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Abstract: Overcoming the blood–brain barrier (BBB) remains a significant hurdle in effective drug
delivery to the brain. While the BBB serves as a crucial protective barrier, it poses challenges in
delivering therapeutic agents to their intended targets within the brain parenchyma. To enhance
drug delivery for the treatment of neurological diseases, several delivery technologies to circumvent
the BBB have been developed in the last few years. Among them, nanoparticles (NPs) are one of
the most versatile and promising tools. Here, we summarize the characteristics of NPs that facilitate
BBB penetration, including their size, shape, chemical composition, surface charge, and importantly,
their conjugation with various biological or synthetic molecules such as glucose, transferrin, insulin,
polyethylene glycol, peptides, and aptamers. Additionally, we discuss the coating of NPs with
surfactants. A comprehensive overview of the common in vitro and in vivo models of the BBB for
NP penetration studies is also provided. The discussion extends to discussing BBB impairment under
pathological conditions and leveraging BBB alterations under pathological conditions to enhance
drug delivery. Emphasizing the need for future studies to uncover the inherent therapeutic properties
of NPs, the review advocates for their role beyond delivery systems and calls for efforts translating
NPs to the clinic as therapeutics. Overall, NPs stand out as a highly promising therapeutic strategy
for precise BBB targeting and drug delivery in neurological disorders.

Keywords: blood–brain barrier (BBB); BBB permeability; nanoparticle; biomaterial; physicochemical;
conjugation; BBB models; microfluidics; BBB disruption; neurodegenerative diseases

1. Introduction

Neurological disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
multiple sclerosis (MS), stroke, and brain tumors manifest with a multitude of clinical
symptoms that are distinct for each clinical condition [1–4]. The most typical symptoms
include memory decline in AD, bradykinesia in PD, gait impairment and sensory deficits
in MS, speech impairment in stroke, and progressive sensorimotor deficits and seizures in
the case of brain tumors [1,5]. Therapeutic intervention against these neurological diseases
often requires brain-targeting drug delivery [1,6]. However, drug discovery efforts are
often hampered by the large percentage of drugs that are unable to cross the blood–brain
barrier (BBB) to target the brain due to their large sizes (>400 Da) and low lipophilicity [7,8].
Hence, circumventing the BBB poses a major challenge and holds paramount importance
in the context of treating various neurological disorders.

The BBB is structurally composed of endothelial cells, the vascular basement mem-
brane, pericytes, and astrocyte end-feet [9] (Figure 1). The endothelial cells of the BBB
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have tight junctions lacking fenestration and pinocytic activity, thereby preventing most
molecules and ions from paracellular transport [10]. Pericytes are vascular mural cells
located on the abluminal aspect of endothelial cells and wrapped by astrocyte end-feet,
which regulate cerebral blood flow by controlling the capillary vascular tone. Pericytes are
important for BBB formation and for downregulation of transcytosis activity when endothe-
lial cells mature [11]. Astrocytes play a crucial role in maintaining BBB integrity by releasing
neurotrophic factors and regulating permeability through the secretion of vasoconstrictor
or vasodilator mediators [12,13]. Therefore, pericytes and astrocytes affect transporta-
tion across the BBB. Drugs primarily penetrate the BBB and access the brain parenchyma
through paracellular transport between endothelial cells and astrocytic end-feet or via
transcellular transport [7,14]. In transcellular transport, passive and active transport mech-
anisms are involved. Passive transport relies on the physicochemical properties of the
therapeutic agent, such as small size and lipophilicity, facilitating passive diffusion [7,14].
Conversely, active mechanisms occur through carrier- or receptor-mediated processes,
requiring energy expenditure [7,14].
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Figure 1. Structure and function of the BBB. The BBB is structurally composed of endothelial cells,
the vascular basement membrane, pericytes, and astrocyte end-feet. The endothelial cells of the BBB
have tight junctions that lack fenestration and pinocytic activity, thereby preventing most molecules,
ions, and drugs from paracellular transport. Tight junctions consist of different integral membrane
proteins, namely, claudin, occludin, and junction adhesion molecules (JAMS), and several cytoplasmic
accessory proteins including Zonula occludens-1 (ZO-1) and others. This schematic was created with
BioRender.com.

Various strategies have been developed to improve drug delivery to the brain by
bypassing the BBB [15]. These strategies can be classified into invasive techniques including
intracerebral grafts, intrathecal brain delivery, and direct brain injection, and non-invasive
techniques such as focused ultrasound, intranasal delivery, and nanoparticle (NP)-mediated
delivery [15]. In non-invasive delivery techniques, intranasal delivery is an effective route
for administration of small lipophilic molecules to the brain [16], whereby the drugs
enters the nasal blood vessels and reach the BBB. NP-mediated delivery, due to NPs’ non-
invasive nature, adaptable administration routes, and customizable properties such as
stability and capacity to encapsulate both hydrophilic and hydrophobic substances, has
emerged as a versatile and promising approach for targeted brain delivery. The size of
NPs ranges between one and several hundred nanometers (nm), with optimal sizes of
about 10–100 nm for BBB targeting [17]. The primary categories of NPs encompass organic
NPs, which are composed of proteins, carbohydrates, lipids, polymers, or other organic
compounds; carbon-based NPs, including carbon dots; and inorganic NPs, which comprise
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metallic, ceramic, and semiconductor NPs [18]. NPs are typically used as delivery vehicles
to transport drugs to their target site, either encapsulating the drugs inside the NPs or
conjugating them at the surface of the NPs [19–21]. Recent advances in nanoformulation
systems to further enhance drug delivery and efficacy include soft nanomaterials (e.g.,
nanogels, and dendrimers), condensed nanomaterials (e.g., noble metals), and natural
biodegradable polymers (e.g., chitosan, alginate, starch) [22–24]. The versatility of material
properties enables the fine-tuning of drug lipophilicity and drugs’ uptake and targeting
profiles. This capability enhances drug delivery effectiveness across various contexts [17,25].
Importantly, there are also examples of NPs without any drug conjugation that can serve as
therapeutic agents themselves due to the medicinal chemistry of the materials used in their
synthesis [19,20,26,27].

In a clinical setting, NPs have been FDA approved for the treatment of various medical
conditions such as ovarian, breast, prostate, and lung cancer, leukaemia, Crohn’s disease,
rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis [25,28]. However, in
terms of brain targeting, NPs have only been approved for treatment of MS [25], although
they have been used for brain targeting in pre-clinical models and ongoing clinical trials [29].
Hence, there is a need to better understand how to optimize NPs for improved BBB
penetration and brain targeting. In this review, we summarize optimization strategies to
enhance the BBB penetration efficacy of NPs based on their physiochemical properties
and conjugations with functional ligands under different physiological and pathological
conditions. We further discuss different in vitro and in vivo BBB models and technologies
that can be used to determine the NPs’ ability to penetrate the BBB. Finally, we provide
future perspectives on NPs and drug-conjugated NPs as frontiers in nanomedicine and
potential personalized medicine, as well as their clinical applications in the treatment of
neurological diseases.

