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Abstract: Objectives: Fibrosis is involved in many chronic diseases. It affects the functionality
of vital organs, such as liver, lung, heart and kidney. Two novel imaging agents for positron
emission tomography (PET) imaging of fibrosis have previously pre-clinically demonstrated
promising target binding and organ distribution characteristics. However, the relevant disease
monitoring in the clinical setup would require multiple repetitive examinations per year.
Thus, it is of paramount importance to investigate the absorbed doses and total effective
doses and thus, the potential maximum number of examinations per year. Methods: Two
cyclic peptide (c[CPGRVMHGLHLGDDEGPC]) analogues coupled via an ethylene glycol linker
(EG2) to either 2-(4,7-bis(2-(tert-butoxy)-2-oxoethyl)-1,4,7-triazonan-1-yl)acetic acid (NO2A-Col)
or 4-(4,7-bis(2-(tert-butoxy)-2-oxoethyl)-1,4,7-triazacyclononan-1-yl)-5-(tert-butoxy)-5-oxopentanoic
acid (NODAGA-Col) were labelled with 68Ga. The resulting agents, [68Ga]Ga-NO2A-Col and
[68Ga]Ga-NODAGA-Col, were administered in the tail vein of male and female Sprague–Dawley
rats (N = 24). An ex vivo organ distribution study was performed at the 5-, 10-, 20-, 40-, 60- and
120-min time points. The resulting data were extrapolated for the estimation of human organ and
total body absorbed and total effective doses using Organ Level Internal Dose Assessment Code
software (OLINDA/EXM 1.1) assuming a similar organ distribution pattern between the species.
Time-integrated radioactivity in each organ was calculated by trapezoidal integration followed by a
single-exponential fit to the data points extrapolated to infinity. The resulting values were used for the
residence time calculation. Results: Ex vivo organ distribution data revealed fast blood clearance and
washout from most of the organs. Although the highest organ absorbed dose was found for kidneys
(0.1 mGy/MBq), this organ was not the dose-limiting one and would allow for the administration of
over 1460 MBq per year for both [68Ga]Ga-NO2A-Col and [68Ga]Ga-NODAGA-Col. The total effective
dose was the limiting parameter with 0.0155/0.0156 (female/male) mSv/MBq and 0.0164/0.0158
(female/male) mSv/MBq, respectively, for [68Ga]Ga-NO2A-Col and [68Ga]Ga-NODAGA-Col.
This corresponded to the total amount of radioactivity that could be administered per year of
643 and 621 MBq before reaching the annual limit of 10 mSv. Thus, up to six examinations would
be possible. The residence time and organ absorbed doses in liver and spleen were higher for
[68Ga]Ga-NODAGA-Col as compared to [68Ga]Ga-NO2A-Col. Conclusion: The limiting parameter for
the administered dose was the total effective dose that would allow for at least six examinations per
year that might be sufficient for adequate disease monitoring in longitudinal studies and a routine
clinical setup.
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1. Introduction

The consequences of fibrosis affecting the functionality of vital organs, such as liver, lung, heart
and kidney, can be lethal, and it is crucial to diagnose the disorder in the early stage of its development,
as well as to predict the disease progression and response to therapy. The feasibility of the development
of a non-invasive, early, specific, sensitive and quantitative diagnostic method of fibrosis at the
molecular level has been explored previously [1,2]. The underlying hypothesis was the specific affinity
of collagelin ligands to collagen I and III that excessively accumulate in tissue causing elasticity
loss. Such ligands labelled with positron emitting 68Ga (t1/2= 68 min, 89% β+) in combination with
positron emission tomography-computed tomography (PET-CT) would allow accurate and direct
quantitative assessment of the status of fibrosis for the determination of the disease progression
and response to treatment. A single examination using this technique results in a whole body scan
with accurate and specific localization of the target and real-time evaluation of physiology and
pathology. PET-CT would allow one to overcome the non-specificity and insufficient sensitivity
of non-invasive anatomical imaging techniques, such as ultrasound, transient elastography (TE),
ultrasound Doppler technology, acoustic radiation force impulse imaging, magnetic resonance imaging
(MRI) and computed tomography (CT). It would also allow one to avoid invasive diagnostic methods
that can be used only in the late stage of the fibrotic process and that are associated with tissue
sampling error and side effects, such as infection, hemorrhage and patient discomfort. Moreover,
multiple biopsies for the determination of disease progression and treatment response monitoring are
rarely possible in clinical practice.

The choice of the 68Ga radionuclide was justified by its advantageous characteristics and
application versatility [3–7]. In particular, its availability from a generator system and labelling
techniques amenable both to manual radiopharmacy practice and automated manufacturing would
make the respective imaging agent available and affordable at any distant clinical center, providing
worldwide accessibility.

