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Abstract: The proliferation and migration of vascular smooth muscle cells (VSMCs) in the 

intima of an artery, known as intimal hyperplasia, is an important component of 

cardiovascular diseases. This is seen most clearly in the case of in-stent restenosis, where 

drug eluting stents are used to deliver agents that prevent VSMC proliferation and 

migration. One class of agents that are highly effective in the prevention of in-stent 

restenosis is the mammalian Target of Rapamycin (mTOR) inhibitors. Inhibition of mTOR 

blocks protein synthesis, cell cycle progression, and cell migration. Key to the effects on 

cell cycle progression and cell migration is the inhibition of mTOR-mediated degradation 

of p27Kip1 protein. p27Kip1 is a cyclin dependent kinase inhibitor that is elevated in 

quiescent VSMCs and inhibits the G1 to S phase transition and cell migration. Under 

normal conditions, vascular injury promotes degradation of p27Kip1 protein in an mTOR 

dependent manner. Recent reports from our lab suggest that in the presence of diabetes 

mellitus, elevation of extracellular signal response kinase activity may promote decreased 

p27Kip1 mRNA and produce a relative resistance to mTOR inhibition. Here we review these 

findings and their relevance to designing treatments for cardiovascular disease in the 

presence of diabetes mellitus. 
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1. Introduction 

Cardiovascular diseases initiate with an initial insult to a healthy artery that elicits an inflammatory 
response [1–4]. This inflammatory response results in the development of a plaque through the 
recruitment of inflammatory cells to the site of injury and the proliferation and migration of vascular 
smooth muscle cells (VSMC) in the intimal layer of the artery wall. Continued development of this 
plaque leads to a narrowing of the vessel and a reduction of blood flow. Ultimately, the plaque may 
become unstable and rupture leading to myocardial infarction or stroke. The proliferation and 
migration of VSMCs, known as intimal hyperplasia, is also a limiting factor in the use of stents for the 
prevention of restenosis following balloon angioplasty. Inhibitors of the mammalian Target of Rapamycin 
(mTOR) are highly effective at blocking intimal hyperplasia and have been used in drug-eluting stents. 
This review will focus on the regulation of intimal hyperplasia and potential changes in the role of the 
mTOR pathway in intimal hyperplasia in the presence of diabetes. 

2. Role of the Cyclin-Dependent Kinase Inhibitor, p27Kip1, in Cardiovascular Disease 

2.1. The Vascular Response to Injury 

Vascular diseases arise from an initial insult or injury to the vessel [1–4]. This injury can be 
mechanical or biological in nature. Mechanical injury includes balloon dilatation and endothelial 
disruption during percutaneous coronary angioplasty as well as turbulent flow or oscillatory shear 
stress. The most studied biological example would be the formation of fatty streaks early in 
atherosclerosis, but biological injury also includes excess free radicals, viral infection, and aspects of 
diabetes [5–7]. Despite differing causes, the result is the same, the loss of the integrity of the 
endothelial lining of the artery wall and an increase in the expression of adhesion molecules on the 
endothelial surface that promote the recruitment of leukocytes to the site of injury, initiating an 
inflammatory process. Leukocytes migrate into the medial layer of the vessel and release cytokines and 
growth factors that serve to amplify the inflammatory response [8,9]. This leads to an induction of 
inflammatory gene expression throughout the artery wall, a loss of normal vasofunction, and 
expression of matrix metalloproteases. The medial vascular smooth muscle cells (VSMCs) respond to 
these events by migrating to the intima and proliferating. This process, called intimal hyperplasia, 
results in the formation of a neointima that reduces luminal area. 

The vasoactive compounds that promote the vascular response to injury are diverse. E- and P-selectin, 
vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) are 
expressed early at sites of endothelial distress driving the recruitment of leukocytes [10–13]. 
Cytokines, such as monocyte chemotactic protein-1 and the interleukin family, and growth factors, 
such as platelet derived growth factor (PDGF), basic Fibroblast Growth Factor (bFGF), Angiotensin II 
(Ang II), and vascular endothelial cell growth factor (VEGF), promote the diapedesis of monocytes 
into the medial layer of the artery as well as the migration of VSMCs to the intimal layer where they 
proliferate to produce a neointima [4,14,15]. Thus, a diverse set of molecules serve to promote VSMC 
proliferation and migration through varied pathways, diminishing the effectiveness of targeting a 
single receptor or ligand. As we discuss below, targeting processes integral to proliferation and 
migration (e.g., cell cycle progression) has proven effective in preventing intimal hyperplasia. 
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2.2. Intimal Thickening is Blocked by Elevated Levels of the Cyclin Dependent Kinase Inhibitor, p27Kip1 

