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Abstract: Oxidative stress has been implicated in the pathogenesis of heart failure. 
Reactive oxygen species (ROS) are produced in the failing myocardium, and ROS cause 
hypertrophy, apoptosis/cell death and intracellular Ca2+ overload in cardiac myocytes. ROS 
also cause damage to lipid cell membranes in the process of lipid peroxidation. In this 
process, several aldehydes, including 4-hydroxy-2-nonenal (HNE), are generated and the 
amount of HNE is increased in the human failing myocardium. HNE exacerbates the 
formation of ROS, especially H2O2 and ·OH, in cardiomyocytes and subsequently ROS 
cause intracellular Ca2+ overload. Treatment with beta-blockers such as metoprolol, 
carvedilol and bisoprolol reduces the levels of oxidative stress, together with amelioration 
of heart failure. This reduction could be caused by several possible mechanisms. First, the 
beta-blocking effect is important, because catecholamines such as isoproterenol and 
norepinephrine induce oxidative stress in the myocardium. Second, anti-ischemic effects 
and negative chronotropic effects are also important. Furthermore, direct antioxidative 
effects of carvedilol contribute to the reduction of oxidative stress. Carvedilol inhibited 
HNE-induced intracellular Ca2+ overload. Beta-blocker therapy is a useful antioxidative 
therapy in patients with heart failure. 
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1. Introduction 

Reactive oxygen species (ROS) induce ‘oxidative stress’ unless the prepared antioxidant mechanisms 
compensate for the ROS load [1]. Oxidative stress has been implicated in the pathogenesis of 
cardiovascular disease [2,3], including heart failure [4,5]. Increased oxidative stress results from an 
imbalance between ROS load and antioxidative mechanisms. Catecholamines [6-8], angiotensin II [9-11], 
tumor necrosis factor-alpha (TNF-alpha) [9], tachycardia and ischemia [12] induce generation of ROS in 
the myocardium. Activities of some antioxidant enzymes such as paraoxonase-1 (PON-1) in serum and 
manganese superoxide dismutase (MnSOD) in the myocardium, if not all enzymes, are diminished in 
patients with heart failure [7,13-15]. Thus, oxidative stress levels are elevated in the failing 
myocardium [6,16-18], and ROS causes hypertrophy, apoptosis/cell death and intracellular Ca2+ 
overload in cardiac myocytes [7,9,10,19-21]. In this review, we will focus on the involvement of 
oxidative stress in patients with heart failure and its reduction by beta-blocker therapy. 

2. Involvement of Oxidative Stress in Heart Failure 

In 1991, Belch et al. reported that concentrations of a plasma lipid peroxide, malondialdehyde, were 
significantly higher in the patients with congestive heart failure than in controls [4]. There was a 
significant negative correlation between malondialdehyde and left ventricular ejection fraction.  
Mallat et al. reported that pericardial levels of 8-iso-prostaglandin F2a (8-iso-PGF2a), a specific 
nonenzymatic peroxidation product of arachidonic acid, increase with increase in the functional 
severity of heart failure and are associated with ventricular dilatation [22].  

Figure 1. Elevated levels of oxidative DNA damage in serum and myocardium of patients 
with heart failure [18]. 

 

 



Pharmaceuticals 2011, 4 1090 
 

Figure 1. Cont. 

 
A. Serum levels of 8-hydroxy-2-deoxyguanosine (8-OHdG), a marker of oxidative DNA 
damage, in patients with dilated cardiomyopathy (DCM). DCM patients had significantly elevated 
serum levels of 8-OHdG compared with those in control subjects. Data are given as mean ± SD. B. 
Decrease in serum 8-OHdG levels due to treatment with carvedilol. Serum 8-OHdG levels decreased 
by 19% during treatment with carvedilol. C, D and E, immunohistochemical examination of 8-OHdG 
in myocardial biopsy samples. C. Representative immunohistochemical staining (brown) of a 
myocardial biopsy sample from a patient with DCM in a low-power field. Positive staining (brown) 
for 8-OHdG was distinct in the nuclei of cardiac myocytes. D. Representative staining of a 
myocardial biopsy sample from a patient with DCM in a high-power field. E. Representative 
staining in a myocardial biopsy sample from a control subject. Bar = 50 µm. 