2. Factors for Optimization of Nanoparticles to Enhance BBB Penetration

The physiochemical characteristics of NPs play crucial roles in determining their
pharmacokinetic properties and the range of their biomedical applications. These features
are unique to each type of NP and are fundamental for interactions with their respective
targets in different brain regions. The physicochemical profiles can influence peripheral
metabolism and determine the amount of the drugs that can enter the brain. Key factors
include the size and shape, chemical composition (lipophilicity, biodegradability), surface
charge, and surface modification of NPs (Figure 2).

2.1. Size and Shape

One of the key factors that determines the ability of NPs to penetrate the BBB is their
size. BBB endothelial cells have tight junctions that allow molecules of less than 400 Da to
cross via passive diffusion [7]. Hence, the smaller the size of a NP, the higher its probability
of crossing the BBB. Nevertheless, it is important to acknowledge that NPs smaller than
5 nm are prone to elimination by the kidneys. Thus, there exists an optimal size range for
NPs, typically between 10 and 100 nm, that facilitates BBB penetration without encountering
renal elimination [17]. In one study, the size-dependent biodistribution of gold NPs of four
different sizes—10, 50, 100, and 250 nm—administered in healthy male Wistar-derived rats
was measured to assess their ability to penetrate the BBB. It was reported that while most
of the NPs showed accumulation in the liver and spleen, NPs with a size of 10 nm were the
only ones that could be detected in the brain [30]. In another instance, poly(lactic-co-glycolic
acid) (PLGA) NPs of different sizes (100 nm, 200 nm, and 800 nm) were administered to a
BALB/c nude mouse with TBI; NPs with a size of 100 nm penetrated the greatest depth
through the TBI region located in the central region of the parietal lobe [31]. Similarly,
the dynamics of methotrexate-loaded polybutylcyanoacrylate NPs with different sizes of
70, 170, 220, and 345 nm across the BBB were investigated via intravenous injection into
healthy Sprague–Dawley rats, and NPs less than 100 nm showed penetration through
the BBB [32]. While the size of NPs is an important factor for BBB penetration, there is
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currently no consensus on the optimal size across broad categories of NPs. The shape of
NPs also determines their potential to cross the BBB. In most cases, NPs have a spherical
morphology, but other shapes like discs, rods, and cubes can also be constructed [33]. The
shape of the NPs not only influences their ability to interact with the brain endothelium but
also their clearance rate from the brain through blood circulation. Compared to spherical
polystyrene NPs, rod-shaped NPs adhere to a greater extent to the brain endothelium and
are subsequently transferred into the brain parenchyma, leading to a higher accumulation
in the brain [34,35]. Beyond this central interaction, a non-spherical geometry is associated
with a lower probability of uptake from peripheral phagocytes, resulting in a higher amount
of NPs reaching the central nervous system (CNS) [36].
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Figure 2. Factors enabling NPs’ BBB penetration. Factors influencing NPs’ ability to penetrate the
BBB. The size, shape, chemical composition, and surface charge are four major factors that affect
NPs’ BBB penetration capability. Small NPs with a rod-like structure, lipophilic NPs, and NPs with
positive charges have a higher capability of crossing BBB endothelial junctions. Schematics were
created with BioRender.com.

2.2. Chemical Composition (Lipophilicity, Biodegradability)

The chemical composition of nanoparticles, particularly their lipophilicity, signifi-
cantly influences their ability to penetrate the BBB [37,38]. As mentioned in the previous
sections, the BBB consists of endothelial cells which are highly lipophilic. Hence, NPs
which are lipophilic in nature can efficiently cross the endothelial monolayer and enable
sufficient delivery of drug molecules to the brain parenchyma [39,40]. Various lipid-based
drug delivery systems, such as solid lipid NPs, nanostructured lipid carriers, liposomes,
niosomes, and cubosomes, have been explored for this purpose [38]. In addition to using
materials that can enhance BBB penetration, the biodegradability of the material can play
an important role in determining the rate of drug release from the NP and the control of
the drug pharmacokinetics, thus mitigating unwanted drug accumulation and its potential
side effects [41] and promoting better biocompatibility [42]. The three primary classes of
biodegradable polymers include polyesters, polysaccharides (such as chitosan and cellu-
lose), and poly(alkylcyanoacrylates) (such as poly(butyl cyanoacrylate) and poly(isohexyl
cyanoacrylate)) [43–46].
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2.3. Surface Charge

Another crucial parameter that modulates the passage of NPs across the BBB is surface
charge. Surface charge can influence the peripheral tissue uptake of NPs circulating in
the blood as well as the interaction of NPs with the BBB endothelium. Positively charged
NPs have been found to show an increased cellular uptake rate compared to negatively
charged and neutral NPs as examined across eight human cell lines [47]. BBB endothelial
cells are more negatively charged because they harbour a higher quantity of proteoglycans,
suggesting that positively charged NPs are more likely to be transferred through the
BBB [48,49]. Using zeta potential measurements in bovine brain capillary endothelial
cells through dynamic light scattering, it was shown that brain endothelial cells have a
higher density of anionic charges, resulting in the ease of BBB penetration by lipophilic
cationic compounds [48,49]. In addition, the final depth of tissue penetration can also vary
depending on surface charge. For example, while positively charged gold NPs (+30 mV)
may be preferable for drug delivery due to their higher level of uptake by proliferating
cells, negatively charged NPs (−36 mV) may be more effective in delivering drugs deeper
into the tissues because they have a higher diffusivity [50]. Furthermore, it is worth
noting the toxicity and the potential compromise of BBB integrity that are associated
with charged NPs [51]. In male Fischer-344 rats, it was shown that neutral NPs and low
concentrations of anionic NPs do not compromise BBB integrity. On the other hand, high
concentrations of anionic NPs and cationic NPs can disrupt the BBB within a relatively
short timeframe [51]. It was postulated that the toxicity of anionic NPs is attributed to the
negatively charged surfactant, while the toxicity of positively charged NPs is ascribed to
accumulation of [14C]-sucrose in the BBB endothelium [51]. The effect of surface charge in
determining the efficiency of NP-mediated brain targeting remains elusive and warrants
further investigation.

2.4. Surface Modification

Surface modification or conjugation of active functional groups to NPs represents
an additional strategy for modulating efficiency in BBB penetration. This approach is
particularly valuable when optimizing the inherent physicochemical properties of NPs
alone proves insufficient to achieve the desired targeting efficiency. Furthermore, NPs
have a high surface-to-volume ratio, which is ideal for functionalization with ligands or
active functional groups to enhance BBB targeting [17,52]. Strategies to conjugate the NPs
with biological or synthetic molecules, or to coat NPs’ surfaces with surfactants, have
been developed to enhance the binding of NPs with specific BBB endothelial receptors or
decrease the level of systemic clearance [53–55]. Importantly, it is feasible to finetune the
administration of NPs to reach specific brain regions by targeting the higher expression
levels of specific receptors in distinct neuronal populations [53,54]. It is also important to
note that subtle deviations in density can have an impact on the drug delivery of conjugated
NPs [56,57]. Below, we provide a summary of the properties and conjugation methods
for various categories of ligands commonly used for the functional modification of NPs
(Figure 3A).