As VSMCs exit quiescence, p27Kip1 is down-regulated through translocation to the cytoplasm, in part, 
facilitated by phosphorylation at its serine 10 (S10) residue [16]. In the cytoplasm, it is ubiquitinylated 
by the E3-ubiquitin ligase complex KPC1/2 and degraded by the proteasome [17–19]. Later in the cell 
cycle, p27Kip1 is phosphorylated at the threonine 187 (T187) residue forming a docking site for a 
second E3-ubiquitin ligase which includes Skp2, again resulting in its ubiquitinylation and degradation 
by the proteasome [20–22]. The decrease in p27Kip1 protein levels releases cyclin E/cyclin-dependent 
kinase 2 (cdk2) complexes to hyperphosphorylate the retinoblastoma protein (pRb) resulting in the 
transcription of genes required for the G1-S transition [23,24]. 

Beyond cell cycle regulation, p27Kip1 has also been shown to regulate migration. Cellular migration 
requires the formation of a gradient in the activities of the small GTPases Rho and Rac [25]. Elevated 
Rac activity promotes cellular protrusions at the leading edge of migration, while Rho activation 
maintains cellular adhesion to achieve traction. In VSMCs, pharmacological inhibition of Rho 
activation inhibits cellular migration [26]. Elevated levels of cytoplasmic p27Kip1 has also been shown 
to regulate migration directly through its ability to bind and block activation of RhoA [27,28]. 

Initial studies in cultured VSMCs and in the porcine model of vascular injury suggested a critical 
role for the down regulation of p27Kip1 via activation of mTOR in the progression of intimal 
hyperplasia [29–33]. Elevated p27Kip1 inhibits vascular cell proliferation and migration [27,34]. A 
follow-up report, using a global p27Kip1 knockout mouse, suggested that p27Kip1 deficiency did not 
alter intimal hyperplasia or the effects of mTOR inhibition [35]. However, recent reports demonstrate a 
central role for the Skp2 mediated degradation of p27Kip1 protein in the vascular response to injury. 
p27Kip1 levels were increased and intimal hyperplasia reduced both in Skp2-/- mice following carotid 
ligation and in balloon injured rat carotids treated with an adenovirus expressing a dominant negative 
Skp2 [36]. Likewise, deletion of AMPKα2 exacerbates intimal hyperplasia through an increase in 
Skp2 and a decrease in p27Kip1 [37]. In addition to p27Kip1, inhibition of mTOR leads to an increase in 
another target of Skp2, the cyclin dependent kinase inhibitor, p21Cip, in VSMCs [38]. Increased p21Cip 
in VSMCs is associated with reduced VSMC proliferation and inhibition of intimal hyperplasia, 
suggesting a potential mechanism for rapamycin’s effectiveness in the p27Kip1 null mouse [39,40]. 
With respect to atherosclerosis, several reports have found that loss of p27Kip1 serves to accelerate 
atherosclerosis [41,42] or that increased p27Kip1 retards plaque formation [43]. These reports highlight 
the critical role of p27Kip1 in intimal hyperplasia and atherosclerosis. 

3. Clinical Use of mTOR Inhibitors in the Treatment of Cardiovascular Disease 

The introduction of drug eluting stents that deliver the mTOR inhibitor, rapamycin, greatly reduced 

the intimal hyperplasia component of in stent restenosis demonstrating a critical role for this pathway 

in the vascular response to injury [44]. mTOR is a phosphatidylinositol-related kinase that regulates 

cell growth and proliferation in response to mitogens and nutrients through regulation of translation, 

transcription, and cell cycle progression. mTOR forms two functionally distinct complexes. The 

mTOR complex 1 (mTORC1) consists of mTOR, the rapamycin sensitive adapter protein of mTOR 

(Raptor), and mLST8 (also known as GβL). This complex regulates ribosomal biogenesis and protein 

synthesis through activation of p70S6kinase to initiate ribosomal S6 kinase and inhibition of the  
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4E-binding protein-1’s (4E-BP-1) ability to restrict mRNA translation [45,46]. Additionally, inhibition 

of p70S6kinase by rapamycin promotes expression of smooth muscle contractile proteins, suggesting 

inhibition of the mTOR/p70S6kinase pathway also promotes VSMC differentiation [38]. The mTOR 

complex 2 (mTORC2) is defined by the presence of the rapamycin insensitive companion of mTOR 

(rictor), the SAPK-interacting protein (SIN1), and mLST8. mTORC2 is linked to actin cytoskeleton 

regulation and phosphorylation of the protein kinase Akt (also known as Protein Kinase B) [47–51]. 

