
Pharmaceuticals 2014, 7, 1028-1048; doi:10.3390/ph7121028 
 

pharmaceuticals 
ISSN 1424-8247 

www.mdpi.com/journal/pharmaceuticals 

Review 

Role of Microglial M1/M2 Polarization in Relapse and 
Remission of Psychiatric Disorders and Diseases 

Yutaka Nakagawa 1 and Kenji Chiba 2,* 

1 Research Strategy and Planning Department, Research Division, Mitsubishi Tanabe Pharma 

Corporation, Yokohama 227-0033, Japan; E-Mail: Nakagawa.Yutaka@mf.mt-pharma.co.jp 
2 Advanced Medical Research Laboratories, Research Division, Mitsubishi Tanabe Pharma 

Corporation, Yokohama 227-0033, Japan 

* Author to whom correspondence should be addressed; E-Mail: Chiba.Kenji@mk.mt-pharma.co.jp; 

Tel.: +81-45-963-3801; Fax: +81-45-963-3992. 

External Editor: Derek J. McPhee 

Received: 4 September 2014; in revised form: 14 November 2014 / Accepted: 14 November 2014 /  

Published: 25 November 2014 

 

Abstract: Psychiatric disorders such as schizophrenia and major depressive disorder were 

thought to be caused by neurotransmitter abnormalities. Patients with these disorders often 

experience relapse and remission; however the underlying molecular mechanisms of relapse 

and remission still remain unclear. Recent advanced immunological analyses have revealed 

that M1/M2 polarization of macrophages plays an important role in controlling the balance 

between promotion and suppression in inflammation. Microglial cells share certain 

characteristics with macrophages and contribute to immune-surveillance in the central 

nervous system (CNS). In this review, we summarize immunoregulatory functions of 

microglia and discuss a possible role of microglial M1/M2 polarization in relapse and 

remission of psychiatric disorders and diseases. M1 polarized microglia can produce  

pro-inflammatory cytokines, reactive oxygen species, and nitric oxide, suggesting that these 

molecules contribute to dysfunction of neural network in the CNS. Alternatively, M2 

polarized microglia express cytokines and receptors that are implicated in inhibiting 

inflammation and restoring homeostasis. Based on these aspects, we propose a possibility 

that M1 and M2 microglia are related to relapse and remission, respectively in psychiatric 

disorders and diseases. Consequently, a target molecule skewing M2 polarization of 

microglia may provide beneficial therapies for these disorders and diseases in the CNS. 
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1. Introduction 

Abnormalities of homeostasis lead to dysfunction in our body’s orchestration and subsequently 

induce development and relapse of disorders and diseases. The mechanisms of improvement, remission, 

and recovery of disorders and diseases are also based on orchestrated systems. Multiple sclerosis (MS) 

is the most common immune-mediated demyelinating disease in the central nervous system (CNS) [1,2]. 

There are approximately two million MS patients and two-third of the patients develop relapsing 

remitting MS, in which neurologic symptoms occur followed by partial or complete recovery [1,2]. 

Pathologically, the most obvious abnormalities of the CNS are characterized as demyelination of white 

matter associated with inflammatory cells, including T cells, B cells, and macrophages [3]. Many studies 

have revealed that T cells from MS patients preferentially target myelin antigens such as myelin basic 

protein, myelin oligodendrocyte glycoprotein, and myelin proteolipid protein [4]. Recent studies have 

indicated that myelin antigen-specific, interleukin (IL)-17-expressing CD4 T cells (Th17 cells) infiltrate 

into the CNS beyond blood brain barrier (BBB) and play a pathogenic role in MS [5,6]. Other studies 

have suggested that α4β1 integrin (VLA4), osteopontin, and αB crystallin play a key role in relapse and 

remission of MS [7]. An adhesion molecule, α4β1 integrin mediates T cell migration from the blood to 

CNS. Osteopontin binds to α4β1 integrin and stimulates pro-inflammatory cytokine production, whereas 

αB crystallin inhibits neuroinflammation in the CNS. Furthermore, it has been reported that imbalance 

of M1/M2 macrophages is involved in relapse of experimental autoimmune encephalomyelitis (EAE),  

a model for MS, and that M2 macrophages may contribute to amelioration of EAE [8]. 

