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Abstract: The mitochondrial targeted DNA repair enzyme, 8-oxoguanine DNA 
glycosylase 1, was previously reported to protect against mitochondrial DNA (mtDNA) 
damage and ventilator induced lung injury (VILI). In the present study we determined 
whether mitochondrial targeted endonuclease III (EndoIII) which cleaves oxidized 
pyrimidines rather than purines from damaged DNA would also protect the lung. Minimal 
injury from 1 h ventilation at 40 cmH2O peak inflation pressure (PIP) was reversed by 
EndoIII pretreatment. Moderate lung injury due to ventilation for 2 h at 40 cmH2O PIP 
produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D 
weight ratio, and marked increases in MIP-2 and IL-6. Oxidative mtDNA damage and 
decreases in the total tissue glutathione (GSH) and the GSH/GSSH ratio also occurred. All 
of these indices of injury were attenuated by mitochondrial targeted EndoIII. Massive lung 
injury caused by 2 h ventilation at 50 cmH2O PIP was not attenuated by EndoIII 
pretreatment, but all untreated mice died prior to completing the two hour ventilation 
protocol, whereas all EndoIII-treated mice lived for the duration of ventilation. Thus, 
mitochondrial targeted DNA repair enzymes were protective against mild and moderate 
lung damage and they enhanced survival in the most severely injured group. 
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1. Introduction 

There is now general acceptance that ventilator induced lung injury (VILI) contributes significantly 
to the mortality in the acute respiratory distress syndrome (ARDS) because a large scale clinical trial 
reducing tidal volume from 12 mL/kg to 6 mL/kg improved ARDS survival by 22% [1,2]. However, 
tidal volume cannot be further reduced because a minimal tidal volume is necessary to preserve life. 
Unfortunately even using a low tidal volume, mechanical ventilation can magnify the injurious effect 
of pre-existing damage or infection [3–5]. This means a further improvement in survival from ARDS 
during mechanical ventilation will require a pharmacologic intervention which will protect against 
injury due to a variety of insults that may activate multiple signal pathways. There is increasing 
evidence that impairment of mitochondrial function by excess oxidant injury may play a central role in 
lung injury secondary to mechanical stress as well as septic challenge.  

Although mitochondria produce superoxide during normal energy production, cyclical stretch of 
lung endothelial and epithelial cells produces an excess of oxidants that can damage mitochondrial 
proteins and DNA. In addition, mitochondrial DNA (mtDNA) is some 10 to 100-fold more sensitive to 
oxidative damage than nuclear DNA [6]. These damaged mitochondria can leak increased amounts of 
superoxide into the cytoplasm and activate NADPH oxidases [7,8]. A vicious positive feedback of 
oxidants between mitochondria and NADPH oxidases can then cause progressive mtDNA damage and 
loss of mitochondrial function [6,9,10]. Repair of mtDNA damage can interrupt the progression of 
oxidant production, mitochondrial failure and cell death. 

Previously, oxidant challenged pulmonary endothelial cells and other cell types pretreated with the 
mitochondrial targeted DNA repair enzymes, 8-oxoguanine glycosylase (OGG1) and Endonuclease III 
(EndoIII), had significantly reduced mtDNA oxidative damage, apoptosis, and cell death [11–13]. In a 
recent study, mitochondrial targeted OGG1 attenuated the acute increases in lung permeability and 
inflammation in lungs of intact mice ventilated with high peak inflation pressures (PIP) [14]. Since the 
activity of OGG1 repairs oxidant damaged purines, we investigated whether EndoIII, which repairs 
oxidized pyrimidines, would have the same protective effect in intact animals. We found that EndoIII 
had similar beneficial effects on lung permeability, inflammation and survival in high PIP ventilated 
mice as did OGG1 treatment with only minor quantitative differences. 

2. Experimental Section  

All experimental protocols were approved by the Institutional Animal Care and Use Committee of 
the University of South Alabama, College of Medicine. Anesthetized mice were euthanized by 
exsanguination at the time of flushing blood out from the lung. 
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2.1. Fusion Protein Constructs  

Codon optimized constructs were placed in plasmids for expression in E. coli of fusion proteins 
containing EndoIII coupled to a TAT sequence to facilitate cellular uptake, the MTS from MnSOD, a 
hemaglutin (HA) tag for immunological localization and a histidine tail as previously described [15]. 
Liquid cultures of bacterial cells transfected with plasmids containing the constructs were grown to an 
OD60 = 0.6 and induced with IPTG for 3 h. Bacteria were pelleted by centrifugation and resuspended 
in buffer A (20 mM Tris-HCl pH 8.0, 500 mM NaCl, 1 × protein inhibitor cocktail EDTA-free (EMD 
Millipore, Billerica, MA, USA), 100 mM PMSF and 5 mM imidazole). Bacteria were lysed by 
sonication with a Branson Sonifier 250. After sonication, bacterial lysates were spun in a Beckman 
Ultracentrifuge for 20 min at 105 × g. After centrifugation, cleared lysates were incubated with  
Ni-NTA-agarose. The Ni-NTA-agarose was placed in a column and washed with several volumes of 
wash buffer (Buffer A containing 30 mM imidazole). The bound protein was eluted from the column 
with elution buffer (buffer A containing 500 mM imidazole) and purity of the eluted protein was 
assessed using SDS-PAGE. All reagents for fusion protein production were obtained from Sigma-
Aldrich (St. Louis, MO, USA) unless otherwise indicated. Previous studies have established that the 
EndoIII fusion construct localizes almost exclusively in the mitochondrial subcellular fraction with 
little or no detectable accumulation in nucleus or cytosol [16]. 