As mentioned above, the potential for the imaging of fibrosis using two collagelin analogues
comprising different derivatives of 1,4,7-triazacyclononane-N,N1,N”-triacetic acid (NOTA), [68Ga]Ga-
NO2A-Col (2-(4,7-bis(2-(tert-butoxy)-2-oxoethyl)-1,4,7-triazonan-1-yl)acetic acid (NO2A-Col)) and
[68Ga]Ga-NODAGA-Col (4-(4,7-bis(2-(tert-butoxy)-2-oxoethyl)-1,4,7-triazacyclononan-1-yl)-5-(tert-
butoxy)-5-oxopentanoic acid (NODAGA-Col)), has been demonstrated previously [2]. In particular,
both tracers were cleared quickly from blood and normal tissue after intravenous administration
to healthy rats, and the binding specificity was confirmed in vitro in cryosections of dog left
ventricle myocardium with histologically-confirmed fibrosis. The results were encouraging; however,
the development and evaluation of a new radiopharmaceutical are a major undertaking, which requires
considerable finance and resources expenses. Another aspect is the ethics of animal usage and the
necessity to decrease the number of sacrificed animals. It is therefore rational to first investigate the
most critical factors influencing the decision of initiating such a study. The adequate disease monitoring
in the clinical setup would require multiple repetitive examinations per year and longitudinal studies.
Thus, it was of paramount importance to conduct a dosimetry study and to estimate the absorbed
doses and total effective doses and, thus, the potential maximum number of examinations per year.

Dosimetry is a crucial part of nuclear medicine required for the assessment of potential
radiotoxicity to the essential radiosensitive organs, such as bone marrow, organs with a physiological
uptake of the radiopharmaceutical and healthy tissue surrounding lesions and excretory organs [8,9].
Thus, dosimetry evaluates the distribution and kinetics of an administered radiopharmaceutical [10].
A high radiation dose to vital organs may prevent the use of an imaging agent. The dosimetry
investigation can reveal at the very early stage of the development if the tracer presents practical interest
or must be modified in order to provide the desired biodistribution and pharmacokinetics. Thus, it is of
utmost importance to investigate dosimetry before undertaking expensive and resource-consuming
studies involving model animals. Moreover, such an approach would decrease the unnecessary
consumption of animals, thus meeting ethical considerations. Radiotoxicity to healthy tissue/organs
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must be minimized, and the respective administered radioactivity dose can be restricted by the
absorbed dose to normal organs, which must be kept within the maximum tolerated dose for the
organs at risk, such as bone marrow and kidneys. In the case of peptide-based agents, the kidney is
often a limiting organ. The total effective dose can present restrictions, as well.

This study reports on the dosimetry of two collagelin analogues, [68Ga]Ga-NO2A-Col and
[68Ga]Ga-NODAGA-Col [2], extrapolated to human from rat biodistribution data in order to determine
the potential of the tracers for annual multiple PET-CT examinations.

2. Material and Methods

2.1. Materials

The purchased chemicals were used without further purification: sodium acetate buffer (pH 4.6,
31048, Sigma-Aldrich, Stockholm, Sweden), 30% HCl (Ultrapure, 1.00318.0250 Merck, Sigma-Aldrich)
and trifluoroacetic acid (TFA, Merck, Darmstadt, Germany). Deionized water (18.2 MΩ), produced
with a Purelab Maxima Elga system (Bucks, UK), was used in 68Ga-labelling reactions.

2.2. Peptide Synthesis and Radiochemistry

The solid-phase peptide synthesis of the cyclic peptide c[CPGRVMHGLHLGDDEGPC]
and the analogues conjugated to 2-(4,7-bis(2-(tert-butoxy)-2-oxoethyl)-1,4,7-triazonan-1-yl)acetic
acid (NOTA(tBu)2) or to 4-(4,7-bis(2-(tert-butoxy)-2-oxoethyl)-1,4,7-triazacyclononan-1-yl)-5-(tert-
butoxy)-5-oxopentanoic acid (NODAGA(tBu)3 via an ethylene glycol link (EG2) was reported
previously [2]. The resulting precursors, NOTA-EG2-c[CPGRVMHGLHLGDDEGPC] (NO2A-Col,
23.2 µg) and NODAGA-EG2-c[CPGRVMHGLHLGDDEGPC] (NODAGA-Col, 23.9 µg), were labelled
with 68Ga available from a 68Ge/68Ga generator system (1850 MBq, IGG100-50, Eckert & Ziegler,
Eurotope GmbH, Berlin, Germany), as described previously [2].

2.3. Organ Distribution Study

Animal studies were performed using healthy female and male Sprague–Dawley rats: one male
and one female animal per time point and tracer (Table 1). The animal experiments were approved by
the local Ethics Committee for Animal Research and performed in accordance with local institutional
and Swedish national rules and regulations. The animals were kept at a constant temperature (20 ˝C)
and humidity (50%) in a 12-h light-dark cycle and given free access to food and water.