It has been widely accepted that psychiatric disorders such as schizophrenia and major depressive 

disorder are caused by neurotransmitter abnormalities [9]. Patients with these disorders often experience 

relapse and remission as seen in MS patients. However, the underlying molecular mechanisms of relapse 

and remission still remain unclear. Recent advanced immunological analyses have revealed that M1/M2 

polarization of macrophages plays an important role in controlling the balance between promotion and 

suppression in inflammation [8]. Microglial cells share certain characteristics with macrophages and 

contribute to immune-surveillance in the CNS [10,11]. Classically activated microglia (M1 polarized 

microglia) can produce pro-inflammatory cytokines, reactive oxygen species (ROS), and nitric oxide 

(NO), implying their contribution to neural network dysfunction in the CNS. On the other hand, 

alternatively activated microglia (M2 polarized microglia) can express cytokines and receptors that are 

implicated in inhibiting inflammation and restoring homeostasis. Several studies suggest that 

neuroinflammation is associated with psychiatric disorder and disease symptoms [12–14]; however,  

no effective explanation is proposed for the underlying molecular mechanisms of relapse and remission. 

In this review, we summarize current understanding of microglial immunoregulatory functions and 

provide a possibility that M1 and M2 microglia are related to relapse and remission, respectively,  

in psychiatric disorders and diseases. 
  



Pharmaceuticals 2014, 7 1030 

 

 

2. M1/M2 Polarization of Macrophages and Microglia  

Under tissue damage or infection conditions, macrophages originate from tissue-resident precursors 

or circulating monocytes that migrate to inflammation sites, whereas “patrolling” monocytes are later 

recruited to inflamed sites to resolve inflammatory process [15–17]. The diversity and plasticity of 

macrophages lead to the identification of several functional polarization states, which are ultimately 

dependent on the macrophage extracellular environment. Pathogen-associated molecular patterns 

(PAMPS) or damage-associated molecular patterns (DAMPS) can stimulate resting macrophages via 

toll-like receptors (TLRs) or ATP receptors, respectively [18]. Subsequently, the classical activation of 

resting macrophages leads to M1 macrophages in the presence of lipopolysaccharide (LPS) and type 1 

helper T cell (Th1)-derived cytokine, interferon (IFN)-γ [18]. M1 macrophages can produce  

pro-inflammatory cytokines/mediators such as IL-1β, IL-6, tumor necrosis factor (TNF)-α,  

CC-chemokine ligand 2 (CCL2), ROS, and NO, and play a central role in host defense against bacterial 

and viral infections [19]. On the other hand, it has been demonstrated that type 2 helper T cell  

(Th2)-derived cytokines, IL-4 and IL-13, can induce alternative activation of macrophages to M2 

(particularly ‘M2a’) phenotype [19]. M2a macrophages express arginase-1 (Arg-1), Ym1, CD36, 

CD163, and CD206 on the cell surface and produce anti-inflammatory cytokine, IL-10 which can 

suppress M1 macrophage-mediated inflammation [18,19]. Although there are known to be three 

different phenotypes of M2 macrophages (M2a, M2b, and M2c), these M2 phenotypes are thought to 

reflect a spectrum of plastic functional conditions rather than a set of discrete activation status [20]. 

M1 and M2 macrophages can be converted into each other in their specific microenvironment [21]. 

It has been noted that CCL2 and IL-6 are released in neurodegenerative and neuroinflammatory 

conditions and can induce M2 polarization of macrophages [22]. Many key transcription factors such as 

signal transducer and activator of transcription (STATs), interferon-regulatory factor (IRFs), nuclear 

factor (NF)-κB, activator protein 1 (AP1), peroxisome proliferator-activated receptor (PPAR)-γ, and  

c-AMP-responsive element-binding protein (CREB) are involved in macrophage polarization and these 

factors interact with each other, regulating macrophages to a certain phenotype in various inflammatory 

diseases [23]. Consequently, M1 and M2 macrophages represent two terminals of the full spectrum of 

macrophage activation. Transformation of different phenotypes of macrophages regulates the initiation, 

development, and cessation of inflammatory diseases. 

Microglial cells express several macrophage-associated markers, such as CD11b, CD14, CX3C 

chemokine receptor 1 (CX3CR1, fractalkine receptor), ionized calcium-binding adaptor molecule-1 

(Iba-1), and F4/80 (also known as EMR1) [10,13]. Unlike neurons, astrocytes, or oligodendrocytes, 

microglial cells are shown to be derived from hematopoietic stem cells in the yolk sac and act as primary 

responding cells for pathogen infections and injuries in the CNS [10,13]. It is likely that microglia 

contribute to maintenance of tissue homeostasis and act as sentinels of infection and injury to participate 

in both innate and adaptive immune responses in the CNS [10,11,13]. Like macrophages, microglial 

cells polarize to M1 phenotype by stimulation with LPS and IFN-γ and can produce pro-inflammatory 

cytokines/mediators such as IL-1β, IL-6, TNF-α, CCL2, ROS, and NO [10,13]. On the other hand, it has 

been reported that intracerebral injection of IL-4/IL-13 up-regulates expressions of Arg-1, Ym1, and 

CD36 in activated microglia and reduces TNF-α levels in the CNS of mice [24]. Thus, IL-4 and IL-13 

can induce alternative activation and polarization of M2 (‘M2a’) microglia which express M2 markers 
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and anti-inflammatory cytokine, IL-10 [8,13,18]. Based on these evidences, there is a possibility that 

M1/M2 polarization of microglia plays an important role in controlling the balance between promotion 

and resolution in neuroinflammation in the CNS (Figure 1). 

