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Abstract: Protein kinases are intimately integrated in different signal transduction 
pathways for the regulation of cardiac function in both health and disease. Protein kinase A 
(PKA), Ca2+-calmodulin-dependent protein kinase (CaMK), protein kinase C (PKC), 
phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) are not 
only involved in the control of subcellular activities for maintaining cardiac function, but 
also participate in the development of cardiac dysfunction in cardiac hypertrophy, diabetic 
cardiomyopathy, myocardial infarction, and heart failure. Although all these kinases serve 
as signal transducing proteins by phosphorylating different sites in cardiomyocytes, some 
of their effects are cardioprotective whereas others are detrimental. Such opposing effects 
of each signal transduction pathway seem to depend upon the duration and intensity of 
stimulus as well as the type of kinase isoform for each kinase. In view of the fact that most 
of these kinases are activated in heart disease and their inhibition has been shown to 
improve cardiac function, it is suggested that these kinases form excellent targets for drug 
development for therapy of heart disease. 

Keywords: protein kinase A; protein kinase C; Ca2+ calmodulin protein kinase; mitogen-
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1. Introduction  

Due to their integrative role of phosphorylating specific proteins essential for modifying different 
biological processes, protein kinases are involved in a number of signal transduction mechanisms 
[1,2]. In the heart, these signal transducing proteins are engaged in the regulation of cardiac function, 
cation transport, myocardial metabolism, gene expression, cellular growth and cell apoptosis [3,4]. 
Their mode of activation involves the transfer of the γ-phosphate group from ATP to hydroxyl groups 
of serine/threonine residues of protein serine/threonine kinases or tyrosine residues of protein tyrosine 
kinases [5,6]. Protein kinases act directly by invoking a biological response immediately after 
activation, or by initiating branching or linear cascades of signal amplification and integration causing 
an eventual biological response [5]. Various hormones are known to produce a wide variety of changes 
in myocardial cells through the participation of different protein kinases; the integrated effects of some 
of these kinases are depicted in Figure 1.  

Figure 1. Schematic representation of the integrated involvement of some protein kinases 
in signal transduction for cardiac cell growth, apoptosis and cell death. 

 

This review is intended to focus on the currently known roles of protein kinase A (PKA), Ca2+-
calmodulin-dependent protein kinase (CaMK), protein kinase C (PKC), phosphoinositide 3-kinase 
(PI3K) and mitogen-activation protein kinase (MAPK), in cardioprotection against ischemia-
reperfusion (I/R) injury as well as in a number of cardiac diseases. It is also planned to discuss the 
participation of protein kinase-mediated signal transduction mechanisms in the development of cardiac 
dysfunction due to cardiac hypertrophy, heart failure and cardiomyopathies (Figure 2). Furthermore, 
the beneficial and detrimental effects of different inhibitors of various protein kinases will be 
highlighted to suggest the potential of protein kinases as targets for the future development of therapy 
for improving cardiac function in heart disease. 
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Figure 2. Schematic representation of protein kinase activation in signal transduction for 
the development of different types of heart disease. 

 

2. Protein Kinase A 

PKA is a tetrameric holoenzyme with two catalytic (C) and two regulatory (R) subunits whose 
activity is dependent on the concentration of cyclic AMP (cAMP) [7,8]. These regulatory subunits 
each bind two molecules of cAMP, which subsequently causes the R2C2 complex to dissociate and 
release the active C monomers [9]. PKA has been shown to phosphorylate a variety of proteins that 
play a significant role in regulating cardiac contractility and performance of the heart. The 
sarcoplasmic reticulum (SR), phospholamban (PLB), ryanodine receptor 2 (RyR2), as well as 
myofibrillar regulatory proteins have been extensively studied with regards to their interactions with 
PKA and their subsequent influence on cardiac function (Figure 3) [10–14]. In addition, PKA has been 
demonstrated to induce phosphorylation at the sarcolemmal (SL) Ca2+ channels and the SR Ca2+ pump 
regulatory protein PLB. It has shown to be responsive to β-adrenoceptor (β-AR) agonists, 
catecholamines, for stimulation in cardiomyocytes causing an elevation of intracellular Ca2+ 
concentration [15–18]. The importance of PKA in increasing cardiac contractile activity, post β-AR 
stimulation, is emphasized by the discovery that cardiospecific overexpression of the β2-AR transgene 
increases ventricular function in vivo, and modulates cardiomyocyte gene expression by 
phosphorylating its cAMP-response element binding protein transcription factor [19,20]. 
Phosphorylation of PLB by PKA has also been demonstrated to increase Ca2+ affinity of the SR Ca2+ 

pump and calcium current ICa-triggered Ca2+-induced Ca2+-release from the SR Ca2+ stores [21–23]. 
Since these alterations in SR PLB function were found to be independent of those in SR Ca2+

 pump 
ATPase in heart failure (HF), PKA-PLB interaction is considered to be a target for drug development 
for the treatment of HF [24]. In addition to influencing Ca2+-handling by PLB, PKA has also been 
reported to activate RyR2. Although phosphorylation of RyR2 occurs at Ser2030 and Ser2808 [12], 
phosphorylation at Ser2030 is predominant upon β-AR stimulation in both normal and failing hearts, 
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particularly concerning altered Ca2+ handling and cardiac arrhythmia [25]. After β-AR stimulation, SR 
Ca2+ leakage is also increased as a consequence of an elevation in PKA-dependent RyR 
phosphorylation [26]. It should be noted that during chronic HF, ventricular tachycardia is caused by 
the spontaneous release of Ca2+ from SR, which is partially influenced by the PKA-mediated 
phosphorylation of RyR2 [27]. This phosphorylation of RyR2 results in the development of 
intracellular Ca2+ overload due to excessive Ca2+ release from SR in this  
setting [27]. However, it has also been demonstrated that there is reduced phosphorylation of RyR2, as 
well as other PKA-dependent regulatory proteins in the failing heart [28,29] and thus some caution 
should be exercised while interpreting the results of RyR2 phosphorylation in HF.  

Figure 3. Modification of subcellular activities by the activation of protein kinase A for 
increasing cardiac function. 

