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Abstract: Pathophysiological conditions such as inflammation, ischemia, infection and 

tissue injury can all evoke pain, and each is accompanied by local acidosis. Acid sensing 

ion channels (ASICs) are proton-gated cation channels expressed in both central and 

peripheral nervous systems. Increasing evidence suggests that ASICs represent essential 

sensors for tissue acidosis-related pain. This review provides an update on the role of 

ASICs in pain sensation and discusses their therapeutic potential for pain management. 
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1. Introduction 

Tissue acidosis occurs in various physiological and pathophysiological states, including 

inflammation, infection, ischemia, cancer, tissue injury and metabolic stress [14]. It has long been 

known that extracellular acidosis elicits pain [1,5]. The local drop in pH is first detected by primary 

sensory neurons. The molecular basis of proton-sensing has been actively studied since the proton-

activated cation currents were observed in dorsal root ganglion (DRG) neurons almost two decades 

ago [6]. Increasing evidence has identified two principal types of proton-gated channels: transient 

receptor potential vanilloid receptor-1 (TRPV1) and acid-sensing ion channels (ASICs) [7,8]. This 

review provides an update on the role of ASICs in pain sensation and discusses their therapeutic 

potential for pain management. The involvement in pain sensation of TRPV1 and other known acid-

sensitive channels such as certain two-pore domain background K+ channels (TASK) and purinergic 

P2X receptors, will not be discussed within the scope of this review.  
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2. ASICs: An Overview 

ASICs belong to the voltage-insensitive, amiloride-sensitive epithelial Na+ channel/degenerin 

(ENaC/DEG) family of cation channels [9,10]. They are widely expressed in both central and 

peripheral nervous systems. To date, at least four genes encoding six ASIC subunits have been cloned 

in mammals: ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 and ASIC4 [10,11]. However, ASIC4 has 

not been shown to produce or modulate proton-evoked current and remains the least understood 

subunit [11,12].  

2.1. Structure 

The ASIC subunits share the same overall structure with other ENaC/DEG family members, which 

is characterized by two hydrophobic transmembrane domains, a large cysteine-rich extracellular loop 

and short intracellular N- and C-termini [10,13]. A recent study of the crystal structure of chicken 

ASIC1 indicates that three subunits are required to form a functional channel [14]. It is proposed that 

the proton sensor of ASIC protein is distributed over multiple sites, particularly His-72 and Gly-430 in 

the extracellular loop [1316]. How the protein binding at these distant sites is translated into channel 

gating is not yet fully understood [14]. 

2.2. Property 

Functional ASICs can be formed by homomultimers as well as heteromultimers [7,17]. Different 

homomeric and heteromeric ASIC channels have distinct kinetics, pH sensitivity, ion selectivity, tissue 

distribution and pharmacological properties [11,1820]. The only known activator of ASICs is 

extracellular proton. When activated, ASICs are preferentially permeable to Na+, but the homomeric 

ASIC1a channels are also permeable to Ca2+ [11,21,22]. Four ASIC subunits (ASIC1a, ASIC1b, 

ASIC2a and ASIC3) can form functional homomultimers, whereas ASIC2b can not form functional 

channel by itself but may co-assemble with other ASIC subunits to form heteromultimers with new 

biophysical and pharmacological properties [20,23]. In heterologous cell systems, the pH of half-

maximal activation (pH0.5) of homomeric ASIC channels differs: 6.2–6.8 for ASIC1a, 5.1–6.2 for 

ASIC1b, 4.1–5 for ASIC2a, and 6.2–6.7 for ASIC3 [16,17,21,2426]. Most ASICs are therefore 

activated by changes in pH in the physiological and pathophysiological range. Both ASIC1a and 

ASIC1b homomeric channels generate a rapidly activating and inactivating current; ASIC2a activates 

and inactivates more slowly; and ASIC3 generates most rapidly activating and inactivating current but 

has biphasic inactivation kinetics with a sustained component [13,20]. In addition, it appears that the 

inactivating rate of ASIC1a, ASIC1b and ASIC2a increases with a decrease of stimulation pH (i.e. 

proton concentration increase), whereas the time constant of inactivation for ASIC3 remains constant 

despite changes in pH [20]. The ASIC single channel conductance has been investigated for several 

homomeric and heteromeric ASIC channels and ranges from 10 to 15 pS [9]. 