2.2. Treatment with mt-Targeted EndoIII 

Approximately 24 h before ventilation, C57BL/6 male mice (Charles River, Wilmington, MA, 
USA), weighing 20.2–41.9 g (25.7 ± 4.0 g), were anesthetized with an intraperitoneal injection of 
Ketamine (90 mg/kg) and pentobarbital sodium (25 mg/kg). The left jugular vein was exposed, and the 
mice infused I.V. with fusion protein constructs containing EndoIII (70 µg) diluted in PBS to 30 μL. 
Untreated mice were injected with PBS only. After bleeding stopped, the incision was sutured and the 
mice were allowed to recover. 

2.3. Experimental Protocols 

Ventilation protocols were designed to produce three levels of severity of lung injury ranging from 
minimal to very severe. Mice were anesthetized with an intraperitoneal injection of ketamine  
(90 mg/kg) and pentobarbital sodium (25 mg/kg). The trachea was cannulated, and the mice were 
ventilated with 100% oxygen using a Harvard rodent ventilator (model No. 683: Harvard, South 
Natick, MA, USA). Mice received either no ventilation (No Vent., n = 5), ventilation for 1 h with 
either 10 cmH2O PIP (PIP10 × 1 h Vent., n = 5), 40 cmH2O PIP ventilation only (PIP40 × 1 h Vent.,  
n = 5), 40 cmH2O PIP ventilation with EndoIII (PIP40 × 1 h + EndoIII, n = 5), 2 h ventilation with 40 
cmH2O PIP only (PIP40 × 2 h Vent., n = 5), 2 h ventilation with 40 cmH2O PIP after EndoIII  
(PIP40 × 2 h + EndoIII, n = 6), 2 h ventilation with 50 cmH2O PIP only (PIP50 × 2 h Vent., n = 5), or 
2 h ventilation with 50 cmH2O PIP after EndoIII (PIP50 × 2 h + EndoIII, n = 5). The approximate tidal 
volumes used were 0.3 mL (12 mL/kg) for the 10 cmH2O PIP group; 0.8 mL (32 mL/kg) for the  
40 cmH2O PIP groups, and 0.95 mL (36 mL/kg) for the 50 cmH2O PIP groups [17,18]. After the 
ventilation period, mice were injected with 50 IU heparin into the peritoneal space, blood was 
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collected by cardiac puncture of the left ventricle and blood gases were determined using a Radiometer 
America (Westlake, OH, USA) ABL5 blood gas machine. Ventilation rates were decreased during 
high PIP ventilation compared to low PIP ventilation groups. However, this reduction was not 
sufficient to prevent some degree of hyperventilation and hypocapnia in the high PIP ventilation 
groups. A suture was placed around the pulmonary artery and aorta and a cannula (0.86 mm ID,  
1.27 mm OD) placed in the pulmonary artery. The hilum of the right lung was tied off and the left 
ventricle was clipped. The left lung was flushed of blood with 2 mL of 10% phosphate-buffered saline 
(PBS), and bronchoalveolar lavage (BAL) was performed 2 times with 0.3 mL of saline on the left 
lung. After BAL, the left lung was harvested, minced and sonicated using a Missonex XL 2000 
Sonicator (Farmingdale, NY, USA) in 3 second bursts with 0.5 mL 10% PBS. After centrifugation to 
obtain the supernatant, the pellet dried to a constant weight for tissue dry weight. Collected blood was 
centrifuged and serum was separated. 

