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Abstract: The relapse rate of substance abusers is high, and addiction rehabilitation adjunct drugs
need to be developed urgently. There have been numerous reports on blocking the formation of
substance addiction, but studies on drugs that can alleviate withdrawal symptoms are very limited.
Both the dopamine transporter (DAT) hypothesis and D3 dopamine receptor (D3R) hypothesis are
proposed. DAT activators reduce the extracellular dopamine level, and D3R antagonists reduce
the neuron’s sensitivity to dopamine, both of which may exacerbate the withdrawal symptoms
subsequently. The D3R partial agonist SK608 has biased signaling properties via the G-protein-
dependent pathway but did not induce D3R desensitization and, thus, may be a promising drug
for the withdrawal symptoms. Drugs for serotoninergic neurons or GABAergic neurons and anti-
inflammatory drugs may have auxiliary effects to addiction treatments. Drugs that promote structural
synaptic plasticity are also discussed.

Keywords: dopaminergic neurons; GABAergic neurons; serotoninergic neurons; substance addiction;
synaptic plasticity

1. Introduction

The global number of substance abusers has reached 296 million [1]. Despite the
benefits that prescription substances(mainly opioids) offer in acute pain management, the
abuse and overuse of these agents have contributed to significant health and economic
burdens for the patients, their families, and society [2,3]. The comorbidity of mental
disorders and substance abuse has now been recognized universally. And the prevention
of the development of secondary conditions as a consequence of primary disorders should
reduce the impact of these conditions on both the individual and society [4,5].

However, numerous basic medical studies and clinical observations have shown that
substance addiction is not only a bad habit, but also a recurrently chronic brain disease.
Substance addicts often have very high relapse rates. The abstinence rates from cocaine
for the patients treated with aversion therapy were 68.6% and 53% at six months and one
year after the treatments, respectively [6]. A survival analysis of substance abuse relapse
found that, in the first six months, the cumulative survival rate was 83%; however, after
24 months, it was 46% and the following time was consistent [7]. Once stopped, there will
be an abstinence syndrome (withdrawal symptoms) such as anxiety, sudden changes in
temperature, tears, runny nose, sweating, nausea, vomiting, abdominal pain, and diar-
rhea [8–11]. Repeated substance abuse induces neuroplastic alternations in dopaminergic
neurons in the striatum and midbrain, increasing the neuron’s response to the substance
rewards, decreasing the susceptivity to non-substance cues and enhancing the susceptivity
to tense and dysphoric stimuli [12]. The functionally and morphologically related brain
structures receiving and interpreting stimuli correlated with positive feeling, satisfaction,
and addiction are defined as the brain reward system. Addictive substances are strong
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rewarding stimuli. Once the reward is delayed, the abuser will have a psychological desire
to take the substance, resulting in the relapse behavior [13–16]. Therefore, interrupting the
reward pathway and alleviating withdrawal symptoms are the keys to successful substance
abuse rehabilitation.

2. Dopamine Transporter Hypothesis

Dopaminergic neurons in the nucleus accumbens (NAc) and the ventral tegmental
area (VTA) play an important role in the perception of rewarding stimuli, such as the
rewards related with substance addiction [13,17]. After cocaine treatments, the extracellular
dopamine (DA) contents increased dramatically. DA reuptake regulated by dopamine
transporters (DATs) is a crucial mechanism for physiological DA homoeostasis (Figure 1).
Cocaine inhibits DAT directly, while amphetamine is a substrate of DAT and reverses the
direction of dopamine transport [18]. Other than cocaine-like stimulants, amphetamine
stimulates the endocytosis of DAT in the plasmalemma (DAT internalization). The de-
creased content of DAT on the plasmalemma, in turn, promotes extracellular dopamine
accumulation [19,20], which might be another reason that causes addiction to amphetamine
(Figure 1).