2.4.1. Glucose

Conjugation of NPs with glucose or related derivatives enhances BBB penetration
by leveraging their binding affinity to specific glucose transporters on the endothelial cell
surface. Specifically, glucose transporter type 1 (GLUT1) constitutes the subtype that is
mainly expressed in the brain endothelium and principally responsible for glucose up-
take [58]. Glucose-coated gold NPs have been shown to be transferred three times faster
in cerebral endothelial cell lines compared to non-brain endothelial cell lines [59]. In the
same study, a 3D co-culture system of primary human astrocytes and human endothelial
cell lines was utilized, and it was shown that the glucose-conjugated NPs were accumu-
lated within the astrocytes [59]. Another study provided evidence for a more effective
internalization of 2-deoxy-D-glucose-coated NPs into an RG-2 glioma cell line compared to
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non-glycosylated counterparts [60]. These NPs were loaded with paclitaxel and displayed
a higher intra-tumoral accumulation and a correspondingly higher therapeutic efficacy in
orthotope glioma-bearing mice [60]. Glucose derivatives such as maltobionic acid can also
be conjugated to telodendrimer-based NPs to enhance uptake through the BBB [61]. In
mice bearing orthotopic patient-derived xenografts of diffuse intrinsic pontine glioma, NPs
conjugated with maltobionic acid promoted BBB penetration through GLUT1-mediated
transcytosis and increased the survival of the mice [61] (Figure 3B). It is worth noting that
GLUT1 expression levels vary depending on different CNS pathological conditions. For
example, it has been reported that GLUT1 is expressed at low levels in the cortex and
hippocampus in human AD brains [62]. In glioblastoma, GLUT1 has been found increased
within hypoxic necrotic areas, as opposed to the better oxygenated invasive borders and
low-grade gliomas, where a decreased expression has been observed [63].
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(A) Ligands and chemical groups utilized for NPs include glucose, transferrin, insulin, aptamer,
peptides, polyethylene glycol (PEG), and surfactants. These surface functionalization groups facilitate
NPs’ entry through the blood–brain interface and uptake by the brain. (B) NPs with ligands and
chemical groups can be recognized by cell surface receptors such as glucose transporter (GLUT-
1), transferrin receptor (TfR), low-density lipoprotein receptor-related protein 1 (LRP-1) receptor,
and insulin receptor (IR), which facilitate transcellular NP transport through different mechanisms.
Schematics were created with BioRender.com.
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2.4.2. Transferrin

Transferrin is an essential iron transporter abundant in the BBB endothelium, rendering
it a good mediator for targeted drug delivery in the brain [64]. NPs conjugated with
transferrin receptor (TfR)-targeting ligands or antibodies can promote their transcytosis
across brain endothelial cells via receptor-mediated endocytosis. PEGylated albumin NPs
with anchored transferrin on their surface have shown increased uptake and localization
in the brains of healthy Wistar strain albino rats when intravenously administered [65].
Gold NPs with transferrin conjugation enhanced brain localization when systemically
administered to BALB/c mice, and a larger amount of transferrin enabled strong attachment
of gold NPs to brain endothelial cells [66]. However, although many NPs bound to the cells,
they were mostly excluded from entering the brain. A follow-up study by the same group
further optimized the NPs’ conjugation with an acid-cleavable linkage that allows the
release of NPs from transferrin that is bound to the brain endothelial cells’ TfRs to facilitate
their entry into the cells, allowing for increased delivery efficacy [67]. Transferrin-modified
magnetic NPs have also been applied to promote the entry of small interference RNA
against polo-like kinase I (siPLK1) into the brain in the context of glioblastoma [68]. The
study showed an enhanced cellular uptake of siPLK1 in conjunction with an increased
cytotoxic effect on the U87 glioblastoma cell line. Furthermore, the application of transferrin-
modified magnetic NPs has demonstrated the accumulation of siPLK1 within the brain
tissue of glioblastoma-bearing mice, together with a significant reduction in the tumor
mass and improved survival of the mice [68]. Other transferrin-conjugated NPs have been
reviewed elsewhere [69].

2.4.3. Insulin

Another well-studied ligand important for BBB transport is insulin, which binds to
insulin receptors (IR) on endothelial cells [70]. Ulbrich et al. conjugated insulin onto human
serum albumin NPs and induced significant antinociceptive effects in mice [71]. In another
instance, a monoclonal antibody that targets IR was modified on solid lipid NPs to improve
the brain-targeting delivery of saquinavir [72]. Insulin-coated gold NPs (INS-GNPs) were
synthesized to serve as a BBB transport system. INS-GNPs were found in mouse brains at
five times greater concentrations than control untargeted GNPs. In addition, INS-GNPs can
serve as computed tomography contrast agents to highlight specific brain regions in which
they accumulate [73]. In a follow-up study, it was found that the 20 nm INS-GNPs had
the highest accumulation within the brain, in line with the optimal size range discussed in
earlier sections [53].

2.4.4. Polyethylene Glycol (PEG)

The conjugation of NPs with PEG impacts the biodistribution of NPs by enhancing the
efficacy of systemic delivery [74]. PEG is a hydrophilic molecule which provides a shield
that prevents the interaction of circulating NPs with other blood components, thereby
reducing opsonization and phagocytosis, which lead to their clearance from circulation [74].
Hence, PEGylation reduces uptake of NPs by the reticuloendothelial system and increases
the probability of NPs reaching the BBB to interact with the brain endothelium. An added
advantage of PEGylation is that it can act as a linker for ligand molecules to achieve active
targeting to the brain [75]. These ligands include transferrin that binds to transferrin
receptors on brain endothelial cells, lactoferrin that targets lactoferrin receptors, and other
BBB-targeting peptides like arginyl-glycyl-aspartic acid (RGD), which target αvβ3 integrin
receptors [75]. Furthermore, PEGylation of NPs potentially decreases their neurotoxicity. In
a study, lipid NPs were shown to induce neurovascular damage when injected into THY1-
YFP transgenic mice via activation of caspase-1 and IL-1β [76]. PEGylation of lipid NPs
abrogated P2X-caspase-1/IL-1β signaling in microglia, which reduced neuroinflammation
and neurovascular damage [76].
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2.4.5. Peptides