2.4. Western Immuno-Blot Analysis of Sub-Cellular Fusion Protein Localization 

Sub-cellular fractions were prepared from lung homogenates as described previously [16]. Lung 
tissue (1 g) was homogenized in a glass homogenizer with a Teflon pestle eight times using 6 mL of 
homogenization buffer (0.25 M sucrose, 20 mM Hepes-NaOH pH 7.4, and 1 mM EDTA). Protease 
inhibitor cocktail (Sigma-Aldrich) was added to all isolation buffers. The homogenate was filtered 
through 70 μm mesh (BD Biosciences, Bedford, MA, USA) and centrifuged on a cushion (5 mL) 
containing 0.35 M sucrose, 20 mM Hepes-NaOH pH 7.4, and 1 mM EDTA at 700 g for 10 min at  
4 °C. The fraction around and above the interphase was collected as crude mitochondria and reserved 
for mitochondrial isolation. The nuclear pellet was suspended in 3 mL of nuclear isolation buffer  
(0.25 M sucrose, 20 mM Hepes-NaOH pH 7.4, 25 mM KCl and 5 mM MgCl2) and purified on 3 mL 
cushion containing 0.8 M sucrose, 20 mM Hepes-NaOH pH 7.4, 25 mM KCl and 5 mM MgCl2 at 
3,000 g for 15 min at 4 °C. The nuclear pellet so obtained was washed with nuclear isolation buffer 
and centrifuged at 1,000 g for 10 min. The pellet containing purified nuclei was suspended in 300 μL 
of RIPA buffer (Cell Signaling Technology, Danvers, MA, USA), incubated for 30 min on ice, and 
centrifuged at 18,000 g for 15 min. The supernatant was designated as the “nuclear fraction.” The 
crude mitochondrial fraction, collected as described above, was centrifuged at 18,000 g for 20 min to 
pellet mitochondria, which were suspended in 2 mL of mitochondrial isolation buffer (0.2 M mannitol, 
50 mM sucrose, 20 mM Hepes-NaOH pH 7.4, and 1 mM EDTA) and centrifuged under the same 
conditions. This supernatant was designated as the cytosolic fraction, while the pellet containing 
mitochondria was suspended in 300 μL of RIPA buffer (Cell Signaling Technology), incubated for  
30 min on ice and centrifuged at 18,000 g for 15 min. This latter supernatant was designated as the 
mitochondrial fraction. Cytosolic, nuclear and mitochondrial fractions were subjected to Western 
immunoblot analysis for specific markers and for HA-tagged fusion protein constructs. 

Western blot analyses were performed as described earlier using antibodies against the HA tag 
(Sigma-Aldrich) to determine sub-cellular distribution of the fusion proteins [16]. The mitochondrial 
fraction was characterized using an antibody (Sigma-Aldrich) against the cytoplasmic loop of the 
voltage-dependent anion channel (VDAC, porin-1, Sigma-Aldrich), the pore forming unit in the outer 
mitochondrial membrane which serves as an adenine nucleotide translocator. The nuclear fraction was 
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characterized using an antibody against Lamin B1 (Santa Cruz Biotechnology, Santa Cruz, CA, USA) 
a component of the nuclear envelope. An antibody against β-actin was used as a loading control for 
total lysate and cytosolic fractions. 

2.5. Measurement of Albumin Plasma Equivalents 

Albumin quantities in BAL, supernatant of homogenized left lung tissue and serum were measured 
by using an ELISA kit (Bethyl Labs, Montgomery, TX, USA) for mouse albumin. The left lung was 
minced and sonicated in 500 µL PBS using a Missonex XL 2000 sonicator. Supernatant samples were 
removed and the left lung tissue desiccated at 80 °C for 5 days to obtain a stable dry weight. Initial 
dilutions for ELISA were: 1 × 106 for serum, 4 × 103 for BAL, and 6 × 103 for tissue supernatant. 
Serum samples were further diluted by 1:3, then 200 µL of diluted serum, BAL and tissue supernatant 
samples were each spotted and followed by three successive 1:2 dilutions. Four wells each of PBS 
blank and positive albumin controls in the sample concentration range were also included. Then  
100 µL of anti-albumin detection antibody was added to each well and the plate incubated for 1 hour at 
room temperature on an orbital shaker. Contents were discarded and the plate washed 4 times. Next, 
100 µL of horseradish peroxidase solution was added and the plate incubated for 30 min at room 
temperature on an orbital shaker. This was followed by 100 µL of colorimetric substrate incubated for 
30 min followed by 100 µL of the stop solution supplied in the ELISA kit. The resultant yellow color 
was read at 450 nm with a Dynex MXR plate reader (Dynex Technologies, Chantilly, VA, USA). 
Sample albumin concentrations were calculated from each serial dilution and checked for consistency. 
Mouse albumin standard was mixed with PBS to obtain an initial concentration of 0.9 µg/mL. Two 
standard curves were determined for each plate using seven 1:3 dilutions with final volumes of 200 µL 
per well and expressed using a four parameter curve fit. Details of plate layouts are shown in an online 
supplement. Residual albumin in the tissue supernatant was assumed to represent primarily interstitial 
albumin and alveolar compartment albumin was assumed to be largely removed by the BAL 
procedure. Total albumin masses (QA) were calculated for tissue (QA,tiss), alveolar spaces (QA,alv) 
and total extravascular albumin (QA,total = QA,tiss + QA,alv). These were normalized to left lung 
tissue dry weight (DLW) and plasma albumin concentration (CA,pl) and expressed as plasma 
equivalents (PE) in microliters/micrograms, where: 

PE = QA/CA,pl/DLW (1) 

Use of this normalization technique corrects for differences in plasma albumin concentration and 
lung weights between experiments. The sensitivity of this kit was 20 ng/mL. Lung vascular injury 
was evaluated using increases in the total, BAL, and tissue endogenous albumin plasma equivalents 
in each group. 

2.6. Lung Wet-To-Dry Weight Ratios 

The right lower lobe was weighed (W) and desiccated at 80 °C for 1 week to obtain a stable dry 
weight (D) for calculation of the wet-to-dry weight ratio (W/D ratio). 
  