A study showed that the Rho/Rac GTPase activator Vav2 plays an irreplaceable role
in DAT expression in the plasmalemma and co-regulates the DAT activity by binding with
a glial-cell-line-derived neurotrophic factor (GDNF) receptor Ret (Figure 1). Vav2 or Ret
knocked-out mice showed enhanced DAT activities, accompanied with an enhancement in
intracellular DA levels in NAc. These knocked-out mice treated with cocaine displayed
diminished behavioral cocaine responses [21]. But all known DAT modulators [22] or
Vav2 antagonists are non-FDA-approved drugs. Interestingly, recent evidence highlighted
that piRNAs induced by L-methionine down-regulate the Vav2 gene via a miRNA-like
mechanism (Figure 1). Accordingly, methionine has been proven to show therapeutic effects
for cocaine addiction [23,24]. L-methionine blocked the sensitization to the locomotor-
activating effects of cocaine and attenuated the substance-primed reinstatement also by
influencing DNA methylation in NAc [25].

On the other hand, dynamins control endocytic DAT recycling in an interaction with
actins in the cytoskeleton [26]. The Rho-associated protein kinase 1 (ROCK) was signifi-
cantly induced in the NAc of animal models of addiction. The micro-injection of ROCK
inhibitors blocked the habitual responses to cocaine in the actin polymerization-mediated
process [27], suggesting that blocking ROCK may promote DAT recycling (enhancing cell
surface expression) [28] and change the context of cocaine habits (Figure 1). Thus far,
only two FDA-approved ROCK inhibitors, fasudil and its derivative ripasudil, showed
therapeutic effects to some neurological diseases [29,30]. Fasudil improved spatial learning
and memory capacity and decreased the burst of smoking-induced inflammatory factors in
the hippocampus [31].

However, most of the above studies have focused on the formation mechanism of
substance addiction, without involving the rehabilitation treatments of long-term substance
abusers. The fact that the brain has adapted to high extracellular dopamine levels can
subject the patient to frequent substance self-administration to maintain a normal sensation
(the level of dopamine secreted under normal physiological conditions is no longer suffi-
cient to maintain a normal neural activity). At this point, strengthening dopamine reuptake
(activating DAT) or reducing the extracellular dopamine level may exacerbate withdrawal
symptoms subsequently. Therefore, these drugs may not be adopted during the substance
abuse rehabilitation.
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Figure 1. Substance-induced extracellular dopamine accumulation and putative treatment drugs.
Dopamine (DA), dopamine transporter (DAT) activators, D3 dopamine receptor (D3R) antagonists
and agonists, serotonin transporter (SERT) inhibitors, and GABA transaminase inhibitors are marked
with the red color. Cocaine inhibits DAT directly. Amphetamine reverses the direction of dopamine
transport. Rho-family guanine nucleotide exchange factor protein Vav2 was required for DAT cell
surface expression. L-methionine down-regulates Vav2 gene. Rho-associated protein kinase 1 (ROCK)
inhibitors (fasudil and ripasudil) may promote DAT recycling by enhancing cell surface expression
in an actin polymerization-dependent manner. D3R is dramatically up-regulated following chronic
substance abuse, while D3R antagonists (e.g., buspirone) produce a blockade of substance-primed
reinstatement. Both dopamine and D3R partial agonists significantly induce D3R pharmacologi-
cal sequestration and desensitization, where β-arrestin is involved. Partial D3R agonists would
compensate the low dopamine tone and reduce craving during the withdrawal. The D3R partial
agonist SK608 down-regulates D3R protein steady-state level but does not induce pharmacological
sequestration, and, therefore, may be an ideal drug for addiction rehabilitation. Cocaine also in-
creases 5-hydroxytryptamine (5-HT; serotonin) efflux. Serotonin reuptake inhibitors citalopram and
escitalopram reversed the compulsion to cocaine. Opioids elicit robust dopamine transients through
the derepression of dopamine neurons via inhibiting GABAergic neurons. Vigabatrin, an irreversible
GABA transaminase inhibitor, attenuates the release of dopamine upon substance challenges.