 

PKA plays an integral part in phosphorylating myosin and has been shown to change filament 
orientation and influence contractile mechanics [10]. It has been demonstrated that β-AR stimulation 
in both intact hearts and isolated myocardial cells can cause PKA-mediated phosphorylation of C-
protein in thick myofilaments, and troponin I in thin myofilaments [30]. Specifically, it has been 
shown to phosphorylate cardiac myosin binding protein (cMyBP) and cardiac troponin I (cTn1) 
[10,11,31]. The regulation of cMyBP phosphorylation causes force generation by modulating the 
interaction between thick and thin filaments [10,32]; decreased level of cMyBP phosphorylation has 
been shown in patients with atrial fibrillation, hypertrophic cardiomyopathy and HF [33–35]. 
Phosphorylation of cTn1 decreases Ca2+ sensitivity of actomyosin ATPase leading to increased cross-
bridge cycling and accelerated relaxation [36–39]. These observations are consistent with β-AR 
stimulation in the myocardium showing increased contractile force development, and augmented rate 
of relaxation [31]. The myofilament Ca2+ response has been observed to increase HF as a result in the 
decrease of cTn1 phosphorylation [14,40]. It is thus evident that PKA influences essential mechanisms 
of cardiac function and its inhibition has been shown to have dramatic effects on cardiac performance. 

The inhibition of PKA has been shown to be beneficial in different studies in which PKA inhibitors, 
including H89 and KT5720, were observed to decrease infarct size due to myocardial infarction and 



Pharmaceuticals 2010, 3              
 

 

2115

prevent complications responsible for HF [41–43]. KT5720 inhibited the negative ionotropic and 
lusitropic effects and increased myocardial distensibility due to adrenomedullin (ADM) [44]. 
Increased ADM levels in patients with hypertension, heart failure (HF), and myocardial infarction 
(MI) [45–48] have been linked to increased PKA activation [49]. In HF, cytokine-induced expression 
of inducible nitric oxide (NO) synthetase has been suggested to contribute to myocardial depression as 
it has been shown to decrease cardiac myocyte contractility, sarcolemmal L-type Ca2+ channel activity, 
and sensitivity of contractile proteins to Ca2+ [50–56]. After stimulation of β-AR using isoproterenol, 
insulin was shown to blunt the increase in PKA activity which illustrated a potential control 
mechanism of PKA in maintaining Ca2+ homeostasis [57]. PKA inhibitor KT5720 has been reported to 
block the IL-1 induced NO-formation, potentially reducing the effect of damage caused by NO 
synthetase formation and preventing HF [42]. PKA has also been shown to enhance the 
phosphorylation and assembly of the proteasome in vivo; this was blunted by the intracoronary 
administration of PKA inhibitor H89 [58].  

Reducing cell apoptosis may provide a possible therapy for preventing cardiomyocyte death 
because PKA inhibition decreased the extent of cell death occurring in I/R and HF [59–64]. However, 
inhibition of PKA has also been demonstrated to exert detrimental effects pertaining to cardiac 
function, specifically concerning protection from I/R injury [23,65–67]. In adult rats, PKA inhibitors 
were shown to prevent the growth hormone releasing hormone (GHRH) induced protective benefits on 
cardiac performance in I/R injury [65]. In another study, the cardioprotective effect on nitric oxide-
induced cytotoxicity in H9c2 cardiac cells was prevented following treatment with PKA inhibitors, 
H89 and KT5720 [68]. There has also been evidence suggesting that NO-induced apoptosis of 
cardiomyocytes is protected by roflumilast, a PDE4 inhibitor, via the activation of the PKA and Epac 
dual pathway [66]. It is pointed out that NO is known to affect cardiomyocytes by stimulating guanylyl 
cyclase and formation of cyclic GMP, which, like cAMP, activates protein kinase but produces effects 
opposite to those by cAMP. Furthermore, PKA activation was found to modulate the activity of 
cytochrome C oxidase during experimentally-induced ischemia and demonstrated that the PKA 
inhibitor, H89, reversed the phosphorylation and kinetic properties of cytochrome C oxidase and thus 
protected the heart against ischemic heart injury in rabbits [69].  

3. Ca2+-Calmodulin Dependent Kinase  

CaMK is another protein kinase which is activated by calcium and calmodulin, a Ca2+-binding 
protein. CaMKII is a highly conserved Ser/Thr protein kinase encoded by four genes α, β, γ, and  
δ [70,71]. Although this signal transducing protein kinase is activated by Ca2+-calmodulin for a 
transient period, the resulting oligomerization of its subunits is associated with a prolonged period of 
activation [70,72,73]. It has been reported that α, β, and δ subunits of CaMK II are hetero-
oligomerized in variable domain spacers that alter the relative position of catalytic domains and 
influence both the rate of inter-subunit autophosphorylation and Ca2+ sensitivity [74]. CaMKII has also 
been observed to phosphorylate SR Ca2+ release channels or RyRs, PLB, and SL L-type Ca2+ channels 
[75–77] and is thus believed to modulate excitation-contraction coupling by phosphorylating these 
Ca2+ regulatory proteins subsequently influencing cardiac function [77,78]. However, a key factor to 
consider is that Ca2+ is initially necessary to activate CaMKII, but Ca2+ is not required for prolonged 
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activation which may have a potentially detrimental effect on cardiac function. Prolonged activation of 
Ca2+ handling proteins by CaMKII due to β-AR stimulation has been reported to induce hypertrophic 
gene expression and apoptosis [71,72,79–82]. Signal transducing events associated with both 
beneficial and detrimental effects involving CaMK activation for transient and prolonged periods are 
represented in Figure 4. It has also been shown that the angiotensin II-induced apoptotic cascade may 
be controlled by reactive oxygen species (ROS)-dependent CaMKII activation, particularly at sub-
diastolic Ca2+

 concentrations which imply that CaMKII may become activated at very low Ca2+ levels 
when exposed to ROS [83]. Taken together, it is evident that the beneficial or detrimental effects of the 
activation of CaMKII-mediated pathway are dependent upon the intensity and duration of stimulus. 

Figure 4. Transient and prolonged activation of CaM kinase in phosphorylating Ca2+ 
cycling proteins for the occurrence of beneficial and detrimental effects on the heart. 