2.3. Distribution 

Although the exact subunit composition (or subtypes) of ASICs in most neurons remains unclear, 

almost all ASIC subunits are known to be present in primary sensory neurons [1719,27,28]. ASIC1a, 
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ASIC1b, ASIC2b and ASIC3 are extensively expressed in small and medium nociceptive  

neurons [19,25,29,30]. ASIC2a and ASIC3 are also expressed in medium and large sensory  

neurons [19,31,32]. In the central nervous system, ASIC1a, ASIC2a and ASIC2b are widely expressed 

in the brain [24,3336]. The presence of ASICs other than ASIC1a in the dorsal horn of spinal cord, 

where pain-related signals relay and transmitted to the brain, is less clear [3739]. ASIC4, which 

cannot be activated by protons, has been detected in the pituitary gland, brain, spinal cord,  

and retina [16,4042]. 

3. Role of ASICs in Pain Sensation 

Physiological pain is initiated by high-threshold unmyelinated C or myelinated A primary sensory 

neurons that feed into noceciptive pathways of the central nervous system [43,44]. The notion that 

ASICs function as a major sensor of acid-evoked pain is supported by the following evidence: ASICs 

are expressed in peripheral sensory neurons as well as spinal nociceptive pathways (e.g., spinal cord 

dorsal horn); different homomeric and heteromeric ASICs are well positioned to detect and 

differentiate pH variations in both physiological and pathophysiological ranges; and more importantly, 

inhibiting ASICs has been shown to relieve pain in a variety of pain syndromes in both animals and  

humans ([11,23,45], Figure 1).  

3.1. Primary inflammatory pain  

Direct perfusion of acidic solutions or iontophoresis of protons into the skin causes pain in  

humans [4648]. This acid-evoked pain can be significantly reduced by amiloride ([47], Figure 1A), a 

common inhibitor of ASICs, and nonsteroid anti-inflammatory drugs (NSAIDs) such as declofenac 

and ibuprofen, which selectively inhibit ASIC1a and ASIC3, respectively [49]. Previous study shows 

that the human subject feels pain even at pH 7.0, which is low enough for the activation of ASIC1a 

and ASIC3 [46]. A recent study in rats further suggests that peripheral ASIC3 channels are the 

essential sensors of cutaneous acidic pain in both normal and inflammatory conditions [50]. The 

hypothesis was based upon these observations: first, rat cutaneous sensory neurons display a high level 

of ASIC3 channels, which, when activated by slight acidification (pH 7.0), depolarize the neurons and 

trigger action potentials; second, very moderate acidifications induce a significant increase in skin C-

fibers firing, which is totally inhibited by APETx2, a specific ASIC3 inhibitor; third, primary 

inflammatory-induced hyperalgesia is significantly inhibited by APETx2 and also by the in vivo 

knockdown of ASIC3 with a specific siRNA, whereas PcTx1, a specific blocker of homomeric 

ASIC1a channels [51], has no significantly effect (Figure 1B). 

Indeed, inflammation is known to induce a marked increase of the ASIC channel expression in 

primary sensory neurons; for example, the mRNA level of ASIC3 is increased by up to 15 fold in 

complete Freund’s adjuvant (CFA) -induced inflammation [49]. The increase in ASICs expression is 

largely abolished by NSAIDs in these neurons [49]. In addition, in isolated DRG neurons, a mixture of 

the proinflammatory mediators, including nerve growth factor, serotonin, interleukin-1 and bradykinin, 

increases the number of ASIC expressing neurons as well as the ASIC-like current density in these 

sensory neurons [52]. 
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Figure 1. ASICs are essential detectors of acid- and inflammation-induced pain. (A): 

analgesic effect of amiloride (ami.; 200 M), a general inhibitor of ASICs, on intradermal 

acid (pH 6.5 and 7.0) infusion-evoked pain in human subjects. Amiloride treatment 

potently suppressed the acid-evoked pain down to the pH 7.4 control level. * P < 0.01 vs. 

pH 6.5 treatment; ** P < 0.01 vs. pH 7.0 treatment (n = 10). Adapted with permission from 

ref. [47]. (B): intraplantar injection with complete Freund’s adjuvant (CFA) -induced 

thermal hyperalgesia in rats was prevented by APETx2 (20 M), a specific inhibitor of 

ASIC3; whereas PcTx1 (120 nM), a specific inhibitor of homomeric ASIC1a, had no 

significant effect. Hind paw withdrawal latencies were measured at 50 °C, and the time at 

which inflammation was induced is indicated by the arrow. ** P < 0.01; ♦♦♦ P < 0.001, 

significantly different from control. Adapted with permission from ref. [50]. (C): CFA-

induced mechanical hypersensitivity in rats, as determined by the paw withdrawal 

threshold (PWT) test using von Frey stimulation, is attenuated by intrathecal injection of 

PcTx1. * P < 0.05; ** P < 0.01 compared with intrathecal saline injection (n = 6). Adapted 

with permission from ref. [38]. 