Pharmaceuticals 2014, 7 899 
 

 

2.7. Measurement of MIP-2 and IL-6 

MIP-2 and IL-6 in bronchoalveolar lavage fluid (BALF) were measured using mouse ELISA kits 
(R&D Systems). The sensitivity of these kits were 1 pg/mL for MIP-2 and 2.5 pg/mL for IL-6. 

2.8. Analysis of mtDNA Content and Oxidative Damage 

Immediately after perfusion, lungs were snap-frozen in liquid nitrogen and saved for determination 
of oxidative mtDNA damage. Total DNA was isolated from lung samples and powdered with a mortar 
and pestle using previously described methods [19,20]. Purified DNA samples were digested with 
PpuMI and AhdI restriction enzymes (New England Biolabs) and used for further analyses. 

To measure oxidative damage to the mitochondrial genome, a quantitative Southern blot analysis 
was performed. In brief, digested DNA samples were precipitated, dissolved in TE buffer and 
precisely quantified on the Hoefer DyNA Quant 200 Fluorometer (Hoefer, San Francisco, CA, USA) 
using Hoechst 33258 dye. To reveal oxidative base modifications, DNA was treated with 
formamidopyrimidine glycosylase (Fpg, New England Biolabs), a bacterial DNA repair enzyme that 
cleaves DNA at sites of oxidized purines, thereby creating single-strand breaks. Subsequently,  
Fpg-treated and untreated samples were incubated with 0.1 N NaOH for 15 min at 37 °C, mixed with 
loading dye and resolved on 0.6% agarose alkaline gel. After electrophoresis, DNA was vacuum 
transferred to a nylon membrane (Roche Diagnostics, Mannheim, Germany) and hybridized with a 
PCR-generated probe to the corresponding region of mtDNA. The mtDNA probe, labeled with a  
DIG-labeling kit (Roche Diagnostics), was generated using rat mtDNA sequence as template and  
the following primers: 5′-CCCTACTTACTGGCTTCAATCTAC-3′ for the sense strand and 5′-
CATACCATACCTATATATCCGAAGG-3′ for the anti-sense strand. The 1016- bp product was 
hybridized with a 13.6-kb fragment of rat mtDNA obtained after PpuMI and AhdI digestion. 
Hybridization bands were detected with Amersham Hyperfilm ECL (GE Healthcare, Piscataway, NJ, 
USA) and a Gel Logic 1500 Imaging System (Kodak, Rochester, NY, USA). Changes in the 
equilibrium lesion density of Fpg-detectable base oxidation lesions within each experimental group 
were calculated as negative ln of the quotient of hybridization intensities in Fpg-treated and non-Fpg 
bands and normalized to 10 kb (3) and are independent of the total amount of mtDNA. 

2.9. Statistical Analysis 

All values are expressed as mean ± SE. One-way analysis of variance (ANOVA) with repeated 
measures followed by a Student-Newman-Keuls post-test was used. Significant differences were 
determined where p < 0.05. 

3. Results and Discussion 

3.1. Ventilation Parameters and Arterial Blood Gasses 

Respiratory rate was reduced in the groups ventilated with higher PIP levels to maintain minute 
ventilation near normal levels, but hypocapnia was present in the high PIP ventilation groups 
indicating a level of hyperventilation. Table 1 shows the ventilation times, rates and peak inflation 
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pressures (PIP) as well as blood gases obtained from the left ventricle at the end of the experiments. 
PaCO2 values were significantly lower in the EndoIII treated groups ventilated at 40 and 50 cmH2O PIP, 
compared to non-ventilated mice although a significant alkalosis was not present. PaO2 values were 
significantly greater in the 40 cmH2O PIP groups ventilated for 1 h compared to the non-ventilated group.  

Table 1. Ventilation parameters and arterial blood gasses for all groups. 

Treatment 
PIP 

(cmH2O) 
Vent. Time 

(min) 
PaO2 

(mmHg) 
PaCO2 

(mmHg) 
pH 

Vent. Rate 
Breaths/min 

NV 10 11.2 ± 1.2 211 ± 11 36.0 ± 1.2 7.28 ± 0.01 110 
Low PIP 10 60 293 ± 7 34.5 ± 2.4 7.33 ± 0.01 110 ± 2 

PIP40 40 60 466 ± 14* 27.6 ± 1.1 7.35 ± 0.01 28.3 ± 0.5 
PIP40 EndoIII 40 60 457 ± 12* 22.0 ± 1.6* 7.40 ± 0.02 30.4 ± O.2 

PIP40 40 120 344 ± 4 26.3 ± 0.5 7.36 ± 0.01 28.3 ± 0.3 
PIP40 EndoIII 40 120 478 ± 5* 21.7 ± 1.0** 7.35 ± 0.04 31.8 ± 0.2 

PIP50 50 96.6 ± 7 NM NM NM 25.6 ± 0.2 
PIP50 EndoIII 50 120 335 ± 11 17.2 ± 1.3** 7.29 ± 0.08 26.6 ± 1.0 
*p < 0.05 vs. NV group; **p < 0.05 vs. NV and Low PIP group. Vent. = ventilation; PIP = peak inflation pressure. 