Figure 1. M1/M2 polarization of microglia and their immunoregulatory functions. Resting 

microglial cells are stimulated with PAMPS or DAMPS via TLR or ATP receptors. In the 

presence of LPS and IFN-γ, microglial cells polarize to M1 phenotype and produce  

pro-inflammatory cytokines/mediators including IL-1β, IL-6, TNF-α, CCL2, ROS, and NO. 

In contrast, IL-4 and IL-13 induce alternative activation of microglia to M2 (‘M2a’) 

phenotype which down-regulates M1 functions by anti-inflammatory cytokine, IL-10. 

 

The concept of differential M1 and M2 polarization of macrophages was presumed from the classical 

dichotomous activation program of Th1 and Th2 cells. However, it should be noted that the views of 

classifying macrophages or microglial cells in either M1 or M2 polarized state might be an 

oversimplification, because macrophages and microglial cells show a high-degree of diversity and 

plasticity [20,25]. Consequently, further functional studies are required to understand the immunological 

properties of macrophages and microglial cells under normal and pathological circumstances with regard 

to the M1/M2 concept. 

3. Schizophrenia 

Schizophrenia affects approximately 1% of the population and the onset of the disorder is typically 

in late adolescence or early adulthood [26]. The symptoms of schizophrenia are commonly divided into 

three major categories, positive, negative, and cognitive [9]. Impaired social cognition is a defining 

feature of schizophrenia, although it is observed in many psychiatric disorders [27]. Social cognition is 

considered to be significantly involved in quality of social life and to be influenced by the course of 

disorder such as relapse [27]. There has been a growing interest in the physiological mechanism of 

relapse of schizophrenia [28], because prevention of relapse is one of the most important tasks of therapy 
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for this disorder. Several hypotheses of schizophrenia based on the abnormalities of dopamine and 

glutamate neurotransmissions were provided; dopamine hyperactivity in nucleus accumbens induced by 

hypofunction of glutamate receptors in ventral tegmental area is hypothesized to be associated with 

positive symptoms, while hypoactivation of dopamine and glutamate neurons in prefrontal cortex is 

considered to contribute to negative symptoms [9]. Although several recent studies suggest involvement 

of neuroinflammation in schizophrenia [12,14], few of these hypotheses provide an effective explanation 

on the mechanisms of relapse and remission. 

Recent studies have demonstrated the abnormalities of potassium ion channels expressed on 

astrocytes in the hippocampus where neuronal hyperactivation plays an important role in symptoms of 

patients with temporal lobe epilepsy (TLE) [29]. Impaired potassium ion buffering and dysfunction of a 

water channel, aquaporin 4 (AQP4) increase the resting membrane potential of neurons, resulting in 

neuronal hyperactivation and subsequent neuronal death [30,31]. After the neuronal hyperactivation, 

ATP derived from the dead neurons can induce polarization of microglia to a M1 phenotype  

(M1 microglia) [10,32]. Similar abnormalities or alterations may be induced in the brain of 

schizophrenia. It has been reported that individuals with an At Risk Mental State (ARMS) and patients 

with the first-episode or chronic schizophrenia have lower volumes of insula, inferior frontal gyrus, and 

hippocampus [33,34], suggesting that these brain areas play an important role in initiation of 

schizophrenia. In the brain of schizophrenia patients, a positron emission tomography (PET) study has 

indicated a significant increase in binding potential of (R)-[11C]PK11195, a parameter of microglia 

activation in total gray matter [34]. The binding potential of (R)-[11C]PK11195 is clearly higher in the 

hippocampus of schizophrenia patients than in that of healthy control [35,36]. Furthermore, the levels of 

IL-1β, IL-6, IL-8, and TNF-α in the cerebrospinal fluid (CSF) or peripheral blood are significantly higher 

in schizophrenia patients as compared with healthy volunteers [37–40]. In addition, there is a possibility 

that these cytokines produced in the brain are leaking to the periphery, or are produced by peripheral 

immune cells [14]. Based on these results, it is suggested that M1 polarization of microglia is induced 

in the insula, inferior frontal gyrus, and hippocampus of the patients with schizophrenia and that  

pro-inflammatory cytokine levels in the CSF and blood partly reflect polarization of M1 microglia in 

the CNS. 