         

The involvement of ASICs in muscle and joint pain associated with inflammation has also been 

studied [5357]. Intramuscular injection of carrageenan has been widely used to induce an animal 

model of chronic inflammatory muscle pain due to the local inflammation and hyperalgesia at the 

injection site that lasts for weeks, and can spread to the contralateral side when the inflammation 

becomes chronic [58]. A recent study demonstrates that, 24 hours after carrageenan-induced muscle 

inflammation in mice, the mRNA levels of ASIC2 and ASIC3 (but not ASIC1) in lumbar DRG 

neurons increase bilaterally [57]. The study also shows that both the primary and secondary 

hyperalgesia (increased response to noxious stimuli at and outside the site of injury, respectively) can 

be reversed by nonselective ASIC inhibitor A-317567. In a carrageenan-induced mouse arthritis 

model, the knee joint afferents with ASIC3 immunoreactivity increase from 31% to 50% after the 

induced joint inflammation, indicating that ASIC3 plays an important role in inflammatory  

joint pain [59]. 

The role of ASICs in primary inflammatory pain has been investigated recently in gene-targeted 

mice, and the data are not conclusive. In several studies mentioned above [53,54,57,59], the use of 

ASIC knockout mice seems to provide a clear case that ASICs, especially ASIC3, play a major role in 

primary inflammatory pain. However, other studies have shown that disruption of ASICs may increase 

the sensitivity to painful stimuli instead [6062]. The reasons for these discrepancies are not known, 

but may be due to the variability in genetic background or species, differences in inflammatory models 
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and research methodologies employed, complementary effect after genetic disruption, etc. 

[11,23,39,63].  

3.2. Cardiac pain 

Pain is the only sensation that can be evoked from most internal organs. Visceral pain can be 

considered as part of the defense reactions of the body against harmful stimuli, particularly of those 

that impinge on the mucosal lining of hollow organs [64]. It has considerable clinical relevance, and 

the underlying neurobiological mechanisms differ from those of somatic nociceptive or  

neuropathic pain [64]. 

Myocardial ischemia can lead to pain or discomfort within the chest, termed angina pectoris [65]. It 

is generally believed that such pain results from the activation of cardiac sensory neurons by a number 

of chemical mediators released during tissue ischemia, including lactic acid [65]. ASIC3 has been 

considered a major sensor for lactic acidosis created by anaerobic metabolism because it is expressed 

at extremely high levels in sensory neurons that innervate the heart [26,66,67]. It has been shown that 

both rat ASIC3 homomultimers and ASIC2a/3 heteromultimers produce sustained inward currents in 

response to the modest pH changes (7.36.7) typical of muscle ischemia; the sustained current is 

caused by a range of pH where there is an overlap between inactivation and activation of the ASIC 

channel [65]. Lactate can significantly enhance proton-evoked gating, probably mediated through a 

mechanism involving calcium chelation [68,69]. Studies in ASIC knockout mice further show that the 

acid-evoked currents from ASIC3/ cardiac afferents match the properties of ASIC2a channels, and 

currents from ASIC2/ cardiac afferents match the properties of ASIC3 channels [70]. These results 

seem to suggest that ASIC2a and ASIC3 are indeed the major ASIC subunits serving as the acid sensor 

in cardiac sensory neurons. 

3.3. GI pain and respiratory sensation 

Luminal acidity is a physiological challenge in the foregut, and acidosis may occur throughout the 

gastrointestinal (GI) tract as a result of inflammation, ischemia, cancer, microbial activity, or over 

distension of GI wall [71]. Acid is known to contribute to the pain associated with GI diseases such as 

dyspepsia, peptic ulcer, and gastro-esophageal reflux disease. ASIC1, ASIC2 and ASIC3 are all 

expressed in GI sensory neurons, and ASIC3 appears to be the most abundant [71]. Retrograde tracing 

shows that 75% of the nodose ganglion neurons and 82% of the DRG neurons projecting to the rat 

stomach express ASIC3 [72]. Quantitative RT-PCR of laser captured colonic neurons and fluorescence 