Conjugating peptides with NPs enables them to bind to receptors and other proteins
expressed on BBB endothelial cells, facilitating penetration of the BBB [77]. Typical exam-
ples of peptides targeting receptors that have been used in brain disorders include the
RGD peptide targeting αvβ3-integrin, which is highly expressed on tumor tissues [78]. In
a study by Lou et al., cationic polymers constructed via RAFT copolymerization of N-(2-
hydroxypropyl)-methacrylamide and N-acryloxysuccinimide conjugated with PEG-RGD
peptides self-assembled with small interfering RNA (siRNA) to form NPs of 40 nm in
size and displayed a two-fold increase in cellular uptake in glioblastoma cell lines [79].
Similarly, conjugation of a cyclic RGD ligand to poly(ethylene glycol)-block-poly(lactic acid)
polymeric micelles enabled efficient transport across the intact BBB of normal mice and was
able to also specifically target glioma cells of intracranial glioma-bearing nude mice [80].
Angiopep-2 (TFFYGGSRGKRNNFKTEEY) targets low-density lipoprotein receptor-related
protein 1 (LRP-1) that is overexpressed by both endothelial cells of the BBB and glioma
cells and has been used to coat hyaluronic acid NPs to enhance delivery to human glioblas-
toma cells [81]. While targeting LRP-1 on endothelial cells increases BBB transcytosis,
studies have also shown that LRP-1 on the abluminal side of the BBB can clear LRP-1
targeting therapeutics [82]. To circumvent abluminal LRP-1-mediated clearance when
utilizing angiopep-2 for brain targeting, a fusion peptide, K-s-A, was developed. This
peptide responds to matrix metalloproteinase-1 cleavage on the abluminal side of the BBB,
triggering the release of angiopep-2 to evade abluminal LRP-1-mediated clearance [82].
The peptide G23 has also been shown to promote BBB transcytosis upon binding to the
ganglioside GM1 [83]. G23-coated curcumin-loaded zein NPs exhibited an increased tran-
scytosis level as well as antitumor activity in a glioma cell line and in a 3D tumor spheroid
model [84]. In a study using amyloid precursor protein/presenilin 1 (APP/PS1) transgenic
mice, PEGylated NPs were loaded with siRNA and coated with the CGN peptide for BBB
penetration and the Tet1 peptide for neuron-specific targeting to decrease the activity of
the β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) [85]. This construct led
to a decrease in BACE1 mRNA levels which was phenotypically translated into improved
cognition in mice. Glutathione (GSH, L-γ-glutamyl-L-cysteinyl-glycine), a tripeptide, has
also been used as an adjunct to facilitate drug delivery into the brain. GSH PEGylated lipo-
somes were able to enhance BBB targeting efficacy and deliver higher amounts of amyloid
beta-binding llama single-domain antibody fragments to a mouse model of AD [86]. Other
types of peptides and conjugation strategies for NPs have been reviewed elsewhere [87].

2.4.6. Aptamers

Aptamers constitute single-stranded oligonucleotides (DNA or RNA) that fold into
defined 3D architectures and bind to specific molecules. They are typically obtained
through combinatorial chemical technology, termed systemic evolution of ligands by
exponential enrichment, against specific targets. In the past few years, aptamers have
emerged as another conjugate for nanocarriers to promote their transport through the
BBB, and recently a new human BBB shuttle aptamer, hBS, was discovered [88]. In a
BBB microenvironment with human brain microvascular endothelial cells, astrocytes, and
pericytes, the hBS aptamer was transported efficiently across the BBB through clathrin-
mediated endocytosis [88]. Gold NPs conjugated to the aptamer U2 showed enhanced
uptake in glioblastoma-bearing Balb/c nude mice compared to unconjugated gold NPs,
thereby prolonging survival of the mice [89]. In another study, Gint4.T aptamer, which
targets the platelet-derived growth factor receptor β, was conjugated to polymeric NPs
containing a PI3K-mTOR inhibitor. In nude mice bearing intracranial U87MG tumor
xenografts, there was increased accumulation of these polymeric NPs in mice brains
compared to those without Gin4.T aptamer conjugation [90]. The existing evidence on
aptamers and their role in NPs’ delivery stems from the field of glioblastoma treatment,
but in the future the focus should also be moved to neurodegenerative disorders, especially
after the recent advances in developing aptamers against amyloidogenic proteins [91].
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2.4.7. Surfactants

In addition to chemical modifications to the material backbone of NPs, surfactants
that coat the surface of NPs can play a role in modulating BBB penetration. For example,
PLGA NPs co-delivering methotrexate and paclitaxel were coated with the surfactants
polyvinyl alcohol and poloxamer 188, which facilitated NP uptake by U-87 MG (human
glioblastoma) and B65 (rat neuroblastoma) cell lines [92]. PEG surfactant has also been
shown to increase internalization of PLGA NPs in the brains of Sprague–Dawley rats,
where they were internalized within neurons and microglia [55]. In addition, NPs coated
with the surfactants poloxamer 407 and polysorbate 80 have also demonstrated uptake in
BBB endothelial cells and enhanced accumulation within the brain [55].

3. In Vitro and In Vivo Models of BBB and Ways to Detect BBB Penetration
3.1. In Vitro Transwell Models

While animal studies are advantageous since they comprise all the components and
factors that modulate BBB penetration, they tend to suffer from large biological variabil-
ity [93] and are typically tedious and expensive [94]. To circumvent these limitations, a
broad variety of in vitro models have been developed over the last few decades with in-
creasing complexity and anatomical accuracy. Comprehensive reviews have been published
on these in recent years [95–97], and the key models are summarized here.

The simplest in vitro BBB model involves the use of the two compartment transwell
setup, which is comparably straightforward to assemble (Figure 4A) [98]. Primarily, BBB en-
dothelial cells are grown as a monolayer on the porous membrane insert, while other astro-
cytes, pericytes, and other neural cells are grown in the basolateral compartment [99–101].
While this arrangement lacks direct cell-to-cell communication between pericytes, astro-
cytes, and endothelial cells, it promotes BBB regulation indirectly via secreted soluble
proteins. However, this model is limited by the fact that NPs can adhere to the mem-
brane filter and become trapped within its pores, thus preventing effective analysis of the
transendothelial delivery of NPs [102]. To overcome the issue with this model, a filter-
free transwell model has been developed which consists of a collagen gel covered with
a monolayer of brain microvascular endothelial cells. The transendothelial delivery of
PEG-P(CL-g-TMC) polymersomes that were functionalized with GM1-targeting peptides
was assessed by fluorescence microscopy, and it was confirmed that this system allowed
for more NP transcytosis compared to that of a conventional transwell filter system [103].