As for oxidative stress markers other than lipid peroxides, levels of 8-hydroxy-2-deoxyguanosine 
(8-OHdG), a marker of oxidative DNA damage, are elevated in serum and urine of patients with heart 
failure, and urinary 8-OHdG reflects the clinical severity of CHF on the basis of symptomatic status 
and cardiac dysfunction (Figure 1A) [18,23]. Results of these studies indicate that oxidative stress is 
involved in severity of heart failure. 

Levels of oxidative stress are also elevated in the myocardium of patients with heart failure. ROS 
cause damage to lipid cell membranes in the process of lipid peroxidation. In this process, several 
aldehydes, including 4-hydroxy-2-nonenal (HNE), are generated and the amount of HNE is increased in 
the human failing myocardium [Figures 2(B,E)] [6,17]. The presence of 8-OHdG has also been detected 
in nuclei of cardiac myocytes in patients with dilated cardiomyopathy (DCM) [Figures 1(C,D) [18]. 
Therefore, levels of oxidative stress are elevated in both body fluid including serum, urine and 
pericardial effusion and myocardium of patients with heart failure. 

HNE is recognized not only as a reliable marker of oxidative stress but also as a toxic aldehyde to 
many types of cells [1,24-26]. HNE exhibits cytopathological effects, such as enzyme inhibition and 
inhibition of DNA, RNA and protein synthesis. HNE exacerbates heart failure. Administration of HNE 
was found to cause contractile failure and to elicit proarrhythmic effects in hearts [27,28]. HNE also 
has pro-oxidant properties. 
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Figure 2. Carvedilol decreases elevated oxidative stress in the human failing myocardium [6]. 

 
A to D. Immunohistochemical examination of HNE-modified protein in myocardial biopsy samples. 
A. Representative immunohistochemical staining in a myocardial biopsy sample from a control 
subject. There is no positive staining in cardiac myocytes; B. Representative staining (brown) in a 
myocardial biopsy sample from a dilated cardiomyopathy (DCM) patient before carvedilol 
treatment. Positive staining (brown) for HNE-modified protein was distinct in the cytosol of cardiac 
myocytes; C. Negative control sections incubated without a primary antibody; D. Representative 
staining in a myocardial biopsy sample from the same DCM patient 9 months after the beginning of 
carvedilol treatment. HNE-positive area is diminished. Bar = 50 µm; E. Expression levels of 
HNE-modified protein (HNE-positive area) in patients with DCM. DCM patients had significantly 
elevated myocardium levels of HNE-modified protein compared with those in control subjects. 
Data are given as mean ± SD; F. Decrease in HNE-positive area attributable to treatment with 
carvedilol. During treatment with carvedilol, the HNE-positive area decreased by 40%. 

HNE can markedly induce intracellular production of ROS in cultured rat hepatocytes and human 
neuroblastoma cells [26,29,30]. HNE also exacerbates the formation of ROS, especially H2O2 and ·OH, 
in cardiomyocytes and subsequently ROS cause intracellular Ca2+ overload (Figure 3) [21]. Therefore, 
HNE exacerbates heart failure by increasing oxidative stress in the myocardium. Angiotensin II [9-11], 
catecholamines [6-8], tumor necrosis factor-alpha (TNF-alpha) [9] and ischemia [12] induce generation 
of ROS in the myocardium (Figure 4). ROS cause HNE formation in the process of lipid peroxidation. 
HNE inversely induces generation of ROS. In this way, a vicious cycle of oxidative stress is formed in 
the failing myocardium (Figure 5). Terminating this vicious cycle may be important to reduce oxidative 
stress in the failing myocardium. 
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Figure 3. 4-Hydroxy-2-nonenal (HNE) induces calcium overload via the generation of 
reactive oxygen species in isolated rat cardiac myocytes [21]. 