[68Ga]Ga-NO2A-Col or [68Ga]Ga-NODAGA-Col was injected into the tail vein of rats as a bolus
with 500 µL phosphate-buffered saline (pH 7.4) as the vehicle (Table 1). The injected amount of the
peptides was 0.8 ˘ 0.2 nanomoles. The animals were euthanized by a CO2–O2 mixture at 5, 10, 20, 40,
60 and 120 min post-injection. The radioactivity of the excised organs was measured in a well-type
NaI(Tl) scintillation counter, applying correction for dead-time and radioactivity decay. The weight
of the tissues was determined simultaneously. The remaining carcass was also measured in order to
monitor the radioactivity elimination and recovery. Samples from blood, heart, lung, liver, spleen,
adrenal glands, kidneys, intestines, with or without contents, muscle, testis, bone, brain, pancreas,
urine bladder and bone marrow were collected. The radioactivity readings were decay-corrected to the
time of the injection, and the results were expressed as standardized uptake values (SUV; Equation (1)),
where the radioactivity of an organ and injected radioactivity was expressed in MBq, and the weight
of a rat and organ was expressed in g.

SUV “
Radioactivityorgan ˆweightrat

Radioactivityinjected ˆweightorgan
(1)
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Table 1. The weight of the rats and injected radioactivity doses of [68Ga]Ga-NO2A-Col and
[68Ga]Ga-NODAGA-Col.

Tracer N (gender) Animal Weight *, (g) Injected Dose *, (MBq)

[68Ga]Ga-NO2A-Col 6 (male) 397 ˘ 18 8.5 ˘ 1.5
[68Ga]Ga-NO2A-Col 6 (female) 261 ˘ 23 7.7 ˘ 2.6

[68Ga]Ga-NODAGA-Col 6 (male) 374 ˘ 28 17.3 ˘ 1.7
[68Ga]Ga-NODAGA-Col 6 (female) 243 ˘ 7 11.9 ˘ 4.4

* Mean ˘ SD, N = 6.

2.4. Dosimetric Calculations

Human organ and total body absorbed and effective dose estimates were calculated according
to the Medical Internal Radionuclide Dose (MIRD) procedure using the measured residence times
and the dose rate S-values [11,12]. The SUV values in rat were first multiplied with the appropriate
radioactivity decay factor dependent on the time point of the data post-injection, then multiplied by
standard organ masses and divided by the standard total-body weight for the standard adult man
phantom obtained from the OLINDA/EXM 1.1 software (Organ Level Internal Dose Assessment Code,
Vanderbilt University, Nashville, TN, USA, 2007) [13]. The values obtained correspond to the fraction
of injected radioactivity (%IA) per organ in man as a function of time (Equation (2, where SUVA is the
SUVs of rat organs; gorgan and kgTBweight are respectively the standard organ weight and standard total
body weight of a human).

`

%IAOrgan
˘

human “ SUVA ˆ

˜

gorgan

kgTBweight

¸

human

(2)

The cumulative radioactivity for the organs was determined by integrating the area under the
time-radioactivity curves for each organ using trapezoidal approximation of the collected kinetic data,
followed by extrapolation of remaining points from the last time point to infinity by a single exponential
fit. The residence time for each organ is equal to the number of disintegrations (MBq ˆ h/MBq). Bone
marrow residence time was assessed according to the bone marrow blood model [14]. The residence
time for the remaining carcass was calculated in the same way as for the other organs, and this value
was used as input in the OLINDA software as “remainder”. The “remainder” of the body residence
time was calculated from SUV due to radioactivity measured in the rest of the body after the removal
of the source organs and tail. The difference between the theoretical residence time and the calculated
residence time of the source organs plus the remainder of the body was assumed to have been in
the tail or excreted. The kidney absorbed dose was calculated based on a multi-region kidney model
phantom [15]. The total target organ absorbed dose (D) is contributed by all source organs and is
expressed by Equation (3), where Ã is the time-integrated radioactivity in the source tissue (rS) and S
is the radionuclide-specific dose rate values [11]:

D prT , tq “
ÿ

rS

Ã prS, tq ˆ S prT Ð rS, tq (3)

2.5. Statistical Analysis

Non-linear regression analyses were made with GraphPad Prism software (Version 5.02 for
Windows, GraphPad Software Inc., La Jolla, CA, USA), and the goodness of fit to the variables was
presented as R2 values.
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3. Results

3.1. Radiochemistry

Two cyclic peptide (c[CPGRVMHGLHLGDDEGPC]) analogues coupled via an ethylene glycol
linker (EG2) to either 2-(4,7-bis(2-(tert-butoxy)-2-oxoethyl)-1,4,7-triazonan-1-yl)acetic acid (NO2A-Col)
or 4-(4,7-bis(2-(tert-butoxy)-2-oxoethyl)-1,4,7-triazacyclononan-1-yl)-5-(tert-butoxy)-5-oxopentanoic
acid (NODAGA-Col) were labelled with 68Ga. The non-decay-corrected radiochemical yield was
82% ˘ 6% with a radiochemical purity of 95% ˘ 3%. The effective specific radioactivity was
50 ˘ 10 MBq/nmol (Figure 1).
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Figure 1. Chemical formulae of [68Ga]Ga-NO2A-Col with a positively-charged complex moiety (A) and
[68Ga]Ga-NODAGA-Col with a neutral complex moiety (B), where c[CPGRVMHGLHLGDDEGPC] is
a cyclic peptide, collagelin, coupled to the chelator moiety via an ethylene glycol linker (EG2).