3.2. Subcellular Localization of the Fusion Protein 

Injected fusion proteins rapidly localized in lung mitochondria. Figure 1 shows a representative 
immunoblot of the HA-tagged fusion protein in the nuclear and mitochondrial fractions of lung 
homogenates in control mice and mice 1 h after injection with the fusion protein construct.  

Figure 1. Immunoblot probed for the hemaglutin (HA) tag of the fusion protein in nuclear 
and mitochondrial subcellular fractions of lungs from non-ventilated control mice (Contr) 
and mice injected with the fusion protein construct. The nuclear protein, lamin B1, and the 
mitochondrial protein, porin-1, are labeled.  
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Also indicated are the nuclear envelope protein, lamin B1, and the mitochondrial outer membrane 
protein, porin-1, in the respective subcellular fractions. The HA tag was not detected in the nuclear 
fraction but was present in the mitochondrial fraction. Some slight non-specific antibody binding also 
occurred in the control mice but was far less prominent than in the fusion-protein injected mice.  

3.3. Lung Extravascular Albumin Spaces  

The accumulation of access extravascular albumen in lung alveolar fluid and tissue were used as an 
index of vascular permeability. High PIP ventilation increased albumin leak from the lung capillaries 
in proportion to the distending pressure and the exposure time to that pressure, i.e., the ventilation 
time. Alveolar albumen indicates albumen which has leaked across both endothelial and epithelial 
layers, whereas interstitial albumin represents albumen which has leaked across the endothelium but is 
retained in the lung tissue. Figure 2 shows the total lung, alveolar, and interstitial equivalent albumin 
spaces normalized to plasma concentration for the three ventilation protocols.  

Figure 2. Albumin extravascular plasma equivalent spaces in mouse lung after ventilation 
for different times and with different peak inspiratory pressures (PIP). Shown are total 
extravascular albumin space, alveolar (BAL) albumin space, and interstitial (extravascular 
tissue albumin) space. (A) Mice received either No Ventilation (No Vent.), or 1 h  of 
ventilation with 10 cmH2O PIP (PIP10), or 40 cmH2O PIP only (PIP40), or  
40 cmH2O PIP with EndoIII (PIP40 EndoIII). (B) Mice received either no Ventilation (No 
Vent.), or 2 h of ventilation with 40 cmH2O PIP only (PIP40), or 40 cmH2O PIP with 
EndoIII (PIP40 EndoIII). (C) Mice received either no Ventilation (No Vent.), or 2 h of 
ventilation with 50 cmH2O PIP only (PIP50), or 50 cmH2O PIP with EndoIII (PIP50 
EndoIII). *p < 0.05 v s .  No Vent. group. **p < 0.05 v s .  No Vent. group and PIP10 
groups. #p < 0.05 v s .  all other groups. † All animals in the untreated PIP50 group died 
prior to 2 h.  

 

Figure 2A shows the least injurious protocols consisting of one hour of ventilation with either  
10 cmH2O PIP or 40 cmH2O PIP. In untreated animals, total extravascular albumin spaces increased 
significantly after 1 h of 40 cmH2O PIP by 2.8 -fold compared to unventilated lungs, and 2.2-fold 
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compared to the 1 h 10 cmH2O PIP ventilation group, and was significantly higher than that of other 
groups. In the EndoIII treated group, total extravascular albumin spaces increased significantly by 
some 2.1-fold compared to unventilated mice, but this increase was significantly less than that of the 
untreated 40 cmH2O PIP ventilation group. The alveolar albumin space was significantly increased in 
both groups ventilated with 40 cmH2O PIP compared to the groups receiving no ventilation, or 
ventilation with only 10 cmH2O PIP. There were no differences in the interstitial albumin spaces. 
Figure 2B indicates dramatic increases in lung albumin spaces after ventilation with 2 h of  
40 cmH2O PIP compared to unventilated mouse lungs. Total extravascular albumin space increased  
25-fold, alveolar extravascular albumin space increased 42-fold and interstitial extravascular albumin 
space increased 3.7-fold in untreated mice compared to lungs of non-ventilated mice. However, lung 
total, alveolar and interstitial extravascular albumin spaces increased by only approximately 2.5-fold in 
the EndoIII treated lungs compared to non-ventilated lungs, and these values were significantly less 
than values in the untreated group ventilated at 40 cmH2O PIP. Figure 2C shows lung extravascular 
albumin spaces after two h ventilation at 50 cmH2O PIP. Very large increases in lung total, alveolar 
and interstitial extravascular albumin spaces occurred in both the untreated and treated groups at this 
high level of PIP ventilation when compared to nonventilated lungs. These increases were highly 
significant but there were no statistical differences in albumin spaces between the untreated and 
EndoIII treated groups. However, all of the mice in the untreated 50 cmH2O PIP groups died prior to 
completing the two-hour ventilation protocol, whereas all mice in the EndoIII treated group survived 
the protocol. 

