The possible use of PrPC 
as a therapeutic target in Alzheimer diseases has been 

explored (Parkin et al., 2007; Lauren et al., 2009), and 
the development of reagents that increase β-secretase 
inhibition by PrPC and impair PrPC-Aβ oligomers binding 
would be desirable.
 Although exogenous GAGs may constitute lead 
compounds for the development of therapeutic methods for 
prion diseases (Schonberger et al., 2003), the same can be 
detrimental for Alzheimer´s disease. Whereas PrPC interacts 
with BACE1 therefore inhibiting its β-secretase activity, the 
interaction between PrPC and BACE1 involves GAGs, and 
the exogenous GAGs appear to disrupt this interaction, thus 
restoring the production of Aβ peptides (Parkin et al., 2007). 
Still, exploring PrPC–GAGs interactions would potentially 
generate new and improved therapeutic strategies for both 
prion and Alzheimer´s diseases.
 Both the differentiation of dorsal root ganglia (Hajj et 
al., 2007) as well as motor neuron survival (Barbeito A., 
Hajj G, Martins VR, Barbeito L unpublished results) can be 
modulated by PrPC. Although previous results suggested 
downregulation of PrPC in a transgenic mouse model for 
amyotrophic lateral sclerosis (ALS) (Dupuis et al., 2002) 
our data demonstrated that PrPC expression in tissues from 
similar animals are comparable to their normal counterpart 
(Barbeito A., Hajj G, Martins VR, Barbeito L unpublished 
results). Therefore, protective effects of PrPC in motor 
neurons can also become a therapeutic target for ALS, and 
this hypothesis deserves to be explored.
 It has been reported that PrPC depletion causes a 
higher aggregation of huntingtin (Htt), similar to what is 
observed when cells are treated with a proteasome inhibitor. 
Conversely, overexpression of PrPC in cells expressing 
Htt caused a decrease in both the number of cells with 
Htt granules and the number of apoptotic cells, indicating 
a protective activity of PrPC against pathological protein 
aggregation (Lee et al., 2007a). Histone deacetylase (HDAC) 
inhibitors have been proposed as a novel therapeutic 
approach for the Huntington’s disease (Sadri-Vakili and 
Cha, 2006) and PrPC is upregulated by such inhibitors 
(Cabral et al., 2002). Altogether, these data suggest that 
PrPC should be considered in attempts to develop new 
therapeutic approaches for Huntington´s disease.
 The protective function of PrPC extends to other 
neurological disorders such as epilepsy. Two independent 
studies demonstrated that PrPC-null mice are more 
susceptible to seizures induced by convulsant agents (Walz 
et al., 1999; Rangel et al., 2007). After injection of kainate 
or pentylenetetrazol, these animals presented higher grade 
seizures reaching elevated mortality and increased neuronal 
death when compared with control mice (Walz et al., 1999; 
Rangel et al., 2007). Moreover, several brain regions of 
PrPC-null mice showed increased neuronal death upon 
injections of kainate (Rangel et al., 2007). The absence 
of PrPC decreased the activity of GABAergic receptors 
(Collinge et al., 1994) and increased the expression and 
activity of NMDA receptors (Maglio et al., 2004; Khosravani 
et al., 2008). Thus, the neuroprotective function of PrPC 
against seizures may be a consequence of its ability to 
balance inhibitory and excitatory synaptic transmission 
(Khosravani et al., 2008).
 The expression of PrPC is also important for the 
maintenance of the circadian rhythm and sleep homeostasis. 
Animals that do not express PrPC presented longer period of 
activity in free-running conditions compared to normal mice 
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and this phenotype was rescued with re-expression of PrPC 
(Tobler et al., 1996). Moreover, the lack of PrPC expression 
increased the sleep fragmentation indicating that PrPC is 
required for sleep continuity (Tobler et al., 1996; Tobler et 
al., 1997). Consistently, patients with prion diseases also 
present altered sleep patterns that can extend to the case of 
patients carrying a mutation Asp178 Asn that leads to fatal 
familial insomnia (Landolt et al., 2006; Provini et al., 2008). 
Since sleep is a physiological process tightly controlled by 
various neurotransmitter systems, these data corroborate 
the view that PrPC can be a target to modulate synaptic 
transmission and for the treatment of sleep disorders.
 Finally, PrPC can also be a target for the treatment 
of acute injuries. The induction of ischemic stroke in the 
animal model generates complex pathophysiological 
conditions in the brain that can culminate with cell death. 
This experimental approach was used by several groups to 
evaluate the neuroprotective role of PrPC in vivo. All findings 
unanimously demonstrated that ischemic lesions increased 
the local expression of PrPC and that PrPC-null mice were 
more vulnerable to the ischemic stroke presenting larger 
brain injury (McLennan et al., 2004; Weise et al., 2004; Shyu 
et al., 2005; Weise et al., 2006). The up-regulation of PrPC 
due to the ischemic stroke was also observed in human 
post-mortem brain tissue. Pyramidal neurons, inflammatory 
cells and micro vessels of the peri-infarcted area expressed 
higher level of PrPC compared to contralateral tissues 
(Mitsios et al., 2007). Moreover, a higher level of PrPC was 
also present in the plasma (Mitsios et al., 2007). The up-
regulation of PrPC expression in the ischemic tissue may 
represent a protective mechanism against the injury and 
might conceivably be explored therapeuticaly.