A monolayer of cells fails to replicate the intricate organization seen at the BBB, lacking
the complex architecture inherent in its structure. In contrast, 3D cell cultures can accurately
mimic the neurovascular unit cells as well as the vasculature [104,105]. These structures are
typically generated by co-culturing cells from the neurovascular unit within hydrogels that
emulate the extracellular matrix, through self-assembly in culture media, or by employing
precision-engineered microstructures designed to simulate the 3D physiological architec-
ture (Figure 4A) [97]. In a recent example, Singh et al. developed a hydrogel-based BBB
using a collagen hydrogel containing astrocytes overlaid with a monolayer of endothelium
cells on a transwell setup. The endothelial monolayer had transendothelial electrical resis-
tance values and expressed tight-junction markers typical of the physiological BBB. This
model was used to monitor transport of glycoproteins [106]. Vasculogenesis is also possible
within the hydrogel through invasion of tip cells from the BBB endothelial monolayer or
self-asembly of the endothelial cells seeded in the hydrogel [107]. The use of hydrogels
provides an extracellular matrix (ECM) where cells can establish cell–cell and cell–ECM
interactions in a 3D environment [108]. These hydrogel models can be formed on standard
culture plates, obviating the use of specialized equipment, which makes them an afford-
able option for the development of 3D BBB models. However, hydrogel-based models
suffer from disadvantages such as difficulty in optimizing the mechanical properties of the
hydrogel for suitable cell growth and limited contact between the various cell types.
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BBB models are widely used, with more complex models achievable using hydrogels, spheroids,
or organoids. (B) Microfluidics allows for the introduction of shear flow while maintaining com-
partmentalization of BBB cells. Novel fabrication methods enable the production of anatomically
accurate vessels with circular cross-sections. (C) Animal studies typically employ rodent models.
NP uptake can be directly observed via fluorescence visualization or autoradiography or indirectly
assessed through pharmacokinetic assays, histology-based biodistribution studies, or behavioral tests.
(D) Clinical studies to assess NP BBB penetration are typically conducted using positron emission
tomography (PET) imaging or single-photon emission computed tomography (SPECT) scans of
human brains. Arrows indicate direction of blood flow in (blue) and out (red) of the brain. (E) Motor,
behavioral, and cognitive tests are conducted on human subjects to determine the efficiency and
effectiveness of therapeutic targeting. Schematics were created with BioRender.com.

Spheroids or organoids are formed by a collection of organ-specific cell types capable
of self-assembly and self-organization akin to in vivo conditions and have been used as
models to study BBB penetration (Figure 4A) [109–112]. Unlike hydrogel-based models,
spheroids lack supporting structures or scaffolds, maximizing direct cell–cell contact among
neurovascular unit cells. To fabricate spheroid-based models, a suspension of neurovascular
unit cells is seeded into low-attachment or hanging-drop culture plates to allow cells to self-
assemble [109]. In addition, human BBB organoids can be produced at a high throughput
using micro-patterned hydrogels. This technique enables the generation of BBB organoid
arrays, facilitating the simultaneous growth of over 3000 uniform organoids per experiment
with good reproducibility [110]. Generally, endothelial cells, astrocytes, and pericytes
are the most traditional neurovascular unit cells used in the construction of spheroids.
However, alternative cells such as neurons, microglia, or oligodendrocytes can be included
to increase the grade of physiological relevance. For example, spheroids comprising
astrocytes, microglia cells, oligodendrocytes, and neurons with a surface layer consisting of
pericytes and endothelial cells were used to study the penetration of gold NPs [111]. In
another instance, BBB spheroids comprising microvascular endothelial cells, brain vascular
pericytes, and astrocytes combined with primary cortical neurons and microglia isolated
from neonate rats were used to study the transport of CS-PMMA30:PVA-PMMA17 NPs
across them. While most of the NPs accumulated on the spheroid surface, some NPs
permeated into the spheroids and suggested the possible involvement of astroglia or
microglia in the transport of CS-PMMA30:PVA-PMMA17 NPs [112].

BioRender.com
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3.2. In Vitro Microfluidic Models

The transwell model is generally unable to fully reproduce the complexity of the
BBB, including aspects such as shear flow and vascular geometry, resulting in only a
modest estimation of in vivo BBB permeability [113]. Physiological levels of fluid shear
have been shown to have a protective effect on the BBB through reinforcement of the
tight junctions and suppression of inflammation, while elevated shear has been linked
to BBB disruption through tight junction degradation [114]. Microfluidic models of the
BBB have been developed to allow for fluid flow to be supplied (Figure 4B). These models
typically comprise a main flow channel lined with cultured BBB endothelial cells flanked by
a secondary channel containing the supporting cell types, interfaced by a porous polymeric
membrane [115,116]. BBB microfluidic chips with shear flow minimize nonspecific NP
binding and accumulation on the side walls and allow for the direct visualization of NP
localization, which offers the possibility of studying NP transport and trafficking [117,118].
Examples of NPs studied using such models include high-density lipoprotein-mimetic NPs
with apolipoprotein A1 and gH625 peptide-conjugated polystyrene NPs [117,118].

Due to the nature of the microfluidic device fabrication procedure, their configura-
tions are usually sandwich-like and planar and thus lack the curvature representative of
blood vessels as described above. To this end, upgraded 3D configurations of the microflu-
idic BBB models have been developed to produce cylindrical flow channels which are
more biomimetic. For example, a microfluidic model with a cylindrical channel generated
by “viscous fingering” was manufactured, which entails the prefilling of the microchan-
nel with hydrogel followed by displacement of the circular channel by a hydrostatically
driven flow of culture media [119]. In other instances, soluble microneedles were used to
construct an array of parallel microchannels within a collagen hydrogel [120], and ultra
high-resolution two-photon lithography was used to reproduce the capillary network in
the BBB anatomy [121].

3.3. In Vivo Models

While the in vitro models discussed in preceding sections provide the advantages
of reproducibility and straightforward experimental comparisons, they fall short of the
physiological intricacy achievable only through in vivo models. Animal models offer a
platform for effectively exploring BBB penetrance and physiological regulatory mechanisms.
Studies on NP penetration have predominantly utilized rodent models, including mice
(e.g., Balb/c, Kunming, ICR, FVB/Ntac) and rats (e.g., P18, Sprague–Dawley, Wistar,
Fischer-344) (Figure 4C) [122]. Access points for NP infusion include the carotid artery,
femoral vein, tail vein, and jugular vein, as well as direct injection into the heart. NP
penetration is then typically assessed qualitatively via direct fluorescence visualization or
behavioral tests, or quantitatively using autoradiography, pharmacokinetic blood plasma
measurements, microdialysis, or histological biodistribution studies [122]. For instance,
a rodent model was employed to examine the BBB penetrance of carbamazepine-loaded
methoxy poly(lactide-co-glycolide)-b-poly(ethylene glycol) methyl ether NPs [123]. The
efficacy of focused ultrasound in enhancing NP delivery into the brain was explored in
a mouse model [124]. In this study, 8 week-old ICR mice received injections of gold NPs
and were sacrificed post-ultrasound exposure. Subsequently, their brains were collected,
digested in nitric acid, and analyzed for NP uptake using inductively coupled plasma–
optical emission spectrometry [124]. APP/PS1 double transgenic C57BL/6 mice were used
to evaluate the efficacy of Prussian blue/polyamidoamine dendrimer/angiopep-2 NPs in
crossing the BBB and regulating microglia function for the treatment of AD [125]. A middle
cerebral artery occlusion ischemic stroke mouse model was also used to study the delivery
of microglia-targeting lipid NPs to the brain [126]. Histological and neurobehavioral tests
can also be used to assess NP efficacy, as shown in the delivery of dopamine-loaded NPs
across the BBB of 6-hydroxydopamine PD mice [127].