3. D3 Dopamine Receptor Hypothesis

Recently, D3 dopamine receptors (D3Rs) have attracted much attention as targets
for developing medicines to treat substance addiction. D3Rs plays an essential role in
cocaine addiction because they are selectively distributed in neural circuits where the
rewarding pathways are, and, also, because D3R is involved in the behavioral responses to
the substance [32]. D3R-regulated plasticity in the ventral pallidum drives extracellular
dopamine accumulation in the NAc during relapse to cocaine after the withdrawal [33].
Different from D2Rs, D3Rs are dramatically increased after long-term substance abuse. A
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post-mortem human study has shown that D3R was enhanced in the NAc of patients with
a cocaine overdose [34]. Positron emission tomography (PET) studies have indicated an
enhancement in the D3R expression in the substantia nigra, hypothalamus, and amygdala
of the patients with a history of cocaine [35]. And, in a rhesus monkey model, PET imaging
confirmed that the utility of the D3R sensitivity, but not the D2R availability, is a biochemical
marker for vulnerability and resilience to cocaine [36]. It has been suggested that D3R
increasing may be a consistently predictive marker and a clinically therapeutic target for
addiction [37].

3.1. D3R Antagonists

Accordingly, D3R antagonists may reduce substance dependence and relapse behav-
iors [37–39]. For instance, the micro-injection of D3R antagonist SB-277011 into the NAc
and the central amygdala repressed contextual-cue-derived cocaine seeking in rats [40]. The
D3R antagonist PG01037 attenuated opioid-induced hyper-locomotion and anti-nociception
in mice [41]. Among D3R antagonists, buspirone has been originally characterized as a
selective serotonin 1A (5HT1A) receptor partial agonist and approved as an anxiolytic
for over 25 years [42]. Besides 5HT1A receptors, both D3R and D4R may also be occu-
pied by buspirone at pharmacologically relevant doses [42,43]. Buspirone produced a
dose-dependent, apparent blockade of methamphetamine-primed and cue-induced rein-
statement (Figure 1) [42]. In a cocaine self-administration study with rhesus monkeys,
buspirone significantly abolished responding for cocaine at doses that did not affect the
response to foods consistently [44]. Buspirone significantly reduced alcohol intake in the
two-bottle choice paradigm [45]. However, currently, most D3R antagonists show a low
physical property, poor bioavailability, or metabolic instability, and, therefore, may not be
used as clinical drugs for addiction [37]. Furthermore, some D3R antagonists exhibited
unacceptable increases in blood pressure in the presence of cocaine, because kidneys have
high levels of D3Rs [46]. On the other hand, D3R antagonists may reduce the neuron’s sen-
sitivity to dopamine and may exacerbate withdrawal symptoms subsequently. Therefore,
D3R antagonists may not be suitable for substance abuse rehabilitation. For example, a
multisite, randomized, double-blind clinical trial indicated that buspirone was unlikely to
have beneficial effects on preventing a relapse to cocaine and may worsen the outcomes in
cocaine-dependent women [47].

There exists a contradiction: since the density of dopamine receptors on the post-
synaptic membrane of substance abusers are increased, they should be more sensitive
to dopamine changes and, therefore, are less likely to experience withdrawal symptoms.
But the fact is exactly the opposite: long-term abusers develop a greater physical and
psychological dependence on the substance.

The internalization (endocytosis) of G-protein-coupled receptors has been suggested
to be an initial step in receptor lysosomal degradation and endocytic receptor recycling.
Nevertheless, the D3R internalization is an exception where, upon dopamine treatment,
D3R becomes desensitized, and this process is thus called pharmacological sequestration.
This process has been described as the sequestration of membrane receptors into more
hydrophobic fractions within the plasmalemma without being subjected into endocyto-
sis. Pharmacological sequestration would render the receptors in a desensitized state
inside of the plasmalemma [48,49]. β-arrestin is involved in this desensitization process
(Figure 1) [50–52]. The 1 µM dopamine treatment at 37 ◦C for 1 h resulted in a 20% increase
in the D3R protein steady-state level, but the same treatment led to 30% D3R proteins
undergoing pharmacological sequestration, while 10 µM dopamine caused 40% desensiti-
zation [49]. Taken together, the excessive accumulation of extracellular dopamine may lead
to a decline in effective D3R proteins (Figure 1). Pharmacological sequestration prevents
D3R from entering the lysosomal pathway [53], which may be another important reason
for the increase in D3R caused by long-term substance abuse.
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3.2. D3R Partial Agonists