3.4. Lung Wet/Dry Weight Ratios 

The lung wet to dry weight ratio indicates the edema accumulation in the lung and is a function of 
the rate of fluid filtration across the lung capillaries. Figure 3 summarizes the lung wet/dry weight 
ratios as an indicator of lung edema in all experimental groups. There were no significant differences 
in lung wet/dry weight ratios between the groups receiving no ventilation, 1 h ventilation with  
10 cmH2O PIP or 40 cmH2O PIP without treatment, or the group ventilated for either 1 or 2 h at  
40 cmH2O PIP pretreated with EndoIII. However, 2 h of ventilation with 40 cmH2O PIP without 
EndoIII pretreatment resulted in a significant 60% increase in lung wet/dry weight ratios, as did 
ventilation for 2 h at 50 cmH2O PIP in both untreated and EndoIII treated mice. There were no 
significant differences between the two groups ventilated with 50 cmH2O PIP and the untreated group 
ventilated for 2 h at 40 cmH2O PIP. 

3.5. Bronchoalveolar Lavage Inflammatory Cytokines 

Inflammatory cytokines were measured in the bronchoalveolar lavage (BAL) fluid as an indicator 
of inflammation during mechanical injury. Interleukin-6 (IL-6) and macrophages inflammatory 
protein-2 (MIP-2) levels are correlated with inflammation and injury [21]. Both cytokines are secreted 
by macrophages, MIP-2 is chemotactic for neutrophils, and IL-6 has both pro-and anti-inflammatory 
actions. These cytokines exhibited increases that were proportional to ventilation times and peak 
airway pressures and mirrored the degree of albumen accumulation and the protective effect of the 
mitochondrial DNA repair enzyme.  
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Figure 3. Lung wet/dry weight ratios for all experimental groups. *p < 0.05 vs. No Vent., 
PIP10 ×  1 h Vent. only, PIP40 × 1 h Vent. only, PIP40 × 1 h +  EndoIII, and  
PIP40 × 2 h + EndoIII groups.  

 

Figure 4 summarizes the effect of the three levels of lung injury on BAL IL-6 and MIP-2 
concentrations. Note that these Y axis scales are logarithmic and that the range for 4B and 4C is 10 
times that of 4A. Groups ventilated for one hour at 40 cmH2O PIP showed a small but significant 
increase in BAL MIP-2 but no change in IL-6 compared to non-ventilated values. Figure 4B indicates 
that both IL-6 and MIP-2 values increased significantly in all mice ventilated for  
2 h at 40 cmH2O PIP compared to non-ventilated controls. Although cytokine levels were significantly 
increased in mice treated with EndoIII compared to non-ventilated controls, these levels were 
significantly reduced compared to untreated mice. As shown in 4C, BAL IL-6 and MIP-2 reached the 
highest levels after 2 h ventilation with 50 cmH2O PIP, but there were no significant differences 
between IL-6 or MIP-2 values in EndoIII treated and untreated mice. However, all untreated mice died 
prior to completing the two hour ventilation protocol, whereas all EndoIII treated mice survived the 
entire 2 h. 
  



Pharmaceuticals 2014, 7 904 
 

 

Figure 4. Interleukin-6 (IL-6) and macrophage inflammatory protein-2 (MIP-2) 
concentrations in bronchoalveolar lavage (BAL) fluid obtained from lungs of mice in all 
ventilation protocols shown on log scales. (4A) Groups received either no ventilation (No 
Vent.), or ventilation for 1 hour without treatment at 10 cmH2O PIP (PIP10) or ventilation 
for 1 hour with 40 cmH2O PIP (PIP40) with and without pretreatment with EndoIII. (4B) 
Groups received either no ventilation (No Vent.), or ventilation for 2 h with 40 cmH2O PIP 
(PIP40) with and without pretreatment with EndoIII. (4C) Groups received either no 
ventilation (No Vent.), or ventilation for 2 h with 50 cmH2O PIP (PIP50) with and without 
pretreatment with EndoIII. *p < 0.05 vs. No Vent. group. #p < 0.05 vs. all other groups.  
† All animals in the untreated PIP50 group died prior to 2 h.  

 

3.6. Survival During 2 h Ventilation at 50 cmH2O PIP 

A Kaplan-Meier survival plot for animals ventilated at 50 cmH2O PIP is shown in Figure 5. 
Approximately half the untreated animals died within 1 ½ h after starting ventilation with 50 cmH2O 
PIP, whereas all of the animals pretreated with EndoIII survived the 2 h of ventilation. 

3.7. Lung Glutathione Concentrations 

Lung glutathione levels were measured to evaluate the redox status of the lung. As indicated by 
Figure 6A, the total lung tissue glutathione pool (GSH + GSSG) was significantly reduced in untreated 
mice ventilated at 40 cmH2O or 50 cmH2O PIP for 2 h compared to nonventilated controls. However, 
pretreatment with EndoIII prevented the decrease in total GSH after 2 h ventilation with 40 cmH2O but 
not after 2 h ventilation with 50 cmH2O. There was no significant difference between the EndoIII 
treated group ventilated for 2 h at 40 cmH2O and the nonventilated control group. Figure 6B indicates 
that the GSH/GSSG ratio was also significantly reduced in the group ventilated for 2 h at 40 cmH2O 
PIP compared to nonventilated controls, but EndoIII prevented the decrease caused by ventilation with 
2 h at 40 cmH2O PIP treated group and this value was not significantly different from the  
non-ventilated group. However, the GSH/GSSG ratios did not significantly decrease in either the 
treated and untreated groups ventilated 2 h with 50 cmH2O PIP, as these values were not significantly 
different from the nonventilated controls. Thus, EndoIII treatment preserved the glutathione 
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antioxidant system after ventilation for 2 h with 40 cmH2O PIP but not after ventilation for 2 h at  
50 cmH2O PIP. 