Pharmaceuticals 2024, 17, 612 12 of 25

3.4. Clinical Detection of BBB Penetration

In a clinical setting, BBB penetrance and the entry of therapeutics into the BBB
parenchyma can be evaluated based on clinical, electrophysiological, and imaging tech-
niques. These methods include positron emission tomography (PET), single-photon emis-
sion computerized tomography (SPECT), and cerebrospinal fluid (CSF) sampling to in-
directly measure BBB penetration (Figure 4D) [128]. PET enables the visualization of the
localization of radiolabelled drugs in the brain, and an improved technique measures
displacement of a validated PET tracer from a receptor, which can provide direct evidence
of both BBB penetration and binding to the relevant receptor. SPECT is a less expensive
alternative to PET, but it is also more difficult to quantify reliably enough for predictions of
drug concentrations in the CNS. Future studies could potentially integrate these tracers in
NP-mediated drug delivery to monitor BBB penetration. For CSF sampling, it is generally
accepted that if a compound reaches the CSF, it has the propensity to reach the brain too.
Unfortunately, obtaining a CSF sample by lumbar puncture or spinal catheterization can be
distressing, causing post-puncture headache in 5–50% of cases [129], and does not defini-
tively demonstrate that pharmacologically active levels of the compound reach the target
tissue. Recently, a battery of drug-sensitive CNS tests called NeuroCart has been developed
to determine the efficiency and effectiveness of drug targeting (Figure 4E) [128]. NeuroCart
entails pharmacodynamics tests that capture CNS function across six domains including
executive function, attention, memory, visuomotor function, motor skills, and subjective
drug effects, and has been shown to display a clear concentration-dependent relationship
with the administered drug [128]. Although not yet fully established, NeuroCart represents
a useful tool to confirm if a drug (NPs that are either non-conjugated or conjugated) can
penetrate the BBB. The list of in vitro and in vivo models of the BBB is summarized in
Table 1.
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Table 1. In vitro and in vivo BBB models for investigation of NP penetration.

BBB Model Features Advantages Limitations

In vitro BBB models

Transwell

Two-compartment model comprising BBB
endothelial cells grown as a monolayer on the
porous membrane insert, while other astrocytes,
pericytes, and other neural cells are grown in the
basolateral compartment.

Simple to set up and allows for co-culturing of
different cells in the neurovascular unit.

Monolayer of cells fails to replicate the organization
and architecture of the BBB.
NPs can be trapped in the membrane filter.
Absence of fluid shear.

Hydrogel

Generated by co-culturing cells from the
neurovascular unit within hydrogels that emulate
the extracellular matrix, through self-assembly in
culture media, or by employing
precision-engineered microstructures designed to
simulate the 3D physiological architecture.

The extracellular matrix enables cell–cell and
cell–ECM interactions in a 3D environment, with
possible vasculogenesis.
Affordable procedure with minimal need for
specialized equipment.

Difficulty in optimizing the mechanical properties
of the hydrogel for suitable cell growth.
Limited contact between various cell types.
Absence of fluid shear.

Spheroid/organoid
Formed by a collection of organ-specific cell types
capable of self-assembly and self-organization akin
to in vivo conditions.

Direct cell–cell contact among neurovascular unit
cells.
Ease of multiplexing using spheroid/organoid
arrays.

No current demonstration of direct quantification of
NP transport.
Absence of fluid shear.

Microfluidic

Typically comprises a main flow channel lined with
cultured BBB endothelial cells flanked by a channel
containing the supporting cell types, interfaced by a
porous polymeric membrane. 3D upgrades are
available with biomimetic cylindrical blood vessels.

Inclusion of fluid shear to reproduce physiological
conditions.
Direct visualization of NP localization is possible.

Microfabrication process is tedious and
resource-intensive.
Sophisticated skillset required for microchannel
assembly and cell culture.

In vivo BBB models

Mice (Balb/c, Kunming, ICR, FVB/Ntac) NPs are administered and assessed qualitatively via
direct fluorescence visualization or behavioral tests
or quantitatively using autoradiography,
pharmacokinetic blood plasma measurements,
microdialysis, or histological biodistribution studies

Reproduces the true physiological complexity in
terms of architecture and cellular composition.
Available disease models such as AD, PD, and
stroke.

Large biological variability between animals
reduces reproducibility of findings.
Tedious and expensive to maintain animals,
requiring stringent study planning and animal
welfare considerations.

Rat (P18, Sprague Dawley, Wistar, Fischer-344)

Human studies

Clinical trials

NP penetrance and entry into the BBB parenchyma
can be evaluated based on clinical,
electrophysiological, and imaging techniques such
as PET, SPECT, and CSF sampling.

Circumvents model fidelity limitations.
Direct visualization of localization of radiolabelled
drugs in the brain possible.

Radiological imaging techniques are expensive and
have limited accuracy in quantifying drug
concentrations in the CNS.
Lumbar puncture for CSF sampling can be
distressing and cannot conclude whether a
compound has reached its target.
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4. Route of NP Administration and Uptake under Normal BBB Conditions

The most common routes of administering NPs to the brain include oral, transdermal,
intravenous (systemic), and inhalation methods [130,131], each with its own set of advan-
tages and disadvantages. Oral and transdermal administration offer non-invasive NP
delivery options. Generally, the oral route is preferred due to its convenience, painlessness,
and lower risk of infection and needle injuries [132]. Inhalation and transdermal deliveries
offer additional benefits such as the large surface area of the skin and lung endothelium,
as well as localized action without the risk of systemic side effects [130]. In comparison,
the intravenous route (systemic administration) offers the major advantage of rapid onset
of action and bypasses first-pass metabolism or degradation by proteolytic enzymes in
the gastrointestinal tract [131]. First-pass metabolism in the liver leads to decreased drug
concentrations in the blood and subsequently at the BBB, representing the primary disad-
vantage of oral delivery, along with reduced absorption due to a damaged gastrointestinal
epithelium [130,133]. However, the intravenous route may be considered more invasive
compared to others, as it requires venipuncture. Intranasal administration has garnered
increased interest recently due to its potential for direct transport into the brain via olfactory
neurons, bypassing the BBB restriction [134]. This method is less invasive compared to
others, although it is hindered by ciliary movements, which can dampen absorption despite
the dense network of blood vessels in the nasal mucosa [135].