The fact that dopamine reduces effective D3R proteins leads to another interesting
phenomenon: in addition to D3R antagonists, its agonists can also treat substance addiction.
D3R partial agonists showed therapeutic effects to cocaine in non-human primates and
rodents of relapse-like substance-seeking behavior [37,54–59]. Although a clinical trial
showed that the dopamine D2/D3 receptor agonist quinpirole (an FDA-approved D3R
agonist) had no significant effect on the place preference induced either by cocaine or
morphine [60], cariprazine (another FDA-approved D3R agonist) significantly decreased
cocaine self-administration in rats [61]. Studies have proven that, after substance abuse,
when the extracellular dopamine level is enhanced, partial agonists competed with the
endogenous agonists to bind with the receptors, relieving the symptoms correlated with
substance abuse. Nevertheless, during withdrawal, when the extracellular dopamine level
has largely declined, partial agonists compensated the low dopamine tone, maintaining
normal dopaminergic neuron function and reducing substance-seeking behaviors [37].
Moreover, partial agonists usually have lesser addiction liability than full agonists and
fewer side reactions than antagonists [37].

However, most D3R partial agonists induce pharmacological sequestration and desensi-
tization significantly. For example, pharmacological sequestration induced by 10 µM quinpi-
role (a FDA approved drug) or 7-OH-DPAT [7-hydroxy-2-(N, N-di-n-propylamino)tetralin]
can achieve 50% or 70%, respectively (Figure 1) [50]. It is gratifying that some new D3R
partial agonists without sequestration inducing activity have been developed. SK608 and
its analogues have a biased signaling property via the G-protein-coupled receptors but do
not result in D3R desensitization [48,49]. On the contrary, SK608 causes D3R endocytosis
(Figure 1) in a time-dependent and dose-dependent manner [49]. G-protein-coupled re-
ceptor kinase 2 (GRK2) and clathrin/dynamin I/II are the irreplaceable mediators in the
SK608-derived D3R endocytosis, but β-arrestin and GRK-interacting protein 1 (GIT1) are
not related with this process [49]. These data suggested that SK608-induced D3R internal-
ization is very close to the type II internalization reported among all G-protein-coupled
receptors [49]. The 3 µM dopamine treatment at 37 ◦C for 1 h resulted in a 20% decrease
in the D3R protein steady-state level [49]. Thus, SK608 may be an ideal adjuvant drug for
addiction rehabilitation, as it can stimulate D3R during substance withdrawal, alleviating
the abstinence syndrome, and, in the long run, it may promote D3R degradation, down-
regulate the D3R protein steady-state level, and help to achieve complete substance abuse
rehabilitation.

4. Drugs for Serotoninergic Neurons

While extracellular dopamine accumulation is sufficient to drive compulsion to sub-
stances, psychostimulants, like cocaine, also boost extracellular 5-hydroxytryptamine (5-HT;
serotonin) by repressing its reuptake [62,63]. Cocaine increased the substance-evoked sero-
tonin efflux in the NAc (Figure 1), suggesting that serotonin also plays a vital role in the
pathophysiology of addiction [64]. Nevertheless, further increasing serotonin pharmaco-
logically reversed the compulsion to cocaine, which may be explained by the presynaptic
inhibition of orbitofrontal cortex-to-dorsal striatum synapses induced by serotonin [65]. A
combination therapy containing lorcaserin (serotonin 5-HT2C receptor agonist) and bus-
pirone (5-HT1A receptor partial agonist and D3R antagonist as mentioned above) produced
modest declines in cocaine self-administration in rhesus monkeys [66]. Serotonin reuptake
inhibitors citalopram and escitalopram induced the internalization and decrease in cellular
serotonin transporters (SERTs; Figure 1) [67], and decreased compulsive cocaine seeking in
mice [65,68]. A double-blind clinical trial compared a placebo with citalopram treatments
on the duration of cocaine withdrawal, and provided some evidence for positive effects on
the longest duration of withdrawal and negative urine cocaine screens [69].