Rapamycin and its analogs bind to FK506 binding protein-12 (FKBP12) and inhibit mTORC1. Though 

the rapamycin-FKBP12 complex cannot bind mTORC2, prolonged exposure to rapamycin blocks 

formation of nascent mTORC2 resulting in inhibition of its downstream effects [48]. Treatment with 

rapamycin also leads to an increase in the protein levels of the cyclin dependent kinase inhibitor, 

p27Kip1, and VSMCs lacking p27Kip1 exhibit a relative resistance to rapamycin [31]. 

Restenosis is the primary limitation to the use of percutaneous transluminal coronary angioplasty 

(PTCA) and stent implantation in the treatment of coronary artery disease. Despite major advancements, 

including the use of anti-platelet and anti-thrombotic therapies, in-stent restenosis rates range from  

15–20% in treating ideal lesions to 30–60% in treating the more complex lesions [44]. In diabetic 

patients the restenosis rate is 38–55% after stent implantation [52–55]. In-stent restenosis results 

largely from intimal hyperplasia and the use of drug eluting stents (DES) to deliver agents that inhibit 

VSMC proliferation and migration has proven quite effective in reducing restenosis rates [56]. 

However, while drug eluting stents are more effective than bare metal stents in preventing in stent 

restenosis in the diabetic population [57], there is a loss of efficacy in this high risk population [58,59]. 

4. Changes in the Molecular Mechanisms Regulating Cell Proliferation and Migration under 

Diabetic Conditions 

Initial studies into the interplay of diabetes and cardiovascular disease have focused on the role of 

hyperglycemia [60–62], inflammatory mediators [60,63], and reactive oxygen species [64–66] on the 

vasculature. Diabetes is a complex disease and the increase in inflammation and oxidative stress under 

diabetic conditions clearly promotes increased CVD in the diabetic population [67,68]. However, 

cellular and molecular changes in the response of VSMCs to injury have not been fully addressed. 

Recent large clinical studies have demonstrated that intensive control of blood glucose does not by 

itself reduce CVD events in type 2 diabetics [69–73]. This finding may depend on the strategy used to 

achieve the glucose control or it may suggest that targeting changes in the vasculature in response to 

diabetes are necessary to reduce CVD events in this population. We and others have found an increase 

in the activity of the extracellular signal response kinase 1/2 (ERK) pathway in the vascular tissue of 

diabetic animal models compared to non-diabetic controls [34,74,75]. Furthermore, our data suggest 

that the increase in ERK activity leads to a relative resistance to mTOR inhibition [34,76]. Below, we 

discuss three examples of aspects of type 2 diabetes that may promote increased ERK activity in the 

presence of diabetes mellitus. 

4.1. Role of Ang II in VSMC Insulin Resistance 

Clinically the use of angiotensin converting enzyme inhibitors and angiotensin receptor blockers 

has been shown to reduce cardiovascular disease and increase insulin sensitivity [77,78], suggesting a 
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role for Ang II in the insulin resistance of the vasculature. Acute administration of Ang II inhibits the 

insulin stimulated association of IRS-1 with p85, which subsequently activates Akt mediating the 

metabolic effects of insulin [63]. Chronic infusion of Ang II has been shown to promote IRS-1 

phosphorylation and proteasome dependent degradation in a reactive oxygen species (ROS)-dependent 

manner [65]. As NADPH oxidase activity and ROS production are increased in the vasculature of type 

2 diabetic animals, this may represent a general mechanism that induces insulin resistance in the 

vasculature. A key element of this effect is that while IRS-1/PI3K/Akt signaling is lost, activation of 

the ERK signal transduction pathway is maintained. Thus, this mechanism of producing insulin 

resistance includes a loss of the metabolic effects of insulin while maintaining the pro-atherogenic 

effects, specifically the IR/Ras/Mek/ERK pathway. 

4.2. Hyperglycemia and IGF-1 Activation of ERK 

As stated above, the mechanisms underlying the increased vascular disease accompanying diabetes 

is likely multi-factoral. In addition to the effects of elevated ROS production, hyperglycemia has been 

shown to exhibit multiple inflammatory and pro-atherogenic effects. Hyperglycemia promotes the 

formation of advanced glycation end products (AGEs) which promote VSMC migration and proliferation 

through binding to the receptor for AGEs. Elevated glucose levels have also been shown to enhance 

the proliferation and migration of VSMCs in response to IGF-1 [61,62]. This enhancement occurs 

through a hyperglycemia induced increase in extracellular matrix production that increases the levels 

of ligands for integrin αVβ3 and permits phosphorylation of the adaptor protein, Shc, in response to 

IGF-1 stimulation[61,62]. The addition of Shc phosphorylation augments the activation of the ERK 

pathway in response to IGF-1 stimulation. 