3.2. Organ Distribution and Kinetics

Twenty four rats (12 female and 12 male; Table 1) were injected either with [68Ga]Ga-NO2A-Col or
[68Ga]Ga-NODAGA-Col. The organ distribution of the tracers was assessed in 19 organs and presented
as decay-corrected SUV values (Figure 2). Ex vivo organ distribution data revealed fast blood clearance
and washout from most of the organs with SUVs below one (Figures 2 and 3). The high kidney uptake
(SUV > 10) indicated renal excretion both in male and female rats.

The blood clearance kinetics was best described by a single exponential phase accounting
for over 98% of the radioactivity, followed by a linear phase (Figure 3A; R2 = 0.9988 (male,
[68Ga]Ga-NO2A-Col); 0.9994 (female, [68Ga]Ga-NO2A-Col); 0.9989 (male, [68Ga]Ga-NODAGA-Col);
0.9994 (female, [68Ga]Ga-NODAGA-Col). The half-life values for the blood clearance were 1.21 min
and 1.19 min, respectively, for males and males injected with [68Ga]Ga-NO2A-Col. The half-life values
for the blood clearance were 1.23 min and 1.29 min, respectively, for males and males injected with
[68Ga]Ga-NODAGA-Col.

The elimination was determined together with the remaining radioactivity (not excreted) for each
animal and time point (5, 10, 20, 40, 60 and 120 min). The radioactivity was rapidly eliminated in both
genders. The elimination kinetics was best described to be two-phase exponential with fast and slow
phases. The half-life values were 1.15 and 19.77 min for males and 2.29 and 22.89 min for females
injected with [68Ga]Ga-NO2A-Col and 2.41 and 29.33 min for males and 3.14 and 36.55 min for females
injected with [68Ga]Ga-NODAGA-Col (Figure 3B; R2 = 0.9994, 0.9992, 0.9995 and 0.9958). Only 1.9%
(male) and 1.4% (female) of radioactivity remained in the animals 120 min after administration of
[68Ga]Ga-NO2A-Col. Respectively, 2.6% (male) and 2.5% (female) of radioactivity remained in the
animals 120 min after administration of [68Ga]Ga-NODAGA-Col. The elimination kinetics was similar
for the female and male animals.
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Figure 2. Kinetics of organ radioactivity uptake (standardized uptake value (SUV)) obtained at 5, 10, 20,
60 and 120 min after i.v. administration of [68Ga]Ga-NO2A-Col and [68Ga]Ga-NODAGA-Col in healthy
male [2] and female Sprague–Dawley rats. BL: blood; HE: heart; LU: lungs; LI: liver; PA: pancreas; SP:
spleen; AD: adrenals; INS+: small intestine with its content; INL: large intestine without content; UB:
bladder; GO: gonads; MU: muscle; BO: bone; BM: red bone marrow; BR: brain; KI: kidneys.

The radioactivity was considerably diminished after 40 min in most other organs, except for
kidneys in both genders (Figure 2). The organs that presented difference between [68Ga]Ga-NO2A-Col
and [68Ga]Ga-NODAGA-Col were liver and spleen. Over 85% of the radioactivity stayed in these
organs in the case of [68Ga]Ga-NODAGA-Col.

The reliability of the results was accessed by the goodness of the mathematical function fit to the
experimental data points. This approach allows the accurate description of the process and a much
lower number of sacrificed animals. It can be justified by high R2 values and the absence of outlying
points. The main aim of the measurements was the determination of the cumulated radioactivity,
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which is determined by the integration of the area under the curve. Despite the gender, the pattern of
distribution kinetics was similar with rapid radioactivity elimination and blood clearance. Due to the
accuracy of the results, ethical considerations discouraged us from increasing the amount of animals
that would be sacrificed unnecessarily in the experiment.

Pharmaceuticals 2016, 9, 31 7 of 12 

 

of distribution kinetics was similar with rapid radioactivity elimination and blood clearance. Due to 
the accuracy of the results, ethical considerations discouraged us from increasing the amount of 
animals that would be sacrificed unnecessarily in the experiment.  

 
Figure 3. (A) Blood clearance of [68Ga]Ga-NO2A-Col and [68Ga]Ga-NODAGA-Col administered 
intravenously (R2 = 0.9988 (■), 0.9994 (●), R2 = 0.9989 (■) and R2 = 0.9994 (♦)) with the respective half-
life values of 1.19, 1.21, 1.23 and 1.29 min. (B) Elimination kinetics of [68Ga]Ga-NO2A-Col and 
[68Ga]Ga-NODAGA-Col administered intravenously with the respective half-life values for the 
fast/slow phases of 19.77/1.15 min (R2 = 0.9994 (■)), 22.89/2.29 min (R2 = 0.9992 (●)), 29.33/2.41 (R2 = 
0.9995 (■)) and 36.55/3.14 (R2 = 0.9958 (♦)). 