However, regulating serotonin has little influence on dopamine homeostasis, which is
still the crucial pathological mechanism of substance addiction. Drugs for serotoninergic
neurons may only show some auxiliary effects to the substance abusers. Suchting et al. [69]
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found that neither 20 mg nor 40 mg citalopram achieved the significant threshold for
the primary outcomes, and only the 40 mg dose was declared the “winner” in that trial.
Furthermore, compared with dopamine, serotonin is more related with prosocial behaviors.
The deletion of kappa opioid receptors (KORs) from serotonin neurons, but not from NAc
neurons or dopamine neurons, prevented the sociability deficit during the withdrawal of
opioids, because, after withdrawal, KORs block the serotonin release in the NAc that usually
occurs during social interactions [70]. For alleviating withdrawal symptoms unrelated with
prosocial behaviors, serotonin reuptake inhibitors or serotonin receptor agonists may not
be ideal drugs.

5. Drugs for GABAergic Neurons

Although dopamine plays the key role in substance dependence, some rewarding
effects of substances are mediated by other mechanisms independent of dopamine. The
NAc integrates both glutamatergic and dopaminergic inputs to regulate the rewarding
and destructive properties of psycho-stimulants [71]. Vega-Villar et al. [72] demonstrated
that the substance-evoked signaling requires N-methyl-D-aspartic acid (NMDA) receptor
(NMDAR)-dependent plasticity within the NAc, revealing a key role of glutamatergic
excitatory and γ-aminobutyric acid (GABA)ergic inhibitory neurons in addiction behaviors.
Repeated opioid (such as papaverine, morphine, heroin, ketamine, et al.) exposure strength-
ens synaptic NMDAR activities in the NAc [73]. Then, opioids elicit robust dopamine
transients in the NAc through the derepression of dopamine neurons via the NMDAR
antagonism (Figure 1) [74–76]. On the other hand, the long-range GABAergic projection
from the VTA to the ventral NAc shell, but not to the NAc core or dorsal NAc shell, is also
engaged in rewarding and reinforcement behaviors [77]. A single ketamine injection to
mice induced a dopamine transient in the NAc that was almost the same in magnitude,
whereas of a shorter persistence, than that induced by cocaine. But ketamine did not lead
to a change in synaptic plasticity that is usually induced by cocaine. Therefore, ketamine
may not induce locomotor sensitization or strong substance seeking. The risk of addiction
to ketamine may be lower than cocaine [76]. The reactivation of inhibited NMDAR in
person with prolonged opioid use can led to a severe abstinence syndrome. A randomized
double-blind clinical trial found that magnesium sulfate, a NMDAR antagonist, showed
significantly mitigative effects on the opioid withdrawal syndrome [78]. However, the
intravenous infusion of MgSO4 may not be a feasible therapy to most substance abusers.

Different from the direct binding of opioids with NMDAR, repeated cocaine exposures
enhance GABA release in astrocytes through volume-regulated anion channels (VRACs)
and promote the tonic repression of GABAergic neurons in VTA, therefore down-regulating
their activities and derepressing NAc-projecting dopamine neurons [79]. Rats with a high
cocaine-dependence index exhibited enhanced substance seeking behaviors and tonic
GABA release in the amygdala [80].

It can be inferred that GABA or its analogues could be used for the treatment of
substance addiction. But GABA cannot penetrate the blood–brain barrier (BBB), so its
lipophilic analogues were developed (Figure 2). A previous study with the rat model
demonstrated that gamma-vinyl GABA (vigabatrin), a GABA transaminase antagonist,
attenuated the addiction to cocaine (Figure 1) [81]. For alcohol addiction, vigabatrin greatly
decreased the number of patients requiring high-dose diazepam over the duration of their
alcohol abstinence and was correlated with a decline in adverse effects [82]. New GABA
aminotransferase (GABA-AT) inhibitors other than vigabatrin have also been developed.
For example, CPP-115 and Compound 5 showed more efficiency in inactivating GABA-AT
than vigabatrin and inhibited the dopamine transients in the corpus striatum upon an acute
cocaine or nicotine challenge [83].
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permeability. BBB-penetrable drugs are marked with red color; BBB-impenetrable neurotransmitters
and drugs are marked with the black color. Anatomical positions of the nasal cavity and the nucleus
accumbens (NAc; indicated by a red arrow) are shown.