 

As with PKA, there have been numerous studies showing both the beneficial and detrimental effects 
of inhibiting CaMKII in cardiac disease. CaMKII activation may trigger lethal ventricular arrhythmias 
with increased oxidative stress [84,85]. Inhibition of CaMKII has been shown to suppress 
isoproterenol-induced arrhythmias in vivo  [86,87], as well as prevent the increased effects of stress-
induced β-AR stimulation on cardiac contractility and Ca2+-handling [88]. CaMKII has been linked to 
atrial fibrillation as a result of its observed increased phosphorylation of RyR2 that subsequently 
causes Ca2+ leakage [89]. It has also been suggested that pressure overload can induce CaMKII-
mediated activation of protein synthesis resulting in the development of cardiac hypertrophy [90], 
which is adaptive in nature during the initial period but then becomes pathophysiologic over a 
prolonged period. Specifically, the δ isoform of CaMKII has been shown, in vivo, to be involved with 
pathological cardiac remodeling in a pressure-overload mouse model [91]. It is therefore important to 
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consider the roles of different isoforms of CaMKII as they may mediate different aspects of cardiac 
function. After aortic constriction-induced cardiac hypertrophy, CaMKII δ and γ levels are increased, 
although the highest degree of autophosphorylation occurs in CaMKII δ [92], implying that inhibition 
of the δ isoform would have a greater effect in reducing cardiac hypertrophy without causing extensive 
disruption to normal CaMKII function. A study by Peng et al. [93] demonstrated a functional 
difference between CaMKII δB and δC, showing that δB isoform suppresses cardiomyocyte apoptosis 
triggered by multiple death-inducing stimuli whereas δC isoform stimulated a reverse effect. It should 
be noted that the δB isoform contains a nuclear localization signal whereas the δC isoform remains in 
the cytosol [94]. Overexpression of CaMKII δB was shown to protect cardiomyocytes against 
oxidative stress, hypoxia, and angiotensin-II induced apoptosis, potentially through inhibition of δC 
[94]. Acute CaMKII δC overexpression in mice, observed in cardiac hypertrophy and reduced systolic  
function [86], has also been shown to alter RyR function, resulting in enhanced SR Ca2+ leakage. The 
enhancement of RyR Ca2+ release could possibly lead to increased chances of ventricular  
arrhythmia [86]. This detrimental effect was blocked by CaMKII inhibitors KN93 and autocamtide-2-
related inhibitory peptides [95]. These observations support the view that the beneficial or detrimental 
effects of CaMKII signal transduction pathway may depend upon the type of isoform of the enzyme 
involved in this process.  

CaMKII δ3 has also been shown to induce cardiomyocyte hypertrophy via the apoptosis signal-
regulating kinase (ASK1) in mammalian cells, where KN93 prevented Ca2+-induced ASK-1 
phosphorylation [96]. These data suggest that the inhibition of CaMKII, particularly isoform δ, could 
result in the prevention of cardiac hypertrophy. Despite the majority of literature indicating that 
CaMKII is the most involved CaMK in cardiac hypertrophy, CaMI and CaMKIV have also been 
shown to induce hypertrophic responses in cardiomyocytes in vivo [97,98]. Overexpression of 
CaMKIV in mice resulted in increased left ventricular end-diastolic diameter and decreased fractional  
shortening [97]. On the other hand, inhibition of CaMK may not be so beneficial in other forms of 
cardiac diseases. For example, it has been shown that KN93 inhibits ischemic preconditioning-
mediated improvement in recovery of cardiac function after I/R, illustrating the requirement for 
CaMKII activation during preconditioning [99,100]. Inhibition of CaMK in the failing heart may not 
be beneficial, as alterations in SR CaMK-mediated phosphorylation have been shown to be partially 
responsible for the impaired function of SR in the heart due to an observed decrease in SR protein 
contents and SR CaMKII activity [101]. Despite the evidence indicating involvement of CaMKII δC in 
the development of cardiac hypertrophy, it has been shown to phosphorylate calcineurin and inhibit its 
activity. It is pointed out that calcineurin is known to cause cardiac hypertrophy, mechanical 
dysfunction, arrhythmias and premature death [102] suggesting that its inhibition by active CaMKII δ 
may be more effective than inhibition of the inactive form of CaMKII δ, per se.  

4. Protein Kinase C 

PKC is a Ca2+-activated, phospholipid-dependent enzyme that consists of 12 distinct isoforms, each 
containing a highly conserved carboxyl terminal kinase domain that includes an ATP-binding  
site [103]. In the heart, the majority of PKC appears in the α and β forms [103,104], with the most 
dominant form expressed in the human heart being isoform α [105]. Inactive PKC isoforms present in 
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the cytosol translocate to membranes in a Ca2+-dependent active form [106]. There are three distinct 
classes of PKC, conventional PKC (cPKC), novel PKC (nPKC), and atypical PKC (aPKC). The 
difference between these families is based on their mode of activation. cPKCs are activated by both 
diacylglycerol (DAG) and Ca2+ and consist of the α, βI, βII, and γ isoforms. nPKCs are activated by 
DAG independently of Ca2+ and consist of the δ, ε, η and θ isoforms. aPKCs are activated by 
phosphoinositide-dependent kinase-1, independently of Ca2+, and consist of the ζ and λ isoforms [107–
109]. PKC has significant involvement in a variety of signaling pathways mediating heart function so 
it is important to consider the type of cardiac dysfunction/disease along with the isoform involved 
before ruminating inhibition, as its influence can be either beneficial or detrimental to cardiovascular 
activity. PKC has been shown to have increased myocardial activity associated with cardiac 
dysfunction in the diabetic heart [110]. The PKC isozymes α, β, ε, and ζ, are increased in both 
homogenate and cytosolic fractions of the diabetic heart, as well as increase Ca2+-independent activity, 
illustrating association with subcellular alterations and cardiac dysfunction in the diabetic heart [109].  

Figure 5. Signal transduction mechanisms involving the activation of conventional (c) and 
novel (n) protein kinase C and MAP kinase for the development of cardiac hypertrophy.  