 
A. Generation of ROS induced by HNE exposure. Analysis of dichlorofluorescein (DCF) 
fluorescence. DCF is a non-specific detector of the production of intracellular ROS such as H2O2, 
·OH and hydroperoxides (ROOH). (a–d), These are representative living cardiac myocytes 
observed by fluorescence microscopy (a and b) and phase contrast microscopy (c and d). Isolated 
rat cardiac myocytes on glass-base dishes were treated with a diluent (control) (a and c), HNE  
(100 µmol/L) (b and d). Treatment time was 10 minutes. (e), DCF fluorescence intensity per cell  
(n = 13 cells). Treatment with HNE (10 to 100 µmol/L) for ten minutes also induced the production 
of ROS (H2O2, OH or ROOH) in isolated rat ventricular myocytes in a dose-dependent manner, as 
assessed by DCF fluorescence. Each point is the mean ± SE. B and C. Inhibitory effects of 
antioxidants on the increase in fura-2 ratio due to HNE exposure; B. These are representative fura-2 
ratio images in living cardiac myocytes observed by fluorescence microscopy. Isolated rat cardiac 
myocytes on glass-base dishes were treated with HNE (400 µmol/L), HNE and catalase  
(100 U/mL), HNE and carvedilol (0.1 µmol/L), or HNE and propranolol (0.2 µmol/L). Treatment 
time was 20 minutes; C. Antioxidants, catalase (n = 6) or carvedilol (n = 6), significantly inhibited 
the increase in fura-2 ratio. Propranolol did not inhibit the increase in fura-2 ratio (n = 7). Each 
point is the mean ± SE. HNE (400 µmol/L) exposure increased [Ca2+]i of isolated cardiac myocytes 
as assessed by fura-2 ratio in a time-dependent manner. Catalase (100 U/mL), an antioxidative 
enzyme, significantly attenuated the increase in [Ca2+]i induced by HNE. Furthermore, carvedilol 
(0.1 µmol/L), a beta-blocker with potent antioxidant activity, significantly attenuated the increase in 
[Ca2+]i induced by HNE, but propranolol (0.2 µmol/L) had no effect on [Ca2+]i increase. These 
results indicate that ROS mediate HNE-induced intracellular Ca2+ overload. 
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Figure 4. Generation of ROS in neonatal rat cardiac myocytes induced by tumor necrosis 
factor-α (TNF-α) and angiotensin II (Ang II) [9].  

 
A to L. Increase in fluorescence with 2',7'- dichlorofluorescin diacetate (DCFH-DA) due to TNF-α 
and Ang II exposure. These are representative living cardiac myocytes observed by fluorescence 
microscopy (A–C, G–I) and phase contrast microscopy (D–F, J–L). On culture day 4, cultured 
cardiac myocytes on glass cover slips were treated with a diluent (control) (left: A, D, G and J), 
TNF-α (10 ng/mL) (middle: B, E, H and K) or Ang II (100 nmol/L) (right: C, F, I and L) and with 
DCFH-DA (5 µmol/L). Treatment time was 1 hour. Upper two lanes (A–F) at low magnification 
and lower two lanes (G–L) at high magnification. Bar = 100 µm. M and N, Dose-dependent 
increase in fluorescence due to TNF-α and Ang II exposure. On culture day 4, cultured cardiac 
myocytes were treated with TNF-α (1 to 100 ng/mL), Ang II (1 to 1000 nmol/L) or a diluent 
without TNF-α and Ang II (control) and simultaneously with 2',7'- dichlorofluorescin diacetate 
(DCFH-DA) (1 µmol/L). After 1 hour of incubation, cells were collected and fluorescence intensity 
per culture well was measured. Each point is the mean ± SE (n = 5 experiments). In each 
experiment, a treated-to-control ratio was calculated from the fluorescence intensity of five 
experiments. † P < 0.005, # P < 0.01, ## P < 0.0005 vs control cultures treated with diluent only. 
These data indicate that both TNF-α and Ang II generate ROS in cardiac myocytes. 