in situ hybridization experiments reveal that ASIC3 is the most abundant ASIC transcript within 

thoracolumbar DRG, followed by ASIC2 and ASIC1 [28]. In addition, the expression of ASIC3, but 

not ASIC1 and ASIC2, is upregulated in the colonic mucosa of patients with inflammatory bowel 

disease [73]. The importance of ASIC3 in modulating GI nociception is demonstrated further by 

studies using ASIC knockout mice. ASIC3−/− mice were reported to have markedly reduced visceral 

mechanosensitivity when compared to control animals and ASIC1−/− or ASIC2−/− mice [27]. Another 

recent study shows that gastric acid hyperresponsiveness is absent in ASIC3−/− mice but was fully 

preserved in ASIC2−/− mice [74]. Interestingly, the non-selective ASIC channel blocker benzamil only 

partially attenuates mechanosensitivity in gastroesophageal afferents, whereas it markedly attenuates 
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mechanosensitivity in colonic afferents [75]. The differential role of ASIC3 in the upper and lower GI 

tract indicates that this channel may serve as a key target for modulating GI nociception [76]. 

Most sensory inputs arising from airways and lung structures are conducted in vagus nerves and 

their branches, and the majority of vagal bronchopulmonary sensory nerves are nociceptive  

C-fibers [77,78]. Activation of bronchopulmonary C-fibers elicits irritation, cough, 

bronchoconstriction, burning, choking and breathless sensations [79,80]. In contrast to other visceral 

organs (e.g., heart, GI tract, etc.), pain sensation is generally not detected in the lower respiratory tract 

and lung parenchyma. Endogenous airway acidification has been documented in various airway 

inflammatory diseases including asthma and chronic obstructive pulmonary disease [2,81,82]. Airway 

exposure to endogenous or exogenous acid (e.g., gastroesophageal reflux with microaspiration, air 

pollution-induced acid fogs, etc.) is known to evoke cardiorespiratory symptoms such as cough, 

bronchospasm and dyspnea that are at least partially mediated through the activation of 

bronchopulmonary C-fibers and the subsequent reflex responses [8284]. Recent studies have shown 

that physiological- and pathophysiological-relevant acidification indeed activates vagal 

bronchopulmonary C-fibers, which is likely mediated through the activation of both ASICs and 

TRPV1 [84,85]. By using retrograde labeling and multi-cell RT-PCR, a recent study shows that the 

mRNA of all four functional ASIC subunits (1a, 1b, 2a, and 3) are expressed in pulmonary sensory 

neurons [86]. Patch clamp studies show that the native ASICs expressed in these neurons are likely 

heteromultimers although the specific ASIC subunit combinations are not yet known [85,86].  

3.4. Chronic pathological pain 

Chronic pain generally falls into two categories: inflammatory and neuropathic pain [39,87]. The 

former is initiated by inflammation associated with tissue damage; whereas the latter is defined as 

“pain arising as a direct consequence of a lesion or disease affecting the somatosensory system”, and 

can be caused by a number of different diseases (e.g., diabetes, stroke, tumor growth, HIV infection), 

medical interventions (e.g., chemotherapy, surgery), and injuries (e.g., brachial plexus  

avulsion) [8890]. It is generally believed that the exaggerated nociceptive sensation can originate 

from either increased sensitivity of peripheral nociceptors (peripheral sensitization), increased 

excitability of spinal cord dorsal horn neurons (central sensitization), or alternations in descending 

control from the brain [39,91,92]. Although the clinical features of inflammatory and neuropathic pain 

differ substantially, previous studies indicate that the local inflammation of peripheral nerves may play 

an important role in the generation of neuropathic pain [93,94]. In addition, these two types of chronic 

pain share many common central spinal and brain mechanisms [91]. 

ASICs play an essential role in pain sensation not only from the standpoint of their peripheral 

nociceptive function, but also their involvement in the development of central sensitization and pain 

hypersensitivity [13]. Spinal dorsal horn neurons express a high density of homomeric ASIC1a 

channels, and the expression of these channels is upregulated by peripheral inflammation [37,38]. 

Blocking of ASIC1a by spinal infusion of its specific inhibitor PcTx1 or suppression of ASIC1a 

expression using specific antisense oligonucleotides markedly attenuated CFA-induced thermal and 

mechanical hypersensitivity ([38], Figure 1C). In animal models of neuropathic pain, ASIC3 

immunoreactivity in rat DRG neurons is elevated following lumbar disc herniation [95], and 

intrathecal injection of PcTx1 reverses the thermal and mechanical nociception in rats with chronic 



Pharmaceuticals 2010, 3                            
 

1417

constriction injury of sciatic nerve [96]. In addition, recent studies indicate that ASIC1a may play a 

key role in neuronal injury after ischemic stroke [9799]. 