In addition to various routes of administration, emerging technologies facilitate the
uptake of NPs across the BBB locally. Focused ultrasound (FUS), generated from a curved
transducer or phased array, has become a common method for enhancing drug delivery
by transiently opening the BBB [136]. FUS-induced BBB opening allows NP-based drug
delivery systems to efficiently reach the brain. Furthermore, photoacoustic brain imaging
using NP-based contrast agents effectively visualizes brain morphologies or diseases. The
application of FUS-mediated NP delivery has been extensively reviewed [136]. In addition
to leveraging technological adjuncts, NP delivery can be enhanced through co-delivery
or combination strategies. For example, a co-delivery system employing methotrexate
and paclitaxel loaded simultaneously into PLGA NPs facilitated their uptake into brain
cell lines [92]. Upon reaching the BBB, NPs can enter the brain parenchyma through
either passive or active transport mechanisms. Small lipid-soluble particles may pas-
sively diffuse through endothelial cell membranes or via paracellular transport across
tight junctions [17,137]. However, passive diffusion is less common, as the majority of
NPs are taken up through carrier-mediated, receptor-mediated, or adsorption-mediated
transport mechanisms [17,137]. To facilitate carrier- and receptor-mediated transport,
NPs themselves or conjugated molecules on their surface bind with high affinity to car-
riers or receptors. In carrier-mediated transport, transport proteins anchored in the cell
membrane facilitate the entry of NPs across the plasma membrane into the cytoplasm.
In receptor-mediated transport, NPs binding to specific receptors on the cell membrane
cause membrane invagination and the formation of endosomes containing the NP-receptor
complex. Adsorption-mediated transport operates similarly, often via clathrin-mediated
endocytosis, with intracellular vesicles transported to the basal membrane, although ini-
tial interactions are mediated by electrostatic forces between positively charged NPs and
negatively charged cell membranes [17,137]. To overcome challenges associated with BBB-
specific delivery, intraparenchymal and intraventricular delivery strategies can be used,
which have the advantage of direct (local) delivery into the brain [138]. However, these
procedures necessitate invasive neurosurgery, limiting their applicability [138]. Therefore,
formulating an optimal NP delivery vehicle requires careful consideration of the route of
administration, physicochemical characteristics, and functionalization affecting cellular
uptake routes.

5. Effect of BBB Breakdown on NP-Mediated Drug Delivery

Under normal conditions, the BBB serves as a robust shield, safeguarding the CNS
from potentially neurotoxic substances. However, in pathological conditions such as stroke,
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TBI, and neurodegenerative disorders, the BBB becomes compromised, losing its protective
function as a physical barrier (Figure 5A–D). In ischemic stroke, elevated oxidative stress,
involving reactive oxygen species, damages the BBB (Figure 5A) [139]. TBI induces acute
damage to blood vessels due to shear forces, resulting in BBB disruption (Figure 5B) [140].
In MS, decreased expression of tight junction proteins and adherens junction proteins indi-
cates BBB breakdown, coupled with increased expression of endothelial adhesion molecules
facilitating infiltration of immune cells into the CNS (Figure 5C) [141]. Glioblastoma cells
secrete growth factors like vascular endothelial growth factor (VEGF), promoting abnormal
angiogenesis and dysfunctional blood vessels, thereby damaging the BBB (Figure 5C) [142].
AD is associated with BBB dysfunction, attributed to protein aggregate deposition, lead-
ing to heightened inflammatory responses and the degeneration of smooth muscle cells,
pericytes, and endothelial cells (Figure 5D) [143]. In PD, PET scans and post-mortem
analyses reveal increased BBB permeability alongside elevated levels of pro-inflammatory
cytokines (Figure 5D) [144]. Overall, BBB disruption triggers ion dysregulation, edema, and
neuroinflammation, culminating in neuronal dysfunction, heightened intracranial pressure,
and neuronal degeneration [145].
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Figure 5. BBB disruption and NP-mediated drug delivery for the treatment of neurological diseases.
(A–D) Mechanisms of BBB disruption in (A) stroke due to increased oxidative stress, (B) TBI due
to shear force-induced mechanical injury, (C) MS and glioblastoma due to upregulation of VEGF-A
and downregulation of tight junction proteins, and (D) AD and PD due to inflammatory cytokine
release and neuroinflammation. (E) Cell junction or tight junction proteins, as well as membrane
receptors, that are overexpressed on the BBB endothelium promote the uptake of NPs into the brain.
Immune cell and red blood cells (RBC) hitchhiking represent new strategies for coating NPs onto
immune cell or RBC membranes to facilitate NP delivery across the BBB. Schematics were created
with BioRender.com.
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Although a dysfunctional BBB is typically undesirable, researchers have leveraged
its properties for nanoparticle-mediated drug delivery. The primary mechanism facili-
tating the transport of NPs across an impaired BBB involves targeting molecules on the
brain endothelium that are highly expressed under pathological conditions. An inflamed
endothelium, characteristic of neuroinflammation and glioblastoma, often overexpresses
molecules such as P-selectin, intercellular adhesion molecule 1, and vascular cell adhe-
sion molecule 1, promoting leukocyte adhesion (Figure 5E) [146,147]. This heightened
expression increases the likelihood of targeted NPs accumulating within the brain [146,147].
In addition, transferrin receptors and LRP-1 are upregulated in dysfunctional the BBB
in glioblastoma, and conjugated NPs targeting these receptors have been developed for
enhanced drug delivery in glioblastoma cell lines and orthotopic mouse models [148,149].
In a stroke model, research demonstrated upregulation of claudin-1 in the BBB, indicative
of an inflammatory phenotype in the brain endothelium [150]. This overexpression of
claudin-1 presents an opportunity for NP delivery targeting, as evidenced by another study
showing C1C2-NP accumulation in brain endothelial cells with high levels of claudin-1
expression during aging [151]. Another method for NP delivery though the BBB lies in
the loading of NPs on immune cells and red blood cells, which infiltrate the brain to a
greater extent in pathological conditions, an approach that is termed immune “hitchhiking”
(Figure 5E).

For instance, doxorubicin-loaded PLGA NPs conjugated to macrophages were system-
ically administered in mice with glioblastoma, resulting in substantial intracerebral accu-
mulation and improved survival outcomes [152]. In a rat model of ischemia/reperfusion
injury, cyclic RGD-liposomes, which bind to integrin receptors, were delivered using neu-
trophils and monocytes, leading to a reduction in the volume of the infarcted brain [153].
Interestingly, red blood cell membranes can also be utilized to coat NPs, enhancing BBB
transcytosis. Red blood cell membrane-coated PLGA NPs bound to the D-peptide fragment
of candotoxin, with a high affinity to nicotinic acetylcholine receptors, exhibited high
accumulation in the brain in a glioma mouse model [154]. While it has been assumed that
a compromised BBB facilitates NP entry via diffusion, brain regions affected by diseases
may undergo pathological BBB breakdown, characterized by functional and structural
alterations in blood vessels. These changes can hinder the effective delivery of therapeutic
agents to the brain. Enlarged perivascular spaces accumulate blood-derived products,
water, and electrolytes, disrupting the normal diffusion of drug molecules across brain
extracellular spaces. This interference affects interstitial fluid formation and flow, impairing
distribution throughout the CNS [155]. Therefore, restoring BBB function remains crucial,
and leveraging BBB dysfunction for therapeutic delivery requires strategic consideration.