It has been demonstrated that TNF-α can induce glutamate release from astrocytes and that glutamate 

up-regulates TNF-α production by microglia [41,42]. Glutamate can induce dysfunction of oligodendrocytes 

via glutamate receptors [43,44]. Schizophrenia patients show abnormalities of myelination detected with 

magnetic resonance imaging (MRI) scans and post-mortem analysis of oligodendrocyte proteins [45]. 

Functional MRI (fMRI) studies have revealed a significant failure of reciprocal influence between insula 

and dorsolateral prefrontal cortex (DLPFC) in schizophrenia [46]. These observations suggest that M1 

microglia can promote glutamate release to induce dysfunction of oligodendrocytes, resulting in 

abnormalities of neural network in the brain of patients with schizophrenia. 

A significant increase in IL-10 levels has been reported in the serum of schizophrenia patients [47]. 

Recently, relatively higher amounts of IL-10 and IL-13 have been found in the CSF and blood from 

patients with schizophrenia [48]. From these results, it is highly probable that anti-inflammatory 

responses mediated by IL-10 and IL-13, which reflect M2 polarization of microglia, occur in the CNS 

of schizophrenia patients. On the other hand, it has been documented that concomitant treatment with a 

cyclooxygenase-2 (COX-2) inhibitor, celecoxib and an antipsychotic (risperidone or amisulpride) 
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significantly improves Positive and Negative Syndrome Scale (PANSS) scores of schizophrenia patients 

in double-blind, placebo-controlled clinical trials [49–51]. Recent animal studies have revealed that 

treatment with celecoxib reduces the number of activated microglia and IL-1β levels in the brain of rat 

injected with LPS [52]. Celecoxib is known to inhibit production of IL-1β and TNF-α by macrophages 

stimulated with LPS and IFN-γ [53]. Taken together, it is strongly suggested that celecoxib inhibits  

production of pro-inflammatory cytokines by M1 microglia and potentiates therapeutic effects of 

antipsychotics in schizophrenia patients. Similarly, IL-10 from M2 microglia may contribute to 

remission in schizophrenia by inhibiting pro-inflammatory cytokine production in M1 microglia. 

Although IL-4 and IL-13 are thought to be key molecules to skew M2 polarization of macrophages 

and microglia [54], CCL2 and IL-6 produced by M1 microglia may be the other important molecules to 

induce M2 polarization of microglia because CCL2 and IL-6 are produced in neurodegenerative and 

neuroinflammatory conditions and can induce M2 polarization of macrophages [22]. IL-10 seems to be 

predominantly involved in anti-inflammatory functions of M2 microglia, and lipid mediators such as 

resolvin D1 and lipoxin A4 may also contribute to anti-inflammatory responses because these lipid 

mediators are produced by M2 macrophages and can induce anti-inflammatory conditions [55,56]. 

Figure 2. Hypothetical model of relationship between M1/M2 microglia activities and 

symptom severity in schizophrenia. (A) In the early stage of schizophrenia, symptoms may 

be followed by microglial M1 polarization which is induced by neuronal hyperactivation in 

insula, inferior frontal gyrus, and hippocampus, possible initiating brain regions of the 

disorder. M1 microglia can produce pro-inflammatory cytokines and remove the damaged 

nerve fibers by phagocytosis, whereas M2 microglia down-regulate M1 microglial function 

and restore tissue homeostasis with consequent attenuation of symptoms. (B) If M2 

polarization of microglia is insufficient, M1 microglial functions are maintained and induce 

neural network dysfunctions continuously. Symptom severity may gradually become high 

according to the frequency of M1 polarization. 

 

Based on the immunoregulatory functions of M1 and M2 microglia, there is a possibility that relapse 

of schizophrenia is associated with pro-inflammatory M1 polarization of microglia, whereas remission 
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is related to anti-inflammatory M2 polarization of microglia that can inhibit M1 microglial functions and 

maintain tissue homeostasis. If the microenvironment of the brain in schizophrenia patients is 

insufficient to skew M2 polarization of microglia, M1 microglia can continuously induce abnormalities 

of oligodendrocytes in any brain regions, gradually impairing neural network functions required for 

social life such as social cognition (Figure 2). Our view supports a hypothesis by Meyer et al. suggesting 

that enhancement of anti-inflammatory activity attenuates pro-inflammatory responses and schizophrenia 

symptoms, whereas reduced potency of anti-inflammatory responses exacerbates the symptoms 

accompanied with elevation of pro-inflammatory activity [12]. There has been evidence that 

mitochondrial dysfunction is involved in psychiatric disorders [57–59]. A recent study has demonstrated 

that mitochondrial dysfunction inhibits microglial activation induced by IL-4 but not LPS [60]. 