 

Various hormones are known to induce cardiac hypertrophy through the involvement of PKC 
activation and associated signal transduction mechanisms (Figure 5). Isozyme-specific PKC activity 
has been shown to lead to ventricular hypertrophy. Increases in PKC activity and concentration, 
particularly of isozymes PKC-β1,2 and PKC-ε, during the development of left ventricular hypertrophy 
induced by pressure overload occurs in membrane and nuclear-cytoskeletal fractions [111]. Another 
study showed an increase in PKC-δ isozyme, but not of PKC-α or PKC-ε, in volume-overload-induced 
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left ventricular hypertrophy; however, PKC-α was found, along with PKC-δ, to have increased enzyme 
activity and protein expression in right ventricular hypertrophy [112]. PKC-ε has also been shown to 
be responsive to mechanical deformation in adult guinea pig myocardium, as the stretch caused by 
cardiac hypertrophy was indicated to lead to increased protein synthesis in cardiac muscle which 
subsequently activated the phospholipase C pathway, due to angiotensin II [5,113–116]. An additional 
study also found that PKC-δ autophosphorylation was increased prior to left ventricular hypertrophy 
development as well as during the transition to HF. PKC-α expression was found to be increased 
during the transition to HF, but remained unaffected during the induction of cardiac hypertrophy [117]. 
The signal transduction mechanisms involving the activation of PKC, occurrence of intracellular Ca2+ 
overload and development of cardiac dysfunction and HF are depicted in Figure 6. Thus, it appears 
that the beneficial or detrimental effects of changes in PKC signal transduction may be associated with 
the type of PKC isoform. 

Figure 6. Schematic representation of the signal transduction pathway involving the 
activation of protein kinase C, occurrence of intracellular Ca2+ overload and cardiac 
dysfunction. 

 

PKC inhibition has been shown to be beneficial in a number of ways, including preventing 
diabetes-induced abnormal cardiomyocyte mechanics [118] and enhancing cardiac contractility [105]. 
PKC-α and PKC-β isoforms in diabetic hearts showed increase expression which was associated with 
loss of contractility and subsequent HF due to their regulatory effect on cardiac contractility and Ca2+-
handling in cardiomyocytes [105,119–122]. Treatment with breviscapine decreased the activity of 
these PKC isoforms, and subsequently inhibited cardiomyocyte apoptosis induced via I/R injury and 
was shown to improve cardiac structure and function with satisfactory tolerance and safety 
[119,123,124]. PKC-β inhibition by ruboxistaurin has also been shown to attenuate cardiac diastolic 
dysfunction, myocyte hypertrophy, and preserve cardiac contractility in diabetic cardiomyopathy 
[125]. Aldosterone was reported to induce vasoconstriction via PKC-dependent pathways that 
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ultimately decreased cardiac contractility and metabolic functions in the ischemic heart. An inhibitor 
of PKC, GF109203X, attenuated the effect of aldosterone on impaired cardiac function [126]. 
Ruboxistaurin, a PKC inhibitor, was also found to attenuate pathological fibrosis and impaired cardiac 
function after induced MI [127]. Our laboratory showed that increased PKC activity in cardiac 
dysfunction due to MI was associated with increased expression of the PKC-α, -β and -ε isoforms 
[128]. In wild-type mice undergoing 10 weeks of pressure-overload, this PKC inhibitor reduced 
ventricular dilation, enhanced ventricular performance, and reduced fibrosis [129]. Furthermore, in a 
gene knock-out study, Liu et al. [129] demonstrated that PKC-α -/- mice undergoing long-term 
pressure overload exhibited increased Ca2+ transients and SR Ca2+ load and were less susceptible to 
HF, whereas the PKC-β/γ -/- mice displayed severe HF. When treated with ruboxistaurin, there was 
increased contractility in PKC-β/γ -/- mice, but not PKC-α -/- mice [129]; these studies highlighted the 
importance of PKC isoform-specific inhibitors. This point is further emphasized by a study showing 
that the targeted inhibition of PKC-α using Ro-320432 enhanced cardiac contractility in two different 
models of HF in vivo. In addition, it was demonstrated that PKC-α-specific inhibitor Ro-318110 
augmented cardiac contractility and restored pump function in the lim-/- mouse model of HF [105]. Gö 
6983, an inhibitor of different PKC-isoforms, was shown to prevent intracellular Ca2+ accumulation 
when administered at the beginning of reperfusion and attenuated the post-I/R cardiac contractile 
dysfunction [130,131]. When investigating polymorphonuclear leukocytes (PMN) vascular adherence 
and infiltration into post-reperfused cardiac tissue, a PKC-βII inhibitor was found to attenuate the 
PMN-induced post-I/R cardiac contractile dysfunction by inhibiting PMN-superoxide release and 
increasing endothelial NO release [132]. PKC-ζ inhibition has also been found to increase endothelial 
NO release and inhibit superoxide release during PMN-induced post-I/R while attenuating their 
infiltration into I/R myocardium [133].  

Not only must one consider the variety of isoforms of PKC when targeting it for inhibition, but a 
study by Hahn et al. [134] has shown that the degree of inhibition is also important. Their investigation 
studied how various levels of PKC-δ V1 (δ-specific PKC translocation inhibitor peptide fragment) 
expression influences cardiac function. They ascertained that low levels of PKC-δ V1 resisted post-
ischemic dysfunction with no measureable variation on basal cardiac structure, function or gene 
expression. However, the increase of PKC-δ V1 expression led to decreased ischemic protection, 
abnormal gene expression, and cardiomyocyte deformities, to the point of depressed cardiac contractile 
function and the formation of cardiomyocyte protein aggregates [134]. Although there is an extensive 
amount of work which has been carried out to suggest the potential benefits of PKC inhibition, it is 
still important to consider the negative influences of inhibiting PKC on cardiac function. PKC 
inhibition by chelerythine has been demonstrated to prevent the preconditioning of myocardial 
function and attenuate the diminution of lipid peroxidation due to ischemic-preconditioning [135]. 
Additionally, PKC activation has been suggested to be crucial in the mechanism of protection against 
contractile dysfunction by preserving diastolic function and the ratio of metabolic: mechanical 
efficiency to contractile function [136]. Although beneficial effects of inhibiting PKC activation by 
angiotensin II have been illustrated, it has been shown that angiotensin II mediated activation of PKC 
can also limit infarct size in rabbit hearts due to MI [137]. Inhibition of PKC-ε in mice has been shown 
to increase cardiomyocyte size and impair left ventricular functional shortening, as well as cause lethal 
dilated cardiomyopathy [138]. In the rabbit heart, PKC-ε has been observed to be involved in ischemic 
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pre-conditioning [139]. Thus a balance between negative and positive effects of PKC inhibition must 
be taken into account while considering this site as a target for therapeutic venture.  