3.3. Dosimetry 

The similarity of the biodistribution pattern in human and rat and the homogeneous distribution 
of radioactivity throughout the organ were two basic assumptions considered when extrapolating rat 
biodistribution data to the human species for the calculation of the absorbed and total effective doses 
[13]. The organ distribution study was conducted for 120 min. The residence time was determined 
using the trapezoidal rule, wherein the area from the injection time to the termination time was 
calculated. The residence time results for [68Ga]Ga-NO2A-Col and [68Ga]Ga-NODAGA-Col are 
summarized in Figure 4. The longest residence times were observed for the kidneys, followed by 
blood and muscle. The values were higher for male animals. This is because the residence time is 
integrated over the entire tissue using the standardized human dosimetry model of organ volumes, 
where in the human male model, the muscle volume is around 1.65-times higher than that in the 
female model (28 vs. 17 kg), and the male model blood volume (5.5 l) is almost 1.5 larger than in the 
female model (3.8 l). The other tissues are also larger in the male model, but to a lesser extent. During 
the calculation of the absorbed dose in each tissue (mSv/MBq) by OLINDA, the values are again 
divided with each tissue’s volume, providing final dose values.  

Absorbed doses and total effective doses were calculated using residence time values as the 
input into OLINDA/EXM 1.1, the MIRD scheme of an adult male (70 kg) [12] and recommended 
tissue weighting factors from the International Commission on Radiological Protection (ICRP, 2007). 
The absorbed doses (mGy/MBq) and total effective doses (mSv/MBq) obtained from OLINDA/EXM 
1.1 calculations are presented in Table 2. The extrapolated absorbed dose for both [68Ga]Ga-NO2A-
Col and [68Ga]Ga-NODAGA-Col was highest in kidneys for female and male. The total effective dose 
was 0.0156 and 0.0162 mSv/MBq, respectively, for male and female in the case of [68Ga]Ga-NO2A-Col 
and 0.0141 and 0.0164 mSv/MBq, respectively, for male and female in the case of [68Ga]Ga-NODAGA-
Col. The absorbed doses were slightly higher for females than for males for practically all organs.  

0 20 40 60 80 100 120
0

20

40

60

80

100

A

[68Ga]Ga-NODAGA-Col; male
[68Ga]Ga-NODAGA-Col; female

[68Ga]Ga-NO2A-Col; male
[68Ga]Ga-NO2A-Col; female

Time (min)

B
lo

o
d

 c
le

ar
an

ce
 (

%
)

0 20 40 60 80 100 120
0

20

40

60

80

100

B

[68Ga]Ga-NODAGA-Col; male
[68Ga]Ga-NODAGA-Col; female

[68Ga]Ga-NO2A-Col; male

[68Ga]Ga-NO2A-Col; female

Time (min)

R
em

ai
n

in
g

 r
ad

io
ac

ti
vi

ty
 (

%
)

Figure 3. (A) Blood clearance of [68Ga]Ga-NO2A-Col and [68Ga]Ga-NODAGA-Col administered
intravenously (R2 = 0.9988 (�), 0.9994 ( ), R2 = 0.9989 (�) and R2 = 0.9994 (�)) with the respective
half-life values of 1.19, 1.21, 1.23 and 1.29 min. (B) Elimination kinetics of [68Ga]Ga-NO2A-Col
and [68Ga]Ga-NODAGA-Col administered intravenously with the respective half-life values for the
fast/slow phases of 19.77/1.15 min (R2 = 0.9994 (�)), 22.89/2.29 min (R2 = 0.9992 ( )), 29.33/2.41
(R2 = 0.9995 (�)) and 36.55/3.14 (R2 = 0.9958 (�)).

3.3. Dosimetry

The similarity of the biodistribution pattern in human and rat and the homogeneous distribution
of radioactivity throughout the organ were two basic assumptions considered when extrapolating rat
biodistribution data to the human species for the calculation of the absorbed and total effective
doses [13]. The organ distribution study was conducted for 120 min. The residence time was
determined using the trapezoidal rule, wherein the area from the injection time to the termination time
was calculated. The residence time results for [68Ga]Ga-NO2A-Col and [68Ga]Ga-NODAGA-Col are
summarized in Figure 4. The longest residence times were observed for the kidneys, followed by blood
and muscle. The values were higher for male animals. This is because the residence time is integrated
over the entire tissue using the standardized human dosimetry model of organ volumes, where in the
human male model, the muscle volume is around 1.65-times higher than that in the female model
(28 vs. 17 kg), and the male model blood volume (5.5 L) is almost 1.5 larger than in the female model
(3.8 L). The other tissues are also larger in the male model, but to a lesser extent. During the calculation
of the absorbed dose in each tissue (mSv/MBq) by OLINDA, the values are again divided with each
tissue’s volume, providing final dose values.