4. ASICs as a Potential Therapeutic Target for Pain Treatment 

Although extracellular proton is the only known activator of ASICs, increasing evidence shows that 

the proton-gating of ASICs can be modulated by a variety of factors. As we described earlier, the 

expression of ASICs is upregulated following inflammation and tissue injury [37,38,49,95]. Many 

proinflammatory mediators such as nerve growth factor, serotonin, interleukin-1 and bradykinin 

increase ASIC expression and acid-evoked ASIC currents [52]. The activity of ASICs, especially 

ASIC1a and ASIC3-containing channels, are upregulated by FMRF-amide and chronic inflammation 

related FMRF-amide like peptides including neuropeptide FF and neuropeptide AF [100105]. ASICs 

are also modulated by a number of factors that are generated or released during ischemia, 

inflammation and acidosis, such as lactate [68,106], proteases [86,107,108], redox reagents [109,110], 

nitric oxide [111] and arachidonic acid [106,112]. In addition, many cations (such as Zn2+ and Ca2+) 

and protein kinases (such as PKA and PKC) can modulate certain subunit-containing ASIC  

channels [103]. Although the mechanisms underlying the regulatory effect of most of the ASIC 

modulators are not fully understood, many of them (such as lactate, proteases, nitric oxide and redox 

reagents) are believed to modulate the proton-dependent channel activity through an interaction with 

the large extracellular loop of ASIC subunits [68,107,109,111,112]. When tested in native sensory 

neurons or in heterogous expression systems, most ASIC subtypes are known to generate transient 

inward currents then desensitize rapidly [13,20]. The property of ASICs to be modulated by this large 

variety of endogenous chemical substances probably allows them to detect and respond to the 

sustained acidosis that occurs during inflammatory and many other pathological conditions [11,113]. 

Therefore, delineating the mechanisms underling the modulation of ASICs by these molecules might 

be critical for understanding the physiological and pathological roles of these channels and for 

establishing future targets for pharmacological intervention [113]. 

ASICs emerged as a potential therapeutic target for pain treatment when amiloride, a non-selective 

ASIC blocker, was shown to attenuate the intradermal acid infusion-evoked pain in humans [47,48]. 

Local injection of amiloride or its derivative benzamil significantly reduces nociceptive behaviors 

induced by serotonin, capsaicin or formalin under acidic conditions [114]. NSAIDs, which are known 

for their ability to inhibit prostaglandin synthesis and also their direct inhibition of ASICs, abolish the 

inflammation-induced increase in ASICs expression [49,115] and significantly reduce the acid-evoked 

pain [48]. Another nonselective ASIC inhibitor A-317567 can reverse both the primary and secondary 

hyperalgesia, and appear to be more potent than amiloride in both in vitro and in vivo  

preparations [57]. To date, two subunit-selective ASIC inhibitors have been identified. PcTx1, a short 

peptide isolated from the venom of the South American tarantula Psalmopoeus cambridgei, potently 

and specifically inhibits ASIC1a homomultimers, while does not affect ASIC1a-containing 

heteromultimers [51,116]. APETx2 from the sea anemone Anthopleura elegantissima is another ASIC 

blocker that selectively and effectively inhibits homo- and hetero-meric ASIC3 channels [16,117]. 

Given that different ASIC subtypes seem to have distinct property, tissue distribution and contribution 

to pain sensation, specific ASIC inhibitors can be useful as a pharmacological tool in pain research as 

well as a novel avenue in pain therapy [13]. 
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5. Conclusions 

Tissue acidosis occurs in various physiological and pathophysiological states such as inflammation, 

ischemia, or tissue injury. The local drop in pH is detected by primary sensory neurons, the signals of 

which feed into nociceptive pathways of central nervous system and produces pain sensation. Studies 

using ASIC-gene-targeted approaches and ASICs inhibitors in various pain models indicate that ASICs 

function as the essential sensors of acid-evoked pain and appear as a potential therapeutic target for 

pain therapy. However, a better understanding of the structure, activation and modulation mechanisms, 

and development of additional potent and specific ASIC inhibitors suitable for clinical use will be 

needed for alleviating acid-related pain syndromes. 
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