By far the most significant effect of PKC activation, particularly PKC-ε, is its involvement with 
cardioprotection from I/R injury [140]. Activation of PKC-ε by a peptide has been shown to have 
cardioprotective effects by enhancing vascular endothelial NO release when given prior to inducing 
ischemia [141], and when administered during preconditioning, this peptide improved cardioprotection 
against I/R injury [142]. The cardioprotective effects of opioid receptor stimulation may potentially be 
influenced by PKC-ε translocation from the cytosol to the membrane as reduced cell injury/death from 
lethal ischemia was observed after translocation of the enzyme [143]. PKC-ε has also been reported to 
prevent hyperglycemia-induced apoptosis whereas other cardiac PKC isozymes modulate 
hyperglycemia-induced apoptosis [144]. PKC-ε has been observed to exert cardioprotection in diabetic 
ψε-RACK (ε-agonist) mice via inhibition of the hyperglycemia apoptosis signal, attenuation of 
hyperglycemia-mediated oxidative stress, and preservation of parameters of the left ventricular pump 
function. The study additionally unveiled PKC-ε undergoing selective trafficking to membrane and 
mitochondrial compartments, as well as inactivating Bad protein and inhibiting cytochrome c release 
for preventing cell death [145]. Fibroblast growth factor-2 exhibited cardioprotective effects via the 
PKC-dependent pathway as illustrated by decreased translocation of PKC-δ reducing post-ischemic 
contractile dysfunction and MI [146]. PKC-α and -δ isoforms may also play a role in sildenafil-
induced cardioprotection against I/R injury in the rabbit heart because their translocation from the 
cytosol to the membrane was affected [147]. Although it is commonly held that inhibition of PKC-ε 
would prevent cardioprotection, activation of the PKC-δ isoform showed increased damage by 
ischemia both in vitro and in vivo, emphasizing the need for selective PKC inhibitors [148]. As 
discussed previously regarding PKA and CaMKII, the selectivity of PKC isoforms is significant in 
considering therapeutic options for I/R injury when evaluating whether inhibition is favourable or 
unfavourable for cardioprotection.  

5. Phosphoinositide 3-Kinase 

PI3K is a heterodimeric complex of p85 and p110 proteins that contain two SH2 domains, thought 
to function as adaptor motifs linking tyrosine kinases to their substrates [149–152]. The p110 catalytic 
and p85 regulatory subunits form obligate heterodimers in vivo [153]. The catalytic domain of PI3K 
has a bilobal organization with an ATP-binding pocket in a cleft between N- and C-lobes, and the 
catalytic residues in the phosphate binding subsite [154]. All PI3K inhibitor complexes reported are 
type I inhibitors, which occupy the adenine region making hydrogen bonds to the hinge region of 
PI3K, including the pan-specific LY294002 and PI3Kγ-specific AS-604850 [155,156]. Different 
isoforms of PI3K have also been shown to mediate different aspects of cardiac cell functions. For 
example, PI3Kα appears to play a role in mediating changes in cell size whereas PI3Kγ has been 
shown to inhibit cAMP production and negatively regulate cardiac contractility [157,158]. To further 
emphasize the dichotomy between PI3K inhibition being either beneficial or detrimental for cardiac 
function, there is a need to note the type of cardiac dysfunction when considering inhibitory measures 
as therapy.  
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Inhibition of PI3K was demonstrated to be beneficial in a variety of cardiovascular diseases. It has 
been shown to reduce ischemia-induced arrhythmias [159] and inflammation after MI [160]. In an 
experiment dealing with chronic pressure overload and PI3K overexpression, it was found that inactive 
PI3K displaced the endogenously active PI3K and subsequently caused a delay in the development of 
cardiac dysfunction [161]. Membrane PI3K activity has been shown to contribute to HF [162,163]. In 
failing pig hearts, PI3K activity associated with βARK1, was increased; however, after adenoviral 
gene transfer of the PI3K domain (the phosphoinositide kinase domain that directly associates with 
βARK1), there was a decrease in the receptor-localized PI3K activity which resulted in nearly normal 
cardiomyocyte contractility [163]. In pressure overload-induced HF, preventing β-AR association with 
PI3K resulted in alleviating the development of HF [164]. Preventing this association via PI3K 
inhibition may provide preservation of β-AR signaling resulting in preventing complete HF as a 
consequence of cardiac hypertrophy. Tumour necrosis factor (TNF) has been shown to activate PI3Kγ 
leading to events that subsequently cause decreased cardiac function, associated with superoxide 
radical production. The activation of PI3Kγ leads to adverse myocardial remodeling and possible 
inhibition of this activation could prevent decreased cardiac performance in the failing heart [165]. The 
PI3Kγ isoform has been reported to have increased expression under pathological pressure 
overload[166] suggesting that its inhibition may prevent subsequent cardiac hypertrophy. In an 
experiment dealing with exercise-induced cardiac hypertrophy, it was found that a deletion of the p85 
regulatory subunit of PI3K not only notably attenuated Akt signaling, but resulted in reduced heart size 
and altered cardiac gene expression while still exhibiting normal contractility and myocardial  
structure [167]. These observations indicate the necessity of considering both isoform- and subunit-
specific inhibition in various cardiovascular malignancies.  

Inhibition of PI3K could also be detrimental to cardiac function. After ischemic reperfusion in 
isolated rat hearts, upregulation of G protein-coupled estrogen receptor by G-1 was observed to 
improve the cardiac function recovery and reduce infarct size, where beneficial effects were abolished 
upon treatment with PI3K inhibitor, wortmannin [168]. Wortmannin has also been shown to prevent 
the functional recovery in epoxyeicosatrienoic acid treated hearts [169]. In myocardial I/R injury, the 
anti-apoptotic effect appears to be promoted by the PI3K/Akt pathway after adrenomedullin 
administration by accelerating the phosphorylation of Akt; this action was prevented upon treatment 
with wortmannin [170].  