Therefore, mitochondria may play a key role in M2 polarization of microglia. Impairment of social 

cognition and abnormalities of microglial function in the brain have been demonstrated in patients with 

autism [61,62], suggesting common brain alterations in schizophrenia and autism. 

4. Major Depressive Disorder 

Major depressive disorder is characterized by two major symptoms, depressed mood and loss of 

interest/pleasure feelings [9]. The monoamine hypothesis of depression is widely accepted; depressed 

mood is predominantly caused by the reduced activity of 5-hydroxytryptamine (5-HT) neurons 

projecting to prefrontal cortex; hypoactivation of dopamine neurons in nucleus accumbens is involved 

in loss of interest and pleasure; in addition, noradrenaline neurons seem to be implicated in these 

symptoms [9]. 

fMRI studies in patients with major depressive disorder have demonstrated hyperactivation of 

neurons in neural circuitry of mood including amygdala and hippocampus [63]. The prefrontal cortex 

including DLPFC regulates neural circuitry of mood, affecting stress responses [64,65]. Hypoactivation 

and loss of synapses in DLPFC have been reported in patients with major depressive disorder [66]. Based 

on these findings, we speculate as follows; dysfunction of potassium ion channels and AQP4 expressed 

on astrocytes induces hyperactivation of neural circuitry of mood and M1 polarization of microglia; 

glutamate released from M1 microglia and activated astrocytes causes dysfunction of nerve fibers 

between prefrontal cortex and the neural circuitry, resulting in dysregulation and hypoactivation of the 

prefrontal cortex where 5-HT neurons project. Our view supports the monoamine hypothesis of 

depression suggesting relationship between depressed mood and hypoactivation of 5-HT neurons in the 

prefrontal cortex. 

There is another possible mechanism of reduction of 5-HT neuron activity. It has been reported that 

IL-1β and IL-6 potentiate the metabolic pathways from tryptophan to kynurenic acid and quinolinic  

acid [67,68], suggesting that M1 microglia can decrease 5-HT production. It is presumed that 

dysfunction of the prefrontal cortex induces dopamine hypoactivity of nucleus accumbens because the 

prefrontal cortex regulates the ventral tegmental area from which dopamine neurons project to the 

nucleus accumbens [65,69]. On the other hand, if M2 microglia restore homeostasis of oligodendrocytes 

and 5-HT biosynthesis, dysfunction of prefrontal cortex (depressed mood) would be improved, followed 

by attenuation of nucleus accumbens hypoactivation (loss of interest and pleasure) (Figure 3). 
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Several double-blind, placebo-controlled clinical studies have revealed that celecoxib in combination 

with an antidepressant significantly improves Hamilton Rating Scale for Depression (HAMD) scores in 

patients with major depressive disorder [70,71], suggesting that neuroinflammation is related to major 

depressive disorder as well as schizophrenia. These findings support our hypothesis that M1 and M2 

phenotypes of microglia are closely related to relapse and remission, respectively in major depressive 

disorder. Furthermore, our hypothesis can explain the relationship between neuroinflammation, 

hypoactivation of monoamine neurons, and that of brain regions associated with two major symptoms. 

However, there is still an unresolved question; the patients with major depressive disorder show 

dopamine hypoactivity in nucleus accumbens, whereas schizophrenia patients have dopamine 

hyperactivity in the same brain region. Thus, it is necessary to identify the neural circuitries of social 

cognition, positive, and negative symptoms in schizophrenia, and to clarify the differences between 

neural networks of major depressive disorder and schizophrenia. 

Figure 3. Possible roles of M1/M2 microglia in neural network functions, activities of 

monoamine neurons, and symptoms in major depressive disorder. In healthy individuals, 

prefrontal cortex regulates neural circuitry of mood including amygdala and dopamine 

neurons projecting from VTA (ventral tegmental area) to NAc (nucleus accumbens) (1, 2). 