Figure 5. Kaplan-Meier survival plot for animals ventilated at 50 cmH2O PIP for 2 h 
showing EndoIII treated (dashed line) and untreated (solid line) groups.  

 

Figure 6. Lung tissue glutathione concentrations in groups ventilated for 2 h with  
40 cmH2 O PIP, and 2 h with 50 cmH2 O PIP. Shown are (6A) total glutathione pool 
(GSH+GSSG) and (6B) the GSH/GSSG ratios. *p < 0.05 vs. No Vent. group.  
† All animals in the untreated PIP50 group died prior to 2 h.  

 

3.8. Lung Mitochondrial DNA Damage 

The amount of mtDNA damage was measured in the non-ventilated lungs and lungs of EndoIII 
treated and untreated groups ventilated for 2 h at 40 cmH2O PIP. Groups in this ventilation protocol 
were selected because they demonstrated the greatest differential effect of EndoIII on injury. Figure 7 
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summarizes the Southern blot analysis of Fpg-detectable oxidative base damage. Only the  
non-ventilated group and groups ventilated for 2 h at 40 cmH2O PIP were analyzed because these 
groups demonstrated the greatest differential effect of the targeted mtDNA repair enzymes on injury. 
The fraction of intact mitochondrial DNA (13,065 bp) after Fpg treatment in lungs ventilated at 40 
cmH2O PIP was significantly reduced in untreated lungs compared to non-ventilated controls and mice 
treated with mitochondrial-targeted EndoIII.  

Figure 7. Southern blot analysis of mitochondrial DNA in lung tissue in groups 
ventilated for 2 h with 40 cmH2O PIP. Samples were treated with alkali to reveal mtDNA 
strand breaks and alkali + Fpg to indicate base damage. Bar graph summarizes mean 
fractions of intact vs. total mitochondrial DNA in lungs of non-ventilated controls  
(No Vent.), and ventilated mice either untreated (PIP40 × 2 h Vent.) or EndoIII treated  
(PIP40 × 2 h + EndoIII) after ventilation for 2 h at 40 cmH2O PIP. *p < 0.05 vs. No 
Vent. group.  

 

4. Discussion 

During the process of oxidative phosphorylation, mitochondria leak superoxide anions from the 
electron transport pathway at Complex 1, 2 and 3 [7]. Although superoxide generated is converted to 
H2O2 by manganese superoxide dismutase, the GSH/GSSG ratio is lower in mitochondria compared to 
that in the cytoplasm [22]. Excessive oxidant stress can overwhelm the antioxidants and damage 
mitochondrial DNA, and the mitochondrial DNA is some 10 to 100 times more susceptible to 
oxidative damage than nuclear DNA [10]. Damage to mtDNA can result in a vicious cycle of positive 
feedback whereby mtDNA damage produces more superoxide, resulting in activation of NADPH 
oxidases, progressively more mtDNA damage with ultimate mitochondrial failure and cell death [7,9]. 
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Oxidative mtDNA damage under baseline conditions is rapidly repaired through the base excision 
repair (BER) pathway [23]. Oxidized purines are excised by 8-oxoguanine DNA glycosylase (OGG1) 
and oxidized pyrimidines by endonuclease III-like protein 1 in mammalian cells, or endonucleases in 
bacteria. After base removal by these glycosylases, the abasic sites are processed by Ref-1/APE1 and a 
new base inserted. This is followed by re-attachment of the cut strands by a DNA ligase [23].  

In previous studies of oxidant challenged pulmonary endothelial cells and other cell types, 
pretreatment with the mitochondrial targeted DNA repair enzymes, 8-oxoguanine glycosylase (OGG1) 
and Endonuclease III (EndoIII) significantly reduced mtDNA oxidative damage, apoptosis, and cell 
death [11–13]. These repair enzymes were targeted to mitochondria by a fusion protein which consists 
of the TAT sequence from HIV to facilitate cellular uptake, the mitochondrial targeting sequence from 
Mn-SOD, and either of the DNA repair enzymes, OGG1 or EndoIII [12,24]. More recent studies 
demonstrated a protective effect of mitochondrial targeted repair enzymes against oxidant induced 
lung injury caused by direct oxidant stress [16], high peak inflation pressures [14] and intra-tracheal 
Pseudomonas aeruginosa [25]. 