An increase in PI3K activity has also been demonstrated to be effective in reducing atrial fibrosis 
and improving cardiac conduction in dilated cardiomyopathy transgenic mice. The reduction in PI3K 
activity, specifically the regulatory subunit β 110 α, was found to increase the susceptibility to atrial 
fibrillation in patients [171]. It is also important to consider the differences between various regulatory 
units as it has been shown that PI3K p110 α, unlike PI3K p110 β, regulates voltage-dependent L-type 
Ca2+ channels in cardiac myocytes localized on the cell surface. Myocytes were found to have 
contractile defects in vivo when lacking PI3K subunit p110 α [172]. Increased PI3K p110 α activity 
has been shown to delay the progression of heart disease by attenuating pathological growth and 
preventing fibrosis in a pressure-overload model mouse of HF [173]. Another study showed that PI3K 
p110 α may induce physiological growth in response to exercise, but is not responsible for 
pathological growth due to pressure overload [174] suggesting that its inhibition may not be effective 
in preventing hypertrophy but could be detrimental to athletic individuals by preventing their heart 
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from being able to compensate for an increased workload. Activation by the growth factor midkine has 
been shown to prevent cardiac remodeling post MI via the PI3K/Akt pathway; this event has been 
suggested to be an effective enhancement of angiogenesis [175]. The progression of dilated 
cardiomyopathy was observed to be prevented by the PI3K/Akt pathway after administration of 
darbepoetina α; an agent known to improve cardiac function [176]. Complete absence of PI3K-γ 
causes MI whereas the complete absence of PI3K-β showed a severe decrease in contractile 
performance in mice [177] indicating the differential role of PI3K isoforms in inducing  
different effects. 

The PI3K/Akt pathway is another protein kinase signal transduction mechanism which is involved 
in cardioprotection. Heat shock protein 90, shown to be protective against cellular stress prevented 
apoptosis partially mediated by the PI3K/Akt pathway in cardiomyocytes subjected to hypoxia [178]. 
Additionally, estrogen receptor β has been shown to provide myocardial protection by increasing 
PI3K/Akt activation as indicated by decreased expression of caspase 3 and caspase 8 and sustained 
Bcl-2 levels [179]. In diabetic rat myocardium, peroxisome proliferator-activated receptor α has been 
shown to provide protection against I/R injury by activating the PI3K/Akt pathway, as 
cardioprotection was attenuated by treatment with PI3K inhibitor, wortmannin [180]. In diabetic 
myocardium, it has also been reported that the ischemic preconditioning stimulus has to reach a crucial 
level of Akt activation in order to allow for the occurrence of cardioprotection. A minimum of three 
cycles of IPC must occur after activation of the insulin receptors in order to achieve significant levels 
of cardioprotection [181,182] indicating the importance of stimulus intensity in determining the 
response. The PI3K/Akt survival pathway has also been shown to be activated by pretreatment with 
erythropoietin against doxorubicin-impaired heart function and cardiomyocyte apoptosis and oxidative 
stress [183]. In addition, preconditioning using hydrogen sulphide appears to provide cardioprotection 
by activating the PI3K/Akt pathway [184]. In rats adapted to chronic intermittent hypobaric hypoxia, it 
was shown that inhibition of the PI3K/Akt pathway was able to attenuate ischemia-induced 
arrhythmias however, it exacerbated myocardial injury [159].  

Another study showed that chronic activation of Akt could potentiate myocardial complications, 
however restoration of PI3K after I/R injury rescued left ventricular function and decreased the extent 
of injury. This illustrates the possibility that PI3K-dependent and Akt-independent effects are required 
for more complete cardioprotection [185]. In both early reperfusion and prolonged ischemia, isoflurane 
has been shown to involve the PI3K pathway for salvaging myocardium from infarction [186]. In 
addition, the ischemic post-conditioning protection also appears to activate PI3K-Akt [187]. Tang et al. 
[188] found that the PI3K/Akt pathway appears to be involved in the migration of vascular endothelial 
growth factor (VEGF)-mediated cardiac stem cells. An increase in PI3K/Akt activity was noted along 
with an increase in the number of cardiac stem cells occurring in infracted regions resulting in an 
improvement in cardiac function.  

Thus, it is evident that the PI3K/Akt pathway is intimately involved in cardioprotection and the use 
of its inhibitors may produce detrimental effects on cardiac function. It should be noted that the Akt 
isoforms 1 and 2 are targets of PI3K and demonstrate similar substrate specificities, however Akt1 has 
been shown to be essential for the physiological growth of the heart whereas Akt2 is essential for 
maintaining normal glucose metabolism [189–191]. Interestingly, it was observed that Akt1 can 
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contribute detrimentally to cardiac hypertrophy whereas, in contrast, Akt2 slightly attenuated 
ischemia-induced cardiomyocyte apoptosis [190,191]. 