In patients with major depressive disorder, hyperactivation of neural circuitry induces M1 

polarization of microglia (3), resulting in dysfunction of nerve fibers between prefrontal 

cortex and the neural circuitry (4) and hypoactivation of 5-HT neurons projecting from raphe 

nucleus to prefrontal cortex (5). Dysfunction of prefrontal cortex can reduce activity of 

dopamine neurons projecting from VTA to NAc (6). Hypoactivation of prefrontal cortex and 

NAc are associated with depressed mood and loss of interest/pleasure, respectively. M2 

microglia restore homeostasis of nerve fibers and 5-HT biosynthesis, recovering dysfunction 

of prefrontal cortex and NAc (7, 8). 
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5. Vascular Depression 

It has been reported that depressive symptoms appear after stroke (post-stroke depression), and that 

elderly patients with major depressive disorder frequently show white matter hyperintensities and silent 

infarction of gray matter in the brain (MRI-defined vascular depression) [72–74]. Post-stroke depression 

and MRI-defined vascular depression are termed vascular depression by Alexopoulos et al. [75], 

although it is controversial whether these depressions are in the same category. In contrast to major 

depressive disorder without any physical causes, neuroimaging analyses as well as symptoms are 

important to characterize vascular depression. Antidepressants provide unstable remission and low 

response rate to vascular depression [75–77]. Vascular depression is presumed to be associated with 

neurocognitive disorders (dementia), because cerebrovascular lesions are one of significant etiological 

factors of neurocognitive disorders, and major depressive disorder is considered to be one of risk factors 

for neurocognitive disorders, frequently appearing as a prodrome of the disorders [78–80]. 

It is presumed that there is a relationship between cerebrovascular lesions and aging, hypertension, 

dyslipidemia, atherosclerosis, and diabetes [75]. Abnormalities in capillary endothelial cells of the brain 

induced by these events can activate platelets and neutrophils [81]. The activated platelets and 

neutrophils in inflamed capillaries produce various pro-inflammatory cytokines/chemokines and induce 

recruitment of monocytes/macrophages [81]. M1 polarization of recruited macrophages is induced by 

pro-inflammatory cytokines and M1 macrophages remove injured vascular endothelial cells by 

phagocytosis [81,82]. M1 macrophages may induce long-term inflammation and destruction of capillary 

venules if M2 polarization is insufficient. 

Vascular endothelial cells in the brain capillary are known to produce platelet-derived growth factor 

(PDGF) which can induce production of vascular endothelial growth factor (VEGF) and angiopoietin by 

PDGF receptor β-expressing pericytes and astrocytes [83–86]. On the other hand, pericytes can produce 

CXC-chemokine ligand (CXCL) 12, while CXCR4 (CXCL12 receptor) is expressed on vascular 

endothelial cells and astrocytes [87,88]. From these findings, it is suggested that the interaction among 

vascular endothelial cells, pericytes, and astrocytes plays an important role in maintenance of BBB 

functions for sufficient supply of oxygen and nutrients to neurons [89,90]. Because pro-inflammatory 

cytokines and ROS from M1 macrophages can induce inflammation and tissue damage in vascular 

endothelium, it is probable that M1 macrophages trigger impairment of BBB functions and subsequent 

neuronal death in the brain as seen in neuroimaging analyses. Our view is supported by Zlokovic 

suggesting that oxidative damage of vascular endothelium occurs before neuronal deposition in 

Alzheimer’s disease [80]. 

The neuronal death can induce M1 polarization of microglia in the brain and pro-inflammatory 

functions of M1 microglia may result in nerve fiber and neural network abnormalities related to mood 

and neurocognition. The location of stroke lesions has been reported not to be the exclusive etiological 

factor in post-stroke depression [91]. Thus, in agreement with Taylor et al. [76], we hypothesize that 

symptoms of vascular depression are associated with not only brain lesions resulted from the impaired 

BBB but also abnormalities of neural network in the brain. The impaired BBB function-induced 

dysfunction of neural network in the brain may occur in elderly patients of late-onset with vascular 

depression, because it has been reported that the severity of deep white matter low density shows a 

significantly positive correlation with age at onset in major depressive disorder, suggesting that vascular 
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changes are more severe in the elderly patients [92]. To better understand how patients with vascular 

depression develop neurocognitive disorders, it is noteworthy to study the interaction between prefrontal 

cortex, neural circuitry of mood, and that of neurocognition. 

6. Chronic Pain 

Chronic pain is classified as a psychiatric disorder and pain itself is a physically primitive but 

complicated perception. Pain experience is affected by psychological factors such as social learning, 

cognition, and other psychiatric disorders [93,94]. Pro-inflammatory cytokines such as IL-1β and  

TNF-α are significantly increased in the CSF and blood in patients with chronic neuropathic pain [95,96], 

suggesting a role of M1-mediated neuroinflammation in this disorder. 