In our previous VILI study, we demonstrated that OGG1 pretreatment protected against VILI and 
death in intact mice [14]. We show here that EndoIII, which replaces oxidized pyrimidines rather than 
oxidized purines, had an almost identical protective effect against mechanical lung injury. There were 
small quantitative differences between OGG1 and EndoIII in the measured variables. In particular, the 
BAL cytokine levels in EndoIII treated animals were slightly greater than observed in OGG1 treated 
animals but still dramatically lower than those in untreated animals ventilated for 2 h with 40 cmH2O 
PIP. The present study shows that the fusion protein localized in the mitochondria of lung tissue and 
significantly protected against mechanical induced microvascular protein leakage. During minimal 
lung damage (40 cmH2O PIP × 1 h), an increased extravascular lung albumin was detected even 
though the wet/dry weight ratio did not increase significantly. The small extravascular albumin 
increase was significantly reduced after EndoIII treatment. The most dramatic protection occurred with 
moderately severe vascular injury (40 cmH2O PIP × 2 h), where the 25-fold increase in extravascular 
albumin was almost completely prevented by EndoIII treatment. As with OGG1 treatment, 
pretreatment with EndoIII did not significantly protect against devastating lung injury during 
ventilation with 50 cmH2O PIP for 2 h. However, as was observed with OGG1 treatment, all of the 
EndoIII treated animals survived the 2 h ventilation at 50 cmH2O PIP, whereas none of the untreated 
animals survived.  

Similar to OGG1 treatment, the EndoIII significantly protected against the increase in inflammatory 
cytokines, depletion of lung tissue GSH, the decrease in the GSH/GSSG ratio and the increase in 
mtDNA degradation [14]. These results indicate a significant attenuation of the overall inflammatory 
response to mechanical injury and have significant implications for the clinical intensive care 
management of patients with ARDS. Although reduction of tidal volumes during mechanical 
ventilation has significantly improved survival, current tidal volume settings are minimal and cannot 
be further reduced [1,26]. This necessitates a pharmacologic approach to further preserve life during 
this critical injury. The improved survival offered by EndoIII or OGG1 pretreatment also has 
implications for the multiple organ failure syndrome (MODS) which persists as a major source of 
fatalities in these patients, with a mortality rate of almost 70% [27]. Since the EndoIII fusion protein 
was injected systemically, we can assume that the targeted enzymes reached the mitochondria of other 
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organs. Preservation of cardiac output and other vital functions may then have contributed to the 
increased survival, although EndoIII deposition in peripheral organs or organ function were not 
measured in this study. However, mitochondrial targeted antioxidants were recently shown to protect 
against systemic inflammation and MODS [28]. 

Although it is clear that supplementation of mitochondrial repair enzymes has a dramatic protective 
effect against a variety of insults that induce oxidant stress, the mechanism of protection is unclear. 
Lung vascular injury was accompanied by an increased oxidative base damage in the mitochondrial 
genome, and involvement of reactive oxygen and nitrogen species in VILI is well documented [29]. 
Rapid production of ROS in response to cyclical stretch has been demonstrated for both endothelial 
cells and lung epithelial cells, with mitochondrial ROS generated in endothelium within min [30,31]. 
One possible mechanism of injury is that mtDNA damage impairs mtDNA transcription and 
results in deficiencies in oxidative phosphorylation proteins. This could result in increased ROS 
production causing a progressive positive feed-back cycle of damage responsible for cell death and 
dysfunction [7,9]. However, the protective effect in the intact lung experiments was much more rapid 
than protein transcription and similar whether purine or pyrimidine repair enzymes were 
supplemented in mitochondria. Other possible explanations are that there is a critical threshold for 
base damage and that a reduction in the critical number of either type of oxidized base prevents 
mitochondrial failure [24]. Still another possibility is that the ligase activities of both OGG1 and 
EndoIII for repair of the sugar-phosphate backbone are more significant for protection than the 
replacement of base lesions [24]. Additional mechanisms of protection may result from direct 
signaling pathways which may be rapidly activated independently of the base repair activities of these 
enzymes. Direct links of the mtDNA complex to the cytoskeleton via trans-mitochondrial membrane 
spanning non-muscle myosin and actin filaments may directly affect vascular permeability [32]. 
Previous studies showed that inhibition of non-muscle myosin light chain kinase attenuated increases 
in lung vascular permeability resulting from a variety of insults, including VILI [33–35]. Other 
protective mechanisms include activation of RAS family GTPases with phosphorylation of the 
mitogen activated kinases, MEK1,2/ERK 1,2 [36]. Phosphatidylinositol 3-kinases also have RAS 
interaction sites, and pharmacologic inhibition or genetic deletion of phosphatidylinositol 3-kinase 
markedly attenuates VILI [37–39]. 

5. Conclusions 

In summary, mitochondrial targeted EndoIII attenuated increased vascular permeability, 
inflammatory cytokine responses, oxidative mtDNA damage, and oxidative stress in the lungs after 
high PIP ventilation. In the presence of catastrophic lung damage, the EndoIII fusion protein also 
increased survival during high PIP ventilation. These mitochondrial-targeted DNA repair proteins 
could have potential clinical application during mechanical ventilation of ARDS patients to protect 
against VILI, as well as multiple organ failure. 
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