6. Summary and Future Perspectives

The study of NPs and their potential therapeutic applications in neurological disorders
has undergone significant growth in recent years. This surge in interest stems from accumu-
lating evidence that has enhanced our understanding of the physiological properties of the
BBB and its alterations under pathological conditions. Leveraging these insights, there is a
growing emphasis on utilizing these changes to facilitate more efficient delivery of drug-
loaded NPs, thereby influencing disease progression. Hence, deepening our knowledge
of NP characteristics that facilitate BBB targeting and entry into the brain is imperative.
Here, we summarize the key properties of NPs, encompassing aspects such as size and
shape, chemical composition, surface charge, surfactants, and conjugation with targeting
ligands or molecules, all of which can be optimized to enhance BBB penetration. We also
discuss various in vitro and animal models of the BBB that facilitate the development of
NP delivery systems and enable the clinical detection of brain-targeting drugs. Under
physiological conditions, the BBB acts as an important barrier that protects the brain from
potentially harmful substances. However, in pathological states, BBB dysfunction may
induce pathological changes contributing to disease onset while paradoxically offering
opportunities to facilitate drug delivery alongside immune cell and blood product influxes.
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Apart from delivering drugs to the brain, there is increasing research on using NPs
as carriers for CRISPR-Cas9 and RNA delivery in the brain for genome editing and thera-
peutic purposes [156–159]. CRISPR-Gold, a gold nanoparticle, targeted the metabotropic
glutamate receptor 5 (mGluR5) in a mouse striatum to reduce local mGluR5 levels after an
intracranial injection, consequently reducing behavioural deficits [160]. In another instance,
bio-reducible lipid NPs were used to deliver CRISPR components (Cre recombinase or
anionic Cas9:single-guide (sg)RNA complexes) into mouse brain tissues for genome edit-
ing [161]. Using a glutathione-sensitive polymer shell incorporating a dual-action ligand
that facilitates BBB penetration, CRISPR components have been efficiently encapsulated and
delivered for gene therapy in glioblastoma mouse models [162]. Lipid NPs have also been
utilized to deliver RNA therapeutics in microglial cells and to reduce neuroinflammation
in mouse models [163].

While NPs have mainly been studied as carriers of drugs into the brain, NPs’ value
extends beyond their function as delivery systems, as some may exhibit therapeutic proper-
ties themselves independent of drug loading or conjugation [20,26,27]. Examples of these
NPs include PLGA NPs, acidic NPs, and metal-based NPs like zinc oxide and platinum
NPs [20,26,27,164], and they have been applied in neurodegenerative diseases [165,166],
although further optimization is needed to enhance their BBB penetration. Moreover, NPs,
with their versatile properties, hold potential for personalized medicine. By tailoring NP
properties to individual patient pathologies, specific and effective brain targeting can be
achieved under pathological conditions, and their therapeutic efficacy can also be vali-
dated through omics technologies, representing a significant advancement in personalized
therapeutic strategies for neurological disorders [167,168].

To conclude, the efficacy of drug delivery in neurological disorders is compromised
by the BBB, which acts as a limiting factor despite its general protective functions. Hence,
refining drug entry into the brain by overcoming the BBB acquires paramount importance
and represents a challenge in modern pharmaceutics. That being said, NPs hold promise for
the future and can play a vital role in circumventing this natural barrier. Current knowledge
about the use of NPs for drug delivery is derived from cellular and animal models, but
evidence from clinical studies is still lacking. NPs have begun to be used in clinical practice,
mainly in cancer treatment, although their application in neurological disorders is gaining
traction. The last decade has seen an increasing presence of brain-targeted NPs in clinical
trials, which have been evaluated for their safety and efficacy either alone or in combination
with existing clinical protocols (Table 2). These NPs have primarily served as drug carriers
for direct therapeutic intervention or as imaging contrast agents for disease diagnostics
and etiology. To promote the assimilation of NPs in clinical workstreams, it is necessary to
understand their material properties and safety profiles, good manufacturing practices to
ensure homogeneous size distributions and properties, and large-scale manufacturing for
cost reduction. Overall, the use of NPs represents a highly promising therapeutic strategy
for fine-tuned BBB targeting and drug delivery in neurological disorders.
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Table 2. Brain-targeted NPs in various phases of clinical trials.

NP Used Identifier
(Start Year) Study Scope Phase/Status

Curcumin NP NCT02104752
(2014)

Test whether curcumin NPs will improve behavioral measures and biomarkers of cognition
and neuroplasticity in patients with schizophrenia who have been prescribed antipsychotics. 1,2/Completed

Ultrasmall superparamagnetic iron oxide NP NCT02549898
(2015)

Investigate inflammation of cranial and meningeal arteries during pharmacologically induced
migraine attacks using black blood imaging MRI. -/Completed

Ultrasmall superparamagnetic iron oxide NP NCT02511028
(2015)

Investigate the safety of ferumoxytol and examine the spatial and temporal enhancement
patterns of ferumoxytol compared to patterns seen with gradient-echo imaging and
gadolinium contrast in multiple sclerosis lesions.

1/Completed

NU-0129 spherical nucleic acid gold NP NCT03020017
(2017)

Assess the safety of intravenous NU-0129 in patients with recurrent glioblastoma multiforme
or gliosarcoma. 1/Completed

MTX110 NP NCT03566199
(2018)

Study the side effects of panobinostat nanoparticle formulation MTX110 in treating
participants with newly-diagnosed diffuse intrinsic pontine glioma. 1,2/Completed

CNM-Au8 gold nanocrystals NCT03993171
(2019)

Assess the CNS metabolic effects, safety, pharmacokinetics, and pharmacodynamics of
CNM-Au8 in patients who have been diagnosed with multiple sclerosis. 2/Recruiting

CNM-Au8 gold nanocrystals NCT04098406
(2019)

Assess the efficacy, safety, and pharmacokinetics/pharmacodynamics effects of CNM-Au8 as
a disease-modifying agent for the treatment of amyotrophic lateral sclerosis. 2/Completed

CNM-Au8 gold nanocrystals NCT03815916
(2019)

Assess the CNS metabolic effects, safety, pharmacokinetics, and pharmacodynamics of
CNM-Au8 in patients with PD. 2/Completed

MTX110 NP NCT04264143
(2020)

Find the maximum tolerated dose of MTX110 (a water-soluble panobinostat nanoparticle
formulation) and gadolinium that can be given safely in children with newly diagnosed
diffuse midline gliomas.

1/Completed

NTLA-2001 lipid NP NCT04601051
(2020)

Evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of NTLA-2001 in
participants with hereditary transthyretin amyloidosis. 1/Active, not recruiting

AGuIX Gd-based NP NCT04899908
(2021)

Determine whether AGuIX Gd-based nanoparticles make radiation work more effectively in
the treatment of patients with brain metastases. 2/Recruiting

AGuIX Gd-based NP NCT04881032
(2022)

Evaluate the association of AGuIX nanoparticles with radiotherapy plus concomitant
temozolomide in the treatment of newly diagnosed glioblastoma. 1,2/Recruiting

Ferumoxytol superparamagnetic iron oxide NCT06146751
(2023)

Evaluate the effectiveness of a novel ferumoxytol-enhanced cardiac magnetic resonance in
detecting intracardiac thrombus in patients with ventricular aneurysm and after percutaneous
ventricular reconstruction.

-/Recruiting

NanoTherm ASI iron oxide NP NCT06271421
(2024)

Evaluate the efficacy and tolerance of using the NanoTherm therapy system in recurrent
glioblastoma multiforme -/Recruiting
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