Conclusion and future directions
Studies of neurotrophic signal transduction have evolved 
from the search for simple pathways controlling cell survival 
to complex, non-linear systems, including interactions of 
classic neurotrophic factors (Sharma, 2007; Sanford et al., 
2008; Hossain et al., 2008), cross-talk and transactivation 
among differing neuroactive molecules and membrane 
receptors (Lee et al., 2002; Wiese et al., 2007; Jeanneteau 
et al., 2008; Iwakura et al., 2008), selective, and even 
opposite, responses either of individual receptors or to 
single neurotrophic molecules (Chao et al., 2002; Iwakura et 
al., 2008), modulation of receptor expression and exposure 
(Nagappan and Lu, 2005), as well as subcellular traffic-
dependent signaling (Howe and Mobley, 2005; Ibanez, 
2007; Cosker et al., 2008).
 Scaffolding proteins provide for both spatial coordination 
and kinetics of molecular interactions, which are critical 
for the selective activation of signaling cascades within 
the intracellular environment (Pawson and Scott, 1997; 
Bhattacharyya et al., 2006; Murrin and Talbot, 2007; Jarnaess 
and Tasken, 2007; Bezman and Koretzky, 2007; Dohlman, 
2008). A number of intracellular scaffolding proteins are 
required for signaling downstream of membrane receptors 
and for interaction of known neurotrophic molecules 
(Nakaoka et al., 2003; Hisata et al., 2007; Iida et al., 2007; 
Kurisaki et al., 2008).
 We have proposed that the main function of the prion 
protein is to serve as a dynamic cell surface scaffolding 
protein, based on its ability to bind a large number of ligands, 
and to travel across boundaries of distinct plasma membrane 

domains, as well as to move bidirectionally between the 
cell surface and intracellular endocytic compartments. 
These properties allow for a role of PrPC upon both the 
selection and the kinetics of extracellular and cell surface 
components of signaling modules, as well as the recruiting 
of transmembrane components able to convey extracellular 
signals through the plasma membrane. Such properties are 
likely to underlie both the varied and often contradictory 
functions attributed to PrPC, and the multiple phenotypes 
that follow modulation of the expression of PrPC (Linden et 
al., 2008).
 The current review underscores the importance of 
PrPC in the coordination of signaling related to neuronal 
survival and differentiation. The ability of PrPC to mediate 
the assembly of multi-component complexes at the cell 
surface is likely the basis for its neurotrophic properties, 
and may be relevant for loss-of-function components of 
prion diseases (Samaia and Brentani, 1998), in particular 
those associated with neuronal death. In addition, the wide 
range of molecular interactions described for PrPC suggests 
that this protein may be relevant for not only the spongiform 
encephalophaties, but also as an ancillary component of 
the pathogenesis of other neurodegenerative diseases, 
and therefore amenable to therapeutic targeting. Further 
studies should be directed at the unraveling of additional 
signaling complexes scaffolded by PrPC, as well as to the 
role of these molecular assemblies upon both physiological 
and pathological properties of both the nervous system and 
other organs (Linden et al., 2008).
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