Different oxidative stress levels stimulate cellular proliferation, trigger apoptosis or produce necrosis 
in various cells [1,31]. Experimental studies have shown that ROS can exert a graded effect on the 
cardiac myocyte phenotype [7,32]. Lower levels of oxidative stress stimulate hypertrophy and higher 
levels of oxidative stress induce apoptosis [7,32]. Higher rates of ROS production contribute to the 
transition from compensatory left-ventricular hypertrophy to heart failure [33,34]. We previously 
reported that oxidative stress was elevated in myocardia of patients with hypertrophic cardiomyopathy 
and that the levels were correlated with left ventricular dilatation and systolic dysfunction [17]. Thus, 
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graded effects of ROS on the myocyte phenotype may be present in clinical settings. Further studies are 
needed to clarify this point. 

Figure 5. Termination of vicious cycles of oxidative stress and depressed cardiac function 
by treatment with a beta-blocker. 

 

3. Reduction of Oxidative Stress by Beta-blocker Therapy 

3.1. Reduction Effect of a Beta-blocker on Oxidative Stress in Patients with Heart Failure 

Results of many clinical trials, including the US Carvedilol Heart Failure Study, CIBIS-II and III, 
MERIT-HF, CARMEN, MUCHA, COMET, COPERNICS and REVERT have supported the efficacy 
of three beta-blockers (carvedilol, metoprolol and bisoprolol) in the treatment of heart failure. These 
studies have revealed that both ß1 adrenoreceptor blockers (metoprolol and bisoprolol) and a 
nonselective ß1 and ß2 adrenoreceptor blocker (carvedilol) ameliorate cardiac function and mortality in 
patients with heart failure. One of the mechanisms is thought to be reduction effect of a beta-blocker 
on oxidative stress. Kukin et al. reported that both metoprolol, a β1-selective blocker, and carvedilol, 
an α and β blocker with antioxidant activity, reduced plasma lipid peroxidation in patients with heart 
failure, together with amelioration of heart failure [35]. Chin et al. reported that β-blockers (bisoprolol 
and carvedilol), reduced the levels of serum lipid hydroperoxides in patients with CHF [36]. The 
serum levels of 8-OHdG in patients with DCM significantly decreased by 19% (Figure 1B) [18]. Thus, 
treatment with a beta-blocker can reduce systemic levels of oxidative stress, along with amelioration of 
heart failure. 

A beta-blocker decreases elevated oxidative stress not only in serum or plasma but also in the 
human failing myocardium [6]. Endomyocardial biopsy samples from 11 patients with DCM were 
examined before and after treatment (mean, 9 ± 4 months) with carvedilol (5 to 30 mg/day; mean dosage, 
22 ± 8 mg/day). After treatment with carvedilol, myocardial HNE-modified protein levels decreased by 
40% along with amelioration of cardiac function (Figures 2B,D,F) [6]. Since HNE is a cytotoxic 
product, the reducing effects of carvedilol may play a critical role in amelioration of heart failure. 
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3.2. Mechanism of Reduction of Oxidative Stress by Beta-blocker Therapy 

This reduction can be caused by several possible mechanisms. 

3.2.1. Class Effect of Beta-Blockers 

a. ß1-blocking effect. Isoproterenol induces lipid peroxidation [8]. Apoptosis stimulated by 
ß1-adrenergic receptors (ß1-AR) may also be mediated by ROS production [7]. Therefore, 
ß1-adrenergic receptor blockers are useful for catecholamine-induced oxidative stress. 

b. Anti-ischemic properties. Anti-ischemic properties may also be important since ischemia has 
been shown to increase HNE formation in the heart [12]. 

c. Negative chronotropic effect. Tachycardia induces ROS generation in mitochondria of the 
myocardium [16]. Therefore, a negative chronotropic effect may be important. 

d. Anti-hypertensive effect. Mechanical strain in cardiac myocytes increases ROS production [37,38]. 
Lowering blood pressure by a beta-blocker reduces after-load of the heart and finally may reduce 
ROS production. 