6. P38 Mitogen-Activated Kinase 

MAPK is a family of proline-direct serine/threonine specific protein kinases. There are four distinct 
families of kinases: extracellular signal regulated kinases (ERK1 and 2), c-jun N-terminal kinases 
(JNK1-3), p38 MAPK, and ERK5. They share an overall 60–70% similarity with variations present 
between their activation loop sequences and sizes [192]. Activation of MAPK upon Ca2+ depletion and 
Ca2+ repletion has been associated with cardiac dysfunction and apoptosis; these changes were 
attenuated by pretreatment with taurine [193]. The activation of p38 MAPK α-isoform has been shown 
to facilitate apoptosis but overexpression of the p38 MAPK β isoform was found to contribute to the 
development of cardiac hypertrophy [194]. The inhibition of MAPK, in particular p38 MAPK, has 
been demonstrated to exert beneficial effects on cardiovascular health, including involvement in 
protection against myocardial ischemia damage [195–202]. A p38-MAPK knockout has shown to be 
resistant to I/R injury [203]. In spontaneously hypertensive stroke-prone rats fed a salt-fat diet, 
treatment with a selective p38 MAPK inhibitor improved survival and attenuated dyslipidemia, 
hypertension, and cardiac remodelling [204]. Selective MAPK inhibitor, SB203580, was observed to 
attenuate amyloidogenic Ig light chain-induced oxidative stress, as well as cellular dysfunction and 
apoptosis. This study reported that transforming growth factor β-activated protein kinase-1 binding 
protein-1 (TAB1)-mediated p38 MAPK-α isoform autophosphorylation may be involved in the onset 
of cardiac dysfunction and subsequent HF [205]. Treatment with MAPK inhibitor, SB203580, has 
been shown to attenuate myocardial fibrosis and LV remodelling in a myocardial ischemia rat model 
[206]. It has also been found that p38 MAPK may contribute to cardiac injury during I/R, particularly 
in patients with type 2 diabetes [207]. However, it was observed that inhibition of p38 MAPK with SB 
202190 did not alter the functional parameters of diabetic cardiomyopathy induced by glucose, in spite 
of an increase in p38 MAPK phosphorylation [208]. This may indicate an involvement of p38 MAPK 
in cardiac dysfunction, and perhaps a different MAPK inhibitor is required for the attenuation of 
functional changes in diabetic cardiomyopathy. MAPK signaling has been shown to be involved in 
vascular smooth muscle cell hypertrophy and proliferation and it has led to the suggestion of inhibiting 
both p38 MAPK and p42/44 MAPK to reverse vascular dysfunction in HF patients [209]. An increase 
in ROS has been linked to increased MAPK activation and thus causing subsequent myocyte  
damage [210]. In a study investigating the role of changes in ERK1/2, p38α MAPK, and JNK1/2 
activities, it was found that the activation of ERK1/2 promoted cardiomyocyte survival after pressure 
overload, however, p38β MAPK and JNK1/2 were found to promote pathological cardiac  
remodeling [211]. A highly selective and orally administered p38 MAPK inhibitor, SB239063AN, has 
been demonstrated to reduce superoxide generation, blunt hypertension, and cardiac hypertrophy in 
Sprague-Dawley rats treated with angiotensin II [212].  

p38 MAPK has been shown to be involved with the expression of pro-inflammatory cytokines and 
inflammatory responses responsible for cardiac dysfunction development [213]. Inhibition of p38 
MAPK using FR167653 was found to prevent neutraphil accumulation in the heart, inflammation-
related injuries and frequent ventricular arrhythmia. In diabetic cardiomyopathy, cytokine levels and 
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fibrosis are increased, and it was found that inhibition with p38 MAPK inhibitor, SB203580, restored 
cytokine levels to normal, prevented inflammation, and improved systolic function [214]. Combination 
treatment with SB203580 and FR167653 in BIO 14.6 hamsters with cardiomyopathy was shown to 
attenuate myocardial fibrosis and left ventricle chamber dilation, as well as reduce the heart to body 
weight ratio [215]. In a rat model where myocardial damage was induced by L-NAME/ANG II/NaCl, 
inhibition of MAPK using SD282 was observed to increase stroke volume, cardiac output, ejection 
fraction, and stroke work showing a significant improvement in cardiac function [216]. In endotoxin 
induced myocardial contractile dysfunction, p38 MAPK inhibition was found to decrease myocardial 
TNFα, IL-1α, IL-1β, and IL-6 production, reduce inflammation and improve cardiac 
function[217,218]. Myocardial functional impairment induced during TNFα release was limited by 
treatment with p38 MAPK inhibitor, SB203580 [219]. This inhibitor was also shown to be effective in 
decreasing myocardial apoptosis after I/R injury [200].  

In view of both detrimental and beneficial effects of different types of MAPK, a great deal of 
caution should be exercised while using various inhibitors for these targets. Activation of ERK1/2 after 
pressure overload has been shown to promote cardiomyocyte survival [211]. Since over-expression of 
Hsp27 has cardioprotective effects in I/R injury, inhibition of p38 MAPK attenuated the insulin-
induced phosphorylation of Hsp27 and prevented its cardioprotective role in reducing infarct  
size [220]. Pre-treatment with adenosine A1/A2A (AMP579) has been shown to reduce myocardial 
stunning by activation of the p38 MAPK pathway [221,222] whereas inhibition by SB203580 
prevented the attenuation of myocardial stunning [221]. When p38 MAPK is knocked-out in mice, 
they develop heart dilation and cardiac dysfunction earlier when compared to control undergoing 
pressure overload treatment [215]. A constitutively active form of MAPK-kinase 5 has been reported 
to accelerate the recovery of left ventricular developed pressure after I/R by increasing BMK1 
activation and causing hyperphosphorylation of connexin 43 [223]. p38 MAPK activity has also been 
inversely correlated with stretch-induced HF where the decrease in p38 MAPK activity led to an 
increase in left ventricle diameter [224]. Direct inhibition of MAPK has also been reported to be 
detrimental to heart function. With respect to cardiac hypertrophy, slight inhibition of p38 MAPK has 
been shown to promote myocyte growth via calcineurin-NFAT signaling. This study showed that the 
degree of calcineurin inhibition correlated with that of the p38 MAPK activity in the progressive 
growth response and myopathy in the heart [225]. An interesting study evaluating the difference 
between male and female mice in pressure overload-induced cardiac hypertrophy found that inhibition 
of the p38α MAPK augmented hypertrophic response to a greater extent in females [226]. 