Cocaine and amphetamine act on DAT directly, while opioids elicit dopamine tran-
sients indirectly through modifying GABAergic neurons. Thus, GABA analogues may
be less effective for cocaine or amphetamine addiction than for opioid dependence. In a
placebo-controlled double-blind clinical trial for treating cocaine addiction, no protocol-
defined difference in efficacy between vigabatrin treatments and the placebo was found [84].

6. Drugs for Synaptic Plasticity

The hallucinogenic alkaloid ibogaine has been shown in anecdotal and open-label
studies to decrease substance abuse in the clinic [85]. Like other psychedelic drugs, the
therapeutic effect of ibogaine is long-lasting [86], which may be attributed to its capability
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to regulate addiction-related neural circuits through the activation of neurotrophic factors,
e.g., brain-derived neurotrophic factor (BDNF) and glial-cell-line-derived neurotrophic
factor (GDNF) [87]. Nevertheless, many safety concerns have hampered the clinical de-
velopment of ibogaine including the cytotoxicity, hallucinogenic action, and side effect
of inducing cardiac arrhythmias. Recently, a non-toxic and non-hallucinogenic analogue,
tabernanthalog (TBG), has been developed. TBG enhanced the structural synaptic plasticity,
and decreased heroin and alcohol-seeking behaviors in rats [88].

Besides G-protein-coupled signaling, dopamine also works as a donor for the post-
translation modification (dopaminylation) on some enzymes, for example, histone H3
glutamine 5 dopaminylation (H3Q5dop) [89]. In rats, after cocaine withdrawal, a rapid
H3Q5dop increase was observed in the NAc. The inhibition of H3Q5dop in NAc after
withdrawal decreased the relapse-like behaviors and reversed cocaine-derived transcription
changes [90]. Besides H3Q5dop, DNA methylation also has an influence on locomotor-
activating and on substance addiction [25,91,92]. All of this research suggests that epigenetic
mechanisms, e.g., histone modification, may be involved in the responsiveness to substance
abuse. Whether ibogaine and its analogues affect the neuro-plasticity related epigenetic
signatures needs further investigations.

7. Drugs for Neuroinflammation

The neuro-immune responses to substance abuse are characterized by the proliferation
and functional and morphological alters of astrocytes and microglia. The microglia respond
directly to substance-induced neuronal injuries and are associated with the activation of
cytokine and chemokine signals, putatively resulting from substance-induced damages to
the BBB [14,93]. Microglial activation causes the cell migration to the damage sites, and
the releasing of inflammatory factors, such as tumor necrosis factor-α (TNF-α) and inter-
leukins [94]. Astrocytes also produce inflammatory factors upon BBB damage. Furthermore,
excess dopamine may activate DA receptors on glial cells and extend pro-inflammatory
signals by a further releasing of chemokines and cytokines [95]. Recently, Zhu et al. [96]
found that a significant increase in fragile-like regulatory T cells and increased interferon-g
expression were positively associated with the opioid abstinence score in mice. They in-
dicated that opioids enhanced the neuron-derived C-C motif chemokine ligand 2 (Ccl2),
caused BBB injuries, and induced peripherally regulatory T-cell infiltration into NAc, also
suggesting a role of neuroinflammation in the withdrawal symptoms.