Absorbed doses and total effective doses were calculated using residence time values as the
input into OLINDA/EXM 1.1, the MIRD scheme of an adult male (70 kg) [12] and recommended
tissue weighting factors from the International Commission on Radiological Protection (ICRP, 2007).
The absorbed doses (mGy/MBq) and total effective doses (mSv/MBq) obtained from OLINDA/EXM
1.1 calculations are presented in Table 2. The extrapolated absorbed dose for both [68Ga]Ga-NO2A-Col
and [68Ga]Ga-NODAGA-Col was highest in kidneys for female and male. The total effective dose was
0.0156 and 0.0162 mSv/MBq, respectively, for male and female in the case of [68Ga]Ga-NO2A-Col and
0.0141 and 0.0164 mSv/MBq, respectively, for male and female in the case of [68Ga]Ga-NODAGA-Col.
The absorbed doses were slightly higher for females than for males for practically all organs.
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Figure 4. Graph showing the residence times of [68Ga]Ga-NO2A-Col and [68Ga]Ga-NODAGA-Col
in different organs. The values were extrapolated to human female and male from rat ex vivo organ
distribution data and used for dosimetric calculations using the OLINDA/EXM 1.1 software. BL: blood;
HE: heart; LU: lungs; LI: liver; PA: pancreas; SP: spleen; AD: adrenals; INS-: small intestine without its
content; INL-: large intestine without its content; FE: feces; UB: bladder; GO: gonads; MU: muscle; BO:
bone; BM: red bone marrow; BR: brain; KI: kidneys.

Table 2. Estimated absorbed doses (mGy/MBq) of [68Ga]Ga-NO2A-Col or [68Ga]Ga-NODAGA-Col in
human females and males extrapolated from rat organ distribution data.

Organ
[68Ga]Ga-NO2A-Col [68Ga]Ga-NODAGA-Col

Female Male Female Male

Kidneys 0.103 0.102 0.111 0.100
Adrenals 0.009 0.009 0.009 0.008

Liver 0.007 0.006 0.014 0.012
LLI wall * 0.022 0.020 0.023 0.020

ULI wall ** 0.019 0.016 0.019 0.015
Red marrow 0.017 0.017 0.016 0.016

Spleen 0.008 0.006 0.011 0.011
Osteogenic cells 0.032 0.025 0.030 0.024
Small intestine 0.020 0.018 0.020 0.018
Ovaries/testes 0.009 0.015 0.009 0.015

Urinary bladder wall 0.016 0.013 0.017 0.018
Breasts 0.016 N/A *** 0.016 N/A ***
Uterus 0.019 N/A *** 0.019 N/A ***

Stomach wall 0.019 0.015 0.019 0.015
Skin 0.015 0.012 0.015 0.011

Lungs 0.009 0.007 0.008 0.007
Heart wall 0.008 0.006 0.008 0.006

Muscle 0.006 0.005 0.006 0.005
Pancreas 0.008 0.007 0.008 0.007

Brain 0.003 0.002 0.002 0.002
Total body 0.018 0.015 0.018 0.015

Total effective dose (mSv/MBq) 0.016 0.016 0.016 0.014

* LLI: lower large intestine; ** ULI: upper large intestine; *** N/A: not applicable.
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4. Discussion

The practicality of the estimation of the human organ and whole-body radiation dosimetry
based on animal organ biodistribution data has been demonstrated previously, e.g., for radiolabeled
somatostatin [16–18] and exendin-4 analogues [19]. The biodistribution variation between different
species, e.g., rats, mice [17,20] and human, must be considered. However, significant correlation has
been found between the absorbed doses for kidneys estimated in an animal study and obtained from a
clinical study [16,21,22].

The basic assumptions that are made when extrapolating the rat biodistribution data to the
human species for the calculation of the absorbed and total effective doses are the similarity of the
biodistribution pattern in human and rat and the homogeneous distribution of radioactivity throughout
the given organ [13]. The organ distribution study was conducted for 120 min, while the theoretical
residence time for 68Ga(III), assuming retention in the organism for its whole physical life-span, was
approximately 98 min. One more conservative approximation was calculating the residence time,
which was theoretically equal to the area under the organ time radioactivity curves, from time zero
to infinity. In practice, the area from the injection time to the termination time was used, and it was
assumed that the further decline in radioactivity occurred due to physical decay without further
biological clearance. The experimental protocol covered the major part of the radioactive decay of
68Ga and, thus, the remaining decays after the last measurement counts to a small percentage of
the total number of disintegrations in each organ. Consequently, the uncertainty in extrapolation
after 120-min measurements has only minor effects on the total estimate of the time-integrated
activity. As mentioned above, the biodistribution and pharmacokinetics were investigated for 120 min,
exceeding the theoretical residence time of 98 min, and, thus, providing the high accuracy of the
radiation-absorbed dose estimation.