The possible neural pathways of cognitive pain modulation have been proposed by Tracey and 

colleagues [94,97]. Cognitive modulations of pain are referred to activation of brain areas such as 

DLPFC, ventrolateral prefrontal cortex (VLPFC), and anterior cingulate cortex (ACC), which modulate 

activation of pain-associated circuitry including somatosensory cortex, insula, and thalamus where 

ascending nociceptive signals input. fMRI studies revealed that patients with chronic back pain show 

decrease in prefrontal and thalamic gray matter density, which are likely due to hyperactivation of these 

brain areas [98], while activations in DLPFC have been found in studies on placebo-induced analgesia 

in humans [99]. That is, it is plausible that M1 polarization of microglia is induced in the thalamus, one 

of the possible initiating regions of patients with chronic pain, resulting in abnormalities of nerve fibers 

between the regions for cognitive pain modulation and pain-associated circuitry, which induce 

dysregulation and hypoactivation of these regions. 

It has been suggested that the prefrontal cortex plays an important role in “keeping pain out of mind” 

in chronic pain [100], and that perception of pain is sensitive to the beliefs that someone has about  

pain [94]. Therefore, we speculate that “pseudo-experience of pain”, which is not based on activity of 

the pain-associated circuitry, occurs in patients with chronic pain. Pseudo-experience of pain may be a 

kind of cognitive distortion as seen in major depressive disorder, because cognitive distortions are 

associated with hypoactivation of the prefrontal cortex. A recent report has proposed that there are 

possible common brain alterations in chronic migraines and mood disorders such as major depressive 

disorder [101]. The conceptualization of migraine has evolved from a vascular disorder to a 

neurovascular disorder and currently to a brain disorder, primarily a neural network disorder [101]. 

Taken together, symptoms of major depressive disorder, vascular depression, chronic pain, and migraine 

may be induced by common mechanisms, dysregulation of the prefrontal cortex for the lower brain 

circuitries of mood and pain. Our hypothesis is supported by the views that mood and pain experience 

influence each other, and that mood can change pain thresholds [94,97]. 

7. Molecules to Skew M2 Polarization of Microglia 

7.1. Endocannabinoids and Cannabinoid Receptors 

The endocannabinoid levels in the CSF have been shown to be negatively correlated with symptom 

severity of schizophrenia [102]. Cannabidiol, an inhibitor of endocannabinoid-degrading enzyme, has 

been reported to significantly improve PANSS scores in schizophrenia patients in a double-blind  
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study [103]. Blaas has found that dronabinol, an agonist for cannabinoid receptors improves depressed 

mood when treated alone or in combination with antidepressants [104]. Based on these evidences, we 

discuss possible roles of endocannabinoids and their receptors in M1/M2 microglial polarization in 

psychiatric disorders and diseases. 

There has been a growing interest in the roles of cannabinoid receptors in neuroinflammation in the 

CNS. 2-Arachidonoyl-glycerol (2-AG), one of the endogenous cannabinoids, is biosynthesized in 

various types of cells including macrophages and microglial cells, and binds to two distinct cannabinoid 

receptors (CB1 and CB2) [105,106]. The CB1 receptor is expressed in various tissues constitutively and 

higher expressions are found in neural cells. On the other hand, the CB2 receptor is inducible and 

expressed in immune cells predominantly [105,107]. CB1 agonist promotes pro-inflammatory responses 

of macrophages through ROS production, which is negatively regulated by CB2 through Rap1  

activation [108]. Furthermore, CB1 agonists induce biosynthesis of ceramide by sphingomyelinase [109]. 

Thus, the CB1 appears to contribute to polarization and maintenance of M1 macrophages and microglia. 

On the other hand, agonistic stimulation by 2-AG can induce internalization and down-regulation of  

CB1 [110]. Taken together, it is presumed that 2-AG induces down-regulation of CB1 and up-regulation 

of CB2 conversely. Thus, there seems to be an inhibitory interaction between CB1 and CB2 functions. 

Klein and colleagues have reported that Δ9-tetrahydrocannabinol (THC, an agonist for CB1 and CB2) 

increases mRNA expression of GATA binding protein 3 (GATA3) and IL-4 production in the spleen of 

Legionella pneumophila-infected mice, but THC shows no effects in CB2
 knockout mice [111,112]. 

These findings suggest that the CB2 plays an essential role in differentiation of Th2 cells or M2 

polarization of macrophages in bacterial infections. It has been reported that IL-4 significantly decreases 

inducible NO synthase (iNOS) expression and NO release via PPAR-γ in pro-inflammatory  

cytokine-treated CNS glial cells [113]. The CB2 signaling can induce de novo synthesis of ceramide via 

serine-palmitoyltransferase [114]. Ceramide is metabolized by ceramidase to the long-chain fatty acids 

(LCFAs) and sphingosine [115]. LCFAs activate PPAR-γ, while sphingosine-1-phospahe (S1P) has 

anti-apoptotic or cytoprotective effects and up-regulates IL-4 production in CD4 T cells [116–118]. 