Accordingly, anti-inflammatory drugs have been suggested to treat substance abuse
(Table 1) [95]. For example, rosuvastatin not only delayed, but also partially reversed,
the tolerance to morphine-induced analgesia in rats by attenuating the releasing of pro-
inflammatory cytokines in the lumbar spinal cord [97]. Repeated morphine administration
activated the astrocytes, while rosuvastation suppressed this activation [98]. Rosuvastatin
reversed the morphine tolerance also by inhibiting Rho GTPases activation [17,97–100].
However, a clinical trial of simvastatin on smoking cessation found that a 3-month sim-
vastatin administration did not improve smoking cessation significantly compared with
the placebo group [101]. Human clinical evidence of rosuvastatin on substance addiction
is still lacking. Ibudilast attenuated methamphetamine addiction in mice [102], while a
high-dose ibudilast (100 mg) treatment reduced methamphetamine self-administration and
craving in humans [103]. Minocycline ameliorated the cognitive impairment and synaptic
dysfunction induced by methamphetamine in mice [104], while minocycline reduced the
amphetamine-induced subjective rewarding effects in humans [105]. Pioglitazone (a perox-
isome proliferator-activated receptor PPAR-γ agonist) attenuated behavioral sensitization
during the withdrawal of methamphetamine in mice [106], while, in a clinical trial, piogli-
tazone reduced the craving for cocaine and enhanced white-matter integrity in cocaine
abusers [107]. However, another report showed that pioglitazone was marginally effective
in reducing the reinforcing effects of nicotine and the nicotine-seeking behaviors [108].
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Table 1. FDA-approved drugs for substance addiction.

Drug Name
(Administration Form)

Therapeutic
Mechanisms

Evidence in Animal
Experiments of Addiction

Evidence from Human
Clinical Trials to Addiction Refs.

L-methionine (oral or
injection)

Down-regulating Vav2
gene and influencing
DNA methylation in
NAc

Inhibiting cocaine
dependence in mice and rats None [23–25]

Fasudil/Ripasudil (oral
or injection)

ROCK inhibitor;
promoting DAT
recycling

Ameliorating spatial learning
and memory disorders
induced by smoking in mice

None [31]

Buspirone (oral)
D3R antagonist;
5-HT1A receptor
partial agonist

Abolishing cocaine and
alcohol primed reinstatement
in mice, dogs, and monkeys

Ineffectiveness to relapse to
cocaine [44–47]

Quinpirole (injection) D3R partial agonist
No significant effect on the
place preference induced by
cocaine or morphine in rats

None [60]

Cariprazine (oral or
injection) D3R partial agonist Decreasing cocaine

self-administration in rats None [61]

Citalopram/Escitalopram
(oral or injection)

Serotonin reuptake
inhibitor

Decreasing compulsive
cocaine self-administration
in mice

A high dose showed positive
effects on the longest
duration of cocaine
abstinence

[65,68,69]

Vigabatrin (oral or
injection)

GABA transaminase
inhibitor

Attenuating the acute
rewarding effects of cocaine
in rats

Alleviating alcohol addiction;
ineffectiveness for cocaine
dependence

[81,82,84]

Rosuvastatin/Simvastatin
(oral)

Anti-neuro-
inflammation;
inhibiting Rho GTPases
activation

Reversing the tolerance to
morphine-induced analgesia
in rats

Ineffectiveness for smoking
cessation [97,101]

Ibudilast (oral) Anti-inflammatory
drug

Attenuating
methamphetamine addiction
in mice

A high dose reduced
methamphetamine
self-administration and
craving

[102,103]

Minocycline (oral or
injection)

Anti-inflammatory
drug

Ameliorating cognitive
impairment induced by
methamphetamine in mice

Reducing amphetamine
induced subjective
rewarding effects

[104,105]

Pioglitazone (oral) Anti-inflammatory
drug

Attenuating behavioral
sensitization during the
withdrawal of
methamphetamine in mice

Reducing craving for cocaine;
showing marginal effects to
nicotine addiction

[106–108]