4.3. Changes in Insulin Signaling in Response to Changes in IGFR Expression 

VSMCs express both the IR and IGFR, with the latter being expressed at approximately eight  

fold higher levels [79–81]. As hybrid receptors are formed randomly according to the ratio of 

proreceptors [82–84], many of the IR heterodimers may function as half of a hybrid receptor. The 

hybrid receptors exhibit similar affinity for insulin as the IGFR [85,86]. IGFR levels are dynamically 

regulated and responsive to physiological stimuli with decreased expression occurring in response to 

IGF-1 [87]. Overexpression of IGFR in VSMCs results in a loss of Akt phosphorylation in response to 

7 nM insulin (a concentration which did not activate the IGFR) [87]. In contrast, down-regulation of 

the IGFR increased phosphorylation of Akt and ERK in response to insulin [87]. This suggests that 

changes in the expression of the IGFR and subsequent changes in the number of IR holoreceptors may 

increase ERK activation. 

Overall, a common factor among all of these aspects of type 2 diabetes is either a direct or indirect 

promotion of ERK activation. These examples represent a larger list of changes in the regulation of 

ERK and other pathways that may alter the regulation of proliferation and migration in the presence of 

diabetes. While activation of ERK is known to promote VSMC proliferation and migration directly, 

the impact of increased activation of ERK on other pathways that normally dominantly regulate 

intimal hyperplasia is not known. 
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Figure 1. Under quiescent conditions, p27Kip1 levels are high inhibiting cdk2 and RhoA 
activity thereby blocking VSMC proliferation and migration (Left Panel). In normal 
VSMCs, mitogenic stimulation promotes the proteasome dependent degradation of p27Kip1 
protein through, at least in part, activation of the mTOR pathway (Center Panel). Loss of 
p27Kip1 permits increased activation of cdk2 and RhoA leading to VSMC proliferation and 
migration. In the presence of diabetes, ERK activity is increased, which in turn destabilizes 
p27Kip1 mRNA (Right Panel). This lowers p27Kip1 protein levels before mitogenic stimulation 
occurs, allowing for greater proliferation and migration. Activation of the mTOR pathway 
functions as it did under normal conditions and will promote down regulation of p27Kip1 
protein as before. 

 

5. Effects of Diabetes Mellitus on Efficacy of mTOR Inhibitors in Preventing In-Stent Restenosis 

In two separate VSMC models of diabetes, our lab has found a relative resistance to rapamycin’s 
effects on proliferation and migration. First, VSMCs isolated from a mouse expressing the IR in only 
the brain and liver exhibit a diabetic phenotype that includes increased VSMC proliferation and 
migration [34]. These cells also exhibit a relative resistance to the antiproliferative effects of mTOR 
inhibition that is abolished with ERK pathway inhibition. Rapamycin treatment of these cells leads to 
inhibition of p70S6kinase phosphorylation, but does not lead to an increase in p27Kip1 protein levels. This 
loss of p27Kip1 is derived from a ERK-dependent decrease in the half-life of p27Kip1 mRNA [34]. Our 
work in endothelial cells suggests that rapamycin blocks p27Kip1 degradation through inhibition of 
phosphorylation of p27Kip1 at the Skp2 recognition site (threonine 187) [27]. This suggests that the 
relative resistance to mTOR inhibition by rapamycin is derived from repression of p27Kip1 at  
the mRNA level, thereby preceding the effects of mTOR on p27Kip1 protein. In a similar manner, 
human coronary artery smooth muscles cells obtained from diabetic donors exhibit increased 
proliferation and migration rates that were resistant to inhibition by rapamycin [76]. These VSMCs 
also exhibited a similar dysregulation of mTOR and p27Kip1 coupled with an increase in the activity 
of the ERK pathway. 

Together these data suggests a working model for the acceleration of intimal hyperplasia and 
development of a relative resistance to mTOR inhibition through increased activation of the ERK 
pathway under diabetic conditions (Figure 1). Under normal conditions, mitogenic stimulation of 
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VSMCs results in cell cycle progression, proliferation, and migration through down regulation of 
p27Kip1. In the presence of diabetes mellitus, ERK activity is increased, destabilizing p27Kip1 mRNA 
and abolishes the check on VSMC proliferation and migration under basal conditions. The end result  
is an increase in intimal hyperplasia and a diminishing of the role of mTOR in VSMC proliferation  
and migration. 

6. Conclusions 

Clinically, rapamycin and its analogs are highly effective in preventing in-stent restenosis and 
remain the best option for the prevention of in stent restenosis. However, there is growing evidence 
that type 2 diabetes is accompanied by activation of ERK and other pathways. This increase in ERK 
activity may, in addition to its normal pro-atherosclerotic functions, diminish the role of other pathways 
that are normally dominant in proliferation and migration. Inhibition of these additional pathways in 
high risk populations may be necessary to restore the effectiveness of broad based therapeutics. 
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