Based on these results, it is strongly suggested that 2-AG-CB1 axis contributes to polarization and 

maintenance of M1 microglia, while 2-AG-CB2 axis acts as a switch from M1 to M2 polarization of 

microglia (Figure 4). CB2 agonists are known to induce phosphorylation of AMP-activated protein 

kinase (AMPK), suggesting that the CB2 plays an important role in AMPK-mediated anti-oxidative 

and cytoprotective effects [119–121]. Furthermore, 2-AG is reported to activate PPAR-γ in M2 

macrophages [122]. Thus, AMPK may be one of key signal molecules for the switch to M2 polarization. 

Besides endocannabinoids, adiponectin and ghrelin can induce down-stream signal transduction of their 

receptors via AMPK and therefore these molecules may be involved in skewing M2 polarization of 

microglia [123,124]. 

7.2. Anti-Inflammatory and Pro-Resolving Lipid Mediators 

The analyses of cellular and molecular mechanisms of the resolution of inflammation have revealed 

the key roles of anti-inflammatory and pro-resolving lipid mediators such as lipoxin A4, resolvin D1, 

resolvin E1, and protectin D1 [125]. These mediators are mainly biosynthesized from docosahexaenoic 

acid (DHA) or arachidonic acid by 15-lipoxygenase [125]. Resolvin D1 and lipoxin A4 are known to 
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exhibit an agonistic activity at GPR32 and lipoxin A4 receptor/N-formyl peptide receptor 2 

(ALX/FPR2) [126]. Resolvin D1 up-regulates the levels of micro-RNAs (miR-208a and miR-219) and 

enhances IL-10 production by peritoneal exudate macrophages in zymosan-induced peritonitis in 

ALX/FPR2 transgenic mice [126]. Furthermore, it has been reported that resolvin D1 and DHA can 

induce M2 polarization of macrophages [127] and that ALX/FPR2 is expressed on macrophages and 

microglia [128]. A double-blind, placebo-controlled clinical studies revealed that the transition rate to 

psychotic disorder is significant lower in ARMS individuals received with capsules containing DHA and 

eicosapentaenoic acid (EPA) as compared with placebo-treated controls [129]. Furthermore, ethyl-EPA 

in combination with antipsychotics has been reported to improve PANSS scores significantly in 

schizophrenia patients [130]. From these results, it is strongly suggested that anti-inflammatory and  

pro-resolving lipid mediators such as resolvin D1 and lipoxin A4 play an important role in polarization 

and maintenance of M2 microglia (Figure 4). 

Figure 4. Possible roles of the cannabinoid receptors in M1/M2 polarization of microglia. 

2-AG released from M1 microglia promotes production of pro-inflammatory cytokines and 

mediators by M1 microglia via CB1 and then induces down-regulation of CB1. On the other 

hand, 2-AG stimulates M2 polarization of microglia via CB2. Subsequently, M2 microglia 

can produce IL-10 and anti-inflammatory/pro-resolving lipid mediators (resolvin D1 and 

lipoxin A4). 

 

8. Conclusions 

In this review, we provide a hypothesis that M1 and M2 phenotypes of microglia are closely related 

to relapse and remission, respectively, in psychiatric disorders and diseases. M1 polarization of microglia 

seems to induce dysfunction of the neural network in the CNS. Specifically, it is presumed that M1 

microglia-induced dysregulation of prefrontal cortex for the neural circuitries of mood and pain results 

in symptoms of major depressive disorder, vascular depression, chronic pain, and migraine. M2 

polarized microglia presumably attenuate M1 microglia-mediated neuroinflammation by production of 
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anti-inflammatory cytokine, IL-10. On the other hand, further studies on M2 microglial functions are 

necessary to understand their exact roles in neuroinflammation, because M2 macrophages seem to 

induce Th2-type inflammatory conditions [131,132]. Since endocannabinoids, adiponectin, ghrelin, or 

anti-inflammatory/pro-resolving lipid mediators appear to skew M2 polarization of microglia, 

modulation of these molecules may afford favorable approaches for treatment of vascular depression to 

reduce a risk for neurocognitive disorders. Consequently, the molecules skewing M2 phenotype of 

microglia may provide a beneficial therapy to attenuate relapse of psychiatric disorders and diseases. 
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