3.2.2. Specific Effect of Carvedilol 

e. Direct antioxidative property of carvedilol. The direct antioxidative property of carvedilol may 
contribute to the reduction of oxidative stress. Carvedilol inhibited Fe2+-initiated lipid 
peroxidation in vitro, but propranolol did not [39]. The mechanism of inhibition is via 
scavenging free radicals [39]. Carvedilol prevented hydroxyl radical-induced cardiac contractile 
dysfunction in human myocardial tissue, but metoprolol did not [40]. These results suggest the 
possible importance of the use of carvedilol.  

f. Inhibitory effects of carvedilol on ROS generation by leukocytes. Carvedilol inhibits ROS 
generation by leukocytes [41]. 

g. α-blocking effect of carvedilol. Xiao et al. reported that ventricular myocytes express 
components of an NAD(P)H oxidase that appear to be involved in α1-AR-stimulated 
hypertrophic signaling via ROS-mediated activation of Ras-MEK1/2-ERK1/2. Therefore, the 
α-blocking effect of carvedilol may reduce oxidative stress [42]. 

3.2.3. Future Perspective of Mechanism Analysis 

Emerging studies have revealed that β adrenergic receptor polymorphism may have an impact on 
response of β blocker treatment in patients with heart failure [43,44]. For example, there is a 
polymorphism at amino acid residue 389 (Arg/Gly) in human adrenergic β1-receptor gene (ADRB2). 
Mialet Perez et al. reported that homozygosity for Arg389 was associated with improvement in 
ventricular function during carvedilol treatment in 224 patients with heart failure [43]. A large clinical 
trial and further experimental examinations are needed to clarify this response. Determination of whether 
antioxidative effects of β blockers are different between Arg389 and Gly389 may be important. 

Endothelial function is impaired in patients with heart failure [45] and is also related to elevated 
oxidative stress [46]. The third-generation β blocker nebivolol improves left ventricular dysfunction 
and have an effect on NO-mediated endothelial function in mice with extensive anterior myocardial 
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infarction [47]. Nebivolol inhibits superoxide formation by vascular NADPH oxidase activation in 
angiotensin II-treated rats [48] and by vascular NOS III uncoupling in Watanabe heritable 
hyperlipidemic rabbits [49] and prevents endothelial dysfunction. Further studies are needed to clarify 
the beneficial effects of nebivolol in clinical settings [50,51]. 

4. Conclusions 

Beta-blocker as a Possible Antioxidant in Treatment for Heart Failure 

Depressed cardiac function causes activation of the sympathoadrenal system (ANS) and 
rennin-angiotensin-aldosterone system (RAAS) and elaboration of cytokines such as TNF-alpha [52]. 
All of these ischemia, tachycardia or hypertension increased ROS generation in the human failing 
myocardium (Figure 5). Catecholamines generate ROS via ß1-AR, and beta-blockers, including 
metoprolol, carvedilol and bisoprolol, can therefore decrease ROS generation in the heart. Furthermore, 
carvedilol can scavenge redundant ROS and can terminate the vicious cycle such as oxidative stress 
caused by the cytotoxic aldehyde, HNE. ROS cause remodeling, hypertrophy, fibrosis, apoptosis and 
calcium overload and induce arrhythmia [53], which in turn depresses cardiac function. Beta-blockers 
such as metoprolol, bisoprolol and carvedilol can stop those vicious cycles in patients with heart 
failure via indirect or direct anti-oxidative properties.  

Antioxidants to ameliorate cardiovascular diseases including heart failure have not generally 
yielded favorable results [54]. Furthermore, small or adequate degrees of stimulation by ROS are 
physiological and are needed in the bio-defense system or anti-tumorigenesis [54,55]. Thus, total 
blocking of oxidative stress in patients with heart failure is not needed or it may be harmful. In our 
study, carvedilol decreased the serum levels of 8-OHdG by 19% (Figure 1B) [18] and myocardial 
HNE-modified protein levels by 40% along with amelioration of cardiac function in patients with heart 
failure [Figures 2B,D,F] [6]. Since the therapy is safe and reduces patient mortality, the antioxidative 
properties of a beta-blocker may be sufficient to treat patients with heart failure. Further investigations 
are needed to clarify this point. In conclusion, beta-blocker therapy is an antioxidative therapy that is 
useful and safe in patients with heart failure. 
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