SUVs continuously declined for most of the organs (Figure 2) for [68Ga]Ga-NO2A-Col, while
SUVs in the liver and spleen were approximately constant starting at about 10 min after injection
for [68Ga]Ga-NODAGA-Col. Accumulation in the kidneys was observed throughout the experiment
duration for both agents, as was observed also previously in in vivo PET images [2]. The dosimetry
allometrically scaled to human from animals of both genders is required for the potential translation
of the imaging agents to clinical use. No difference in biodistribution pattern dependent on the
gender could be observed for either [68Ga]Ga-NO2A-Col or [68Ga]Ga-NODAGA-Col for most of the
organs. The slightly faster blood clearance for female rats resulted in lower residence time for blood
and organs, reflecting the blood radioactivity. The relatively high blood and tissue clearance rate is
expected to provide high contrast already 60 min post-injection for both [68Ga]Ga-NO2A-Col and
[68Ga]Ga-NODAGA-Col. The fast blood clearance could also be observed by PET imaging, where
the background radioactivity level diminished already 25 min post-injection [2]. [68Ga]Ga-NO2A-Col
and [68Ga]Ga-NODAGA-Col were washed out from most of the organs, except for kidney for
[68Ga]Ga-NO2A-Col and kidney, spleen and liver for [68Ga]Ga-NODAGA-Col within 2 h, presumably
through renal excretion (Figures 2 and 3). The uptake in most of the vital organs, including heart and
lung, demonstrated SUVs below 0.5. The uptake was reduced to SUVs below 0.1 within 120 min in such
organs as blood, heart, lung, pancreas, adrenal gland, small intestine, large intestine, testis, muscle and
brain, thus indicating low radiation dose to those sensitive organs. The lowest uptake was observed
in the brain with an SUV below 0.01 for both [68Ga]Ga-NO2A-Col and [68Ga]Ga-NODAGA-Col,
most probably corresponding to the radioactivity content in the blood. The uptake in small and
large intestines (SUV < 0.1) was low, with rapid washout. The low healthy organ uptake observed
in the biodistribution study presumably indicated low binding of the agents to the constitutive
collagen. Residence times were slightly higher for male animals for both [68Ga]Ga-NO2A-Col and
[68Ga]Ga-NODAGA-Col as a consequence of the intrinsic phenomena related to the definition and
calculation methodology of the residence time.

The statistical comparison of [68Ga]Ga-NO2A-Col and [68Ga]Ga-NODAGA-Col biodistribution
in healthy male Sprague–Dawley rats 1 h post-injection demonstrated previously a difference in liver,
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spleen and kidney uptake [2]. The difference was presumably attributed to the variation in the charge
of the complex moiety of the analogues. The lower uptake was found for [68Ga]Ga-NO2A-Col with
a positively-charged complex moiety. A difference in organ absorbed doses was observed for the
liver and spleen in this study, as well. The higher uptake for [68Ga]Ga-NODAGA-Col retained for
120 min was reflected in the longer residence time and higher absorbed dose to these organs (Figure 4,
Table 2). Thus, the shorter residence time of [68Ga]Ga-NO2A-Col in liver and spleen as compared
to that of [68Ga]Ga-NODAGA-Col resulted in a lower absorbed dose, making the former analogue
more preferable. The values were higher for [68Ga]Ga-NODAGA-Col by 100% for the liver of both
male and female animals and by 50% and 80% for the spleen, respectively, for the female and male
animals. Nevertheless, the absorbed doses can be considered very low for both tracers, and as reported
previously [2], the radioactivity uptake in the liver and spleen in the PET images was too low for the
visualization, even for [68Ga]Ga-NODAGA-Col. In clinical application, this would provide a high
contrast image, enabling the unambiguous detection of a lesion when using either of the tracers.

The dose was higher for females by 10%–30% in thyroid, skin, lung, heart wall, muscle, brain,
stomach wall, liver and total body, even though the measured SUV was similar in many of these tissues.
Higher calculated absorbed doses in females are likely due to the particular gender phantom model
used by OLINDA, in particular the cross-fire effect from female organs, such as breasts. The absorbed
dose to the reproductive organs was approximately 1.5-times higher for male animals, but there was
no difference between the agents.

Radiation-sensitive organs, such as bone marrow and reproductive organs, also demonstrated
favorable dosimetry. There was no difference in bone marrow absorbed dose between the female
and male rats or between the agents. The absorbed dose to bone red marrow was not the restricting
parameter. It was 0.0170 (female) and 0.0167 (male) mGy/MBq for [68Ga]Ga-NO2A-Col and 0.0161
(female) and 0.0159 (male) mGy/MBq for [68Ga]Ga-NODAGA-Col that yielded over 200 GBq, able
to provide over 1000 PET examinations per year before reaching the red marrow limiting dose of
2 Gy [23].