MAPK has been observed to be intimately involved in cardioprotection pathways. In particular, 
high levels of p38 MAPK activity have been linked with cardioprotective effects during sustained  
ischemia [227]. Increases in p38 MAPK phosphorylation have also been shown to correlate with 
nicorandil recapturing of protection obtained from preconditioning in vivo [228]. When investigating 
the effects of different inhibitors of MAPK, it is important to consider the actions of solvent, as a water 
soluble SB203580.HCl did not affect ischemic-preconditioning or produce any protective action 
during ischemia, unlike previous studies which have not considered the anti-oxidant properties of 
DMSO, a common SB203580 solvent [229]. Nonetheless, other inhibitors of MAPK have revealed 
cardioprotective action. For example, SB202190, when co-administered with adenosine, has been 
shown to attenuate glycolysis and H+ production, increase glycogen synthesis, and improve the 
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recovery of LV work [230]. Inhibition of MAPK using SB202190 has been reported to prevent 
increased Ca2+ uptake in cardiomyocytes and reduced Ca2+ release in SR caused by hypoxic 
preconditioning [231]. Another p38 MAPK inhibitor, FR167653, has also been observed to attenuate 
protection against I/R injury via nitric oxide triggered ERK1/2 and p38 MAPK activation, which is 
involved in cardioprotection [232]. Thus p38 MAPK has been suggested to be either a cardioprotective 
or detrimental kinase depending on the type of cardiac stress [215]. Activation of ERK, along with 
inhibition of p38 MAPK by FGF-2, has shown to be cardioprotective during I/R injury [233]. Selective 
p38 MAPK inhibitor, SC409, was found to produce cardioprotective effects by increasing left 
ventricular ejection fraction and cardiac output in mice with HF post MI [234]. Timing of treatment 
has also been shown to be crucial for the induction of cardioprotection, as demonstrated by a study 
investigating lethal ischemia. Mocanu et al. [227] found that p38 MAPK inhibitor, SB203580, is 
cardioprotective during lethal ischemia, but not during pre-conditioning. However, p38 MAPK 
phosphorylation has also been shown to correlate with preconditioning protection by reducing fragility 
in ischemically preconditioned myocytes [235]. This observation suggests that the timing of induced 
cardioprotection is important and that one should consider allowing p38 MAPK to become active to 
induce preconditioning in preventing contractile dysfunction post ischemic-reperfusion injury.  

7. Conclusions 

From the foregoing discussion, it is evident that various protein kinases are involved in different 
signal transduction pathways in cardiomyocytes. These enzymes affect cardiac function by 
phosphorylating different sites engaged in the regulation of cation transport, cellular metabolism, 
cardiac growth and apoptosis, as well as contractile activity (Table 1) [236–239]. 

Table 1. Protein kinases and their substrates.  

Protein Kinase Substrates References 

Protein kinase A PLB, RyR2, cTn1, cMyBP, L-type Ca2+ channels [10–14] 
Ca2+-calmodulin-
dependent protein kinase 

PLB, RyRs, L-type Ca2+ channels [75–77] 

Protein kinase C AP-1, TGF-β, TnI, β-AR, adenylyl cyclase, GRK,  
L-type Ca2+ channel, RACKS, c-Raf 

[236,237] 

Phosphoinositide-3 
kinase 

Phosphatidylinositol, phosphatidylinositol (4,5)-
bisphosphate 

[238] 

P38 mitogen-activated 
protein kinase 

MKs, TFs, phospholipase A2, Tau, keratin 8, 
NHE-1 

[239] 

Abbreviations: PLB—phospholamban, RyR—ryanodine receptor, cTn1—cardiac troponin I protein, 
cMyBP—myosin binding protein, AP-1—activator protein-1, TGF-β—transforming growth factor-
β, TnI—troponin I, β-AR—β-adrenergic receptor, GRK—G-protein coupled receptor kinases, 
RACKS—Receptor for activated C kinase, MK—mitogen kinase, TF—transcription factor. 
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A wide variety of pharmacologic agents have been used as experimental tools for inhibiting various 
protein kinases (Table 2) suggesting that these signal transducing proteins are viable targets for drug 
development for improving cardiac function in heart disease.  

Table 2. Protein kinases and their inhibitors. 

Protein Kinase (Isoform) Inhibitor References 
Protein kinase A H89 [58,41,68,69] 
 KT5720 [42–44] 
Ca2+-calmodulin-dependent protein 
kinase  

KN93 [96,97,100,101] 

Protein kinase C Breviscapine [120] 
 Chelerythine [136] 
 Gö6983 [131, 132] 
Protein kinase C(α) Ro-320432 [106] 
Protein kinase C(α) Ro-318110 [106] 
Protein kinase C(β) Ruboxistaurin [126,128,129] 
PI3K Wortmannin [169–171,181] 
P38 MAPK SB203580 [197,201,203, 206, 

207,215, 216, 220, 
222, 228, 230] 

 SB202190 [209,231,232] 
 FR167653 [214,216,233] 
 SC409 [235] 

CaMKII inhibition is effective in suppressing arrhythmias, as well as reducing hypertrophic 
response upon inhibition of the CaMKII δC isoform indicating that inhibition of CaMKII, particularly 
the δC isoform, would reduce cardiac dysfunction [86,92,93]. However, when considering inhibiting 
CaMKII, it may be important to inhibit calcineurin because of its involvement in cardiac dysfunction 
[102]. Activation of PKC in diabetic cardiomyopathy and cardiac hypertrophy reveals that different 
PKC inhibitors may prevent these diseases as some of these agents have been found effective in 
attenuating abnormal cardiomyocyte function [118,127]. However, inhibition of the PKC-ε isoform 
would also prevent its cardioprotective effects whereas inhibition of the PKC-δ isoform may augment 
cardioprotection [143–145]. Although delaying the development of cardiac dysfunction in HF and 
prevention of cardiac hypertrophy have been demonstrated upon inhibiting PI3K [166,167], it is 
emphasized that this signal transduction pathway is mainly involved in cardioprotection and thus its 
enhancement by various interventions has the potential for therapeutic use [178,183–187]. Finally, p38 
MAPK inhibition has been shown to prevent cardiac remodeling, increase resistance to I/R injury, and 
improve myocardial function in HF [151,195,200,217,240,241]. With respect to cardioprotection, an 
increase in the activity of ERK1/2 MAPK was observed to correlate with increased level of 
cardioprotection [227], whereas its inhibition was found to attenuate its beneficial effects [231,232]. 
Recently, activation of ERK 1/2 was observed to be associated with cardiac hypertrophy and HF due 
to volume overload and these changes were attenuated by the blockade of the renin-angiotensin system 
[242]. Different protein kinases such as PKA, CAMKII and p38 MAPK have been suggested to 
regulate myocardial metabolism upon phosphorylating the mitochondrial site for palmitoyltransferase-1 
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activity [243]. Although tyrosine kinases were not discussed in depth in this review, these have been 
found to be effective in cardioprotection [244,245]. Tyrosine kinase-mediated phosphorylation has 
also been noted to attenuate apoptosis during cardioprotection which was prevented by its non-specific 
inhibitor, genistein [246]. In conclusion, although inhibitors of protein kinases may prove to be 
potential therapeutic agents in preventing and/or treating cardiac dysfunction, it is important to 
emphasize that inhibition of different protein kinase targets may prevent their cardioprotective effects. 
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