8. BBB-Penetrable Drug Delivery Methods

Many FDA-approved drugs for substance addiction have shown little to no evidence of
addiction in human clinical trials (Table 1). Additionally, some of these drugs have a limited
ability to cross the blood–brain barrier (BBB), which limits their effectiveness. Dopamine
also cannot penetrate the BBB, so it may be inferred that its analogue SK608 cannot either
(Figure 2). Utilizing nano-dimensional vehicles with vast surface areas can help overcome
the difficulties in penetration across the complicated physiology of the BBB [109,110].
Alternatively, intranasal administration is a non-invasive method that bypasses the BBB to
allow the direct access of drugs to the central nervous system, which has been showing
promising results recently [111–113]. The entry of drugs into the brain via the nasal cavity
could be divided into direct paths and indirect paths. In the direct paths, drugs may bypass
the BBB by entering the neurocytes through either the trigeminal or olfactory nerves in the
nasal cavity. This process would take place either by extracellular or intracellular pathways,
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i.e., the transcellular pathway and paracellular pathway, while, in the indirect paths, drugs
may be absorbed into the systemic circulation through capillaries present in the nasal
mucosa, and then gain access to neurocytes by crossing the BBB [111]. Anatomically, the
nasal cavity is close to the nucleus accumbens (Figure 2). Therefore, SK608 nebulization
therapy or a nasal spray might show a promising result for substance abusers.

The eye, an anatomical extension of the central nervous system (CNS), exhibits many
molecular and cellular parallels to the brain. Recently, Yin et al. [114] studied immune
responses to herpes simplex virus in the brain, and observed that intravitreal immunization
protects mice against an intracranial viral challenge. These results revealed a shared
lymphatic circuit able to mount a unified immune response between the posterior eye and
the brain, highlighting an understudied immunological feature of the eye and opening up
the potential for new therapeutic strategies in ocular and CNS diseases, maybe including
substance addiction.

9. Conclusions

D3R partial agonists may mitigate both the substance dependence and withdrawal
symptoms. Cariprazine is the only FDA-approved D3R agonist showing significantly
beneficial effects to substance addiction (Table 1). However, its clinical trials are still
needed. Most D3R partial agonists induce pharmacological sequestration and desensiti-
zation. SK608 may be the most promising drug without sequestration-inducing activities,
but the research on it is currently limited at the cellular level. Animal model experi-
ments, human clinical trials, and toxicological and pharmacological trials are still required.
SK608 cannot penetrate the BBB. Therefore, SK608 nebulization therapy or a nasal spray
is proposed. Alternatively, BBB-penetrable D3R agonists without sequestration-inducing
activities may be developed. Drugs for serotoninergic neurons may show some auxiliary
effects to the substance abusers, such as a high dose of citalopram (Table 1). New serotonin
reuptake inhibitors with a higher affinity and selectivity should be developed. GABA
transaminase inhibitors, e.g., vigabatrin, may treat opioid dependence, but showed less
efficiency for cocaine or amphetamine addiction (Table 1). Non-hallucinogenic analogues of
ibogaine are also promising drugs, since they promote structural neural plasticity after sub-
stance challenges. Neuroinflammation may play only a minor role in substance addiction,
although some anti-inflammatory drugs showed beneficial effects. Among FDA-approved
drugs, L-methionine may be the most promising one for clinical uses with significant
therapeutic effects but fewer side effects.

It is intriguing that substances like methadone, buprenorphine, naltrexone, or disulfi-
ram, and the cellular pathways modulated by them have not been explored. Nicotine and
alcohol addictions also represent serious problems for contemporary society. Rehabilita-
tion drugs to treat addiction to nicotine, alcohol, or new types of substances still need to
be developed.
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Abbreviations

5-HT 5-hydroxytryptamine
BBB blood–brain barrier
BDNF brain-derived neurotrophic factor
Ccl2 C-C motif chemokine ligand 2
D2R D2 dopamine receptor
D3R D3 dopamine receptor
DAT dopamine transporter
FDA Food and Drug Administration
GABA γ-aminobutyric acid
GABA-AT GABA aminotransferase
GDNF glial cell line-derived neurotrophic factor
H3Q5dop histone H3 glutamine 5 dopaminylation
KOR kappa opioid receptor
NAc nucleus accumbens
NMDA N-methyl-D-aspartic acid
NMDAR NMDA receptor
PET positron emission tomography
PPAR peroxisome proliferator-activated receptor
ROCK Rho-associated protein kinase
SERT serotonin transporter
TBG tabernanthalog
TNF-α tumor necrosis factor-α
VRAC volume-regulated anion channel
VTA ventral tegmental area
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