The kidneys demonstrated the highest uptake, which is rather common for peptide-based
tracers. It is worth mentioning that renal excretion is more preferable as compared to hepatobiliary
and gastrointestinal, since it is faster and the bladder can be voided within an hour, resulting in
lower cross-radiation dose from the kidney as a source organ to the healthy vital organs. Moreover,
the well-defined structure of kidneys and bladder is easier to identify in the image. The domination of
kidney uptake and slow excretion reflected the two-phase exponential elimination kinetics determined
from organ distribution experiments. While our previous study demonstrated a slight difference,
though statistically significant, in kidney uptake between the two tracers, in this study, the absorbed
dose was similar (Table 2). The prolonged retention time of the radioactivity in the kidneys resulted
in the high residence time of 0.062 ˘ 0.002 MBq ˆ h/MBq. The absorbed dose of 0.1 mGy/MBq
was the highest amongst the organs for these agents and comparable to other peptide based
tracers, e.g., somatostatin analogues with absorbed dose of 0.093 mGy/MBq ([68Ga]Ga-DOTA-TATE;
DOTA: 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid; TATE: D-Phe1-Tyr3-octreotate) and
0.082 mGy/MBq ([68Ga]Ga-DOTA-TOC; TOC: D-Phe1-Tyr3-octreotide) [24] or lower as compared
to the exendin-4 analogue with a value of 0.276 mGy/MBq [21]. The maximum total amount of
radioactivity of [68Ga]Ga-NO2A-Col and [68Ga]Ga-NODAGA-Col that could be administered to a
subject, if solely restricted by the dose absorbed by kidneys, would respectively be 1456 (female)/1471
(male) MBq and 1351 (female)/1506 (male) MBq before reaching a kidney-tolerable absorbed dose of
150 mGy [25]. The absorbed dose to this organ assuming the administration of 100 MBq was about 20%
([68Ga]Ga-NO2A-Col) and 21% ([68Ga]Ga-NODAGA-Col) of the maximum allowed dose of 50 mGy to
a single organ in an adult research subject [26].

The estimated whole body effective dose was similar for [68Ga]Ga-NO2A-Col and
[68Ga]Ga-NODAGA-Col when extrapolated from the female rat measurements. These values
were higher than those for male rat measurements (Table 2). Administration of 50–100 MBq of
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[68Ga]Ga-NO2A-Col or [68Ga]Ga-NODAGA-Col would yield a dose within the range of 0.78–1.64 mSv.
In addition, computed tomography examination (CT), which provides morphological information and
is used for attenuation correction, would result in an extra 1 mSv. Thus, the total dose per examination
would correspond to 1.78–2.64 and allow for 3–6 PET-CT examinations annually before reaching the
dose limit defined for healthy volunteers of not more than 10 mSv. The maximum total amount of
radioactivity of [68Ga]Ga-NO2A-Col and [68Ga]Ga-NODAGA-Col that could be administered to a
subject if restricted by effective dose (Table 2) would respectively be 617 (female)/641 (male) MBq
and 610 (female)/709 (male) MBq before reaching the limit for healthy volunteers of 10 mSv. The low
healthy organ uptake observed in the biodistribution study presumably indicated low binding of the
agents to the constitutive collagen. Consequently, a lower effective dose could be expected as compared
to 68Ga-based peptide imaging agents with the target physiologically expressed in healthy organs.
For example, somatostatin receptors expressed in adrenal glands, pituitary gland and pancreas result
in an effective dose of 0.021 mSv/MBq for both [68Ga]Ga-DOTA-TATE and [68Ga]Ga-DOTA-TOC.
Thus, the parameter restricting the administered dose was the total effective dose.

Although the highest organ absorbed dose was found for kidneys (0.1 mGy/MBq), this organ was
not the administered the dose-limiting one; while the total effective dose was the limiting parameter
with 0.0162/0.0156 (female/male) mSv/MBq and 0.0164/0.0141 (female/male) mSv/MBq, respectively,
for [68Ga]Ga-NO2A-Col and [68Ga]Ga-NODAGA-Col. This corresponded to the total amount of
radioactivity that could be administered per year of 610–709 MBq, allowing up to six examinations per
year for both [68Ga]Ga-NO2A-Col and [68Ga]Ga-NODAGA-Col. However, a two-fold lower absorbed
dose for [68Ga]Ga-NO2A-Col in liver and spleen makes this tracer more attractive. As mentioned
earlier, the dosimetry measurements consider the estimation of the absorbed doses to the healthy
organs and tissue in order to determine the limit of the administered radioactivity dose. However,
it should be kept in mind that the biodistribution pattern might be influenced by the disease, and thus,
dosimetry monitoring should be conducted during the clinical examinations.

5. Conclusions

The biodistribution of [68Ga]Ga-NO2A-Col and [68Ga]Ga-NODAGA-Col in rat was investigated
as a function of time, and the data were used for the calculation of radiation dosimetry in humans.
The limiting parameter for the administered dose was the total effective dose that would allow for
up to six examinations per year in humans without exceeding the radiation limits in critical organs.
It might be sufficient for adequate disease monitoring in longitudinal studies and routine clinical setup.
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