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Abstract: Neutrophils, which constitute the most abundant leukocytes in human blood, emerge
as crucial players in the induction of endothelial cell death and the modulation of endothelial cell
responses under both physiological and pathological conditions. The hallmark of preeclampsia
is endothelial dysfunction induced by systemic inflammation, in which neutrophils, particularly
through the formation of neutrophil extracellular traps (NETs), play a pivotal role in the development
and perpetuation of endothelial dysfunction and the hypertensive state. Considering the potential of
numerous pharmaceutical agents to attenuate NET formation (NETosis) in preeclampsia, a compre-
hensive assessment of the extensively studied candidates becomes imperative. This review aims to
identify mechanisms associated with the induction and negative regulation of NETs in the context of
preeclampsia. We discuss potential drugs to modulate NETosis, such as NF-κβ inhibitors, vitamin
D, and aspirin, and their association with mutagenicity and genotoxicity. Strong evidence supports
the notion that molecules involved in the activation of NETs could serve as promising targets for the
treatment of preeclampsia.

Keywords: neutrophil extracellular traps; NETs; preeclampsia; pregnancy; neutrophils; oxidative
stress; hypertension; NF-κβ inhibitors; vitamin D; aspirin
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1. Introduction

Preeclampsia (PE) is a multifactorial and multisystem syndrome specific to human
pregnancy [1]. It manifests as hypertension that emerges at 20 weeks of gestation in
previously normotensive women [2,3].

PE is categorized into subtypes, including early and late-onset, as well as severe, mild,
and mild to severe [4]. From a haemodynamic perspective, based on the value of cardiac
output (CO) at rest, PE is divided into two types, hypo- or hypervolemic. The hypov-
olemic type also denoted as “classic” or placental early onset, is characterized by placental
hypertension induced by vasoconstriction [5]. It presents inadequate placental perfu-
sion, endothelial damage, placental insufficiency, and elevated levels of anti-angiogenic
molecules such as soluble fms-like tyrosine kinase 1 (sFlt-1) [6] and soluble endoglin (sEng).
The hypervolemic, maternal, or term type is more prevalent. This variant is associated with
elevated CO, increased oedema due to water retention, augmented placental perfusion,
higher foetal birth weight, relaxed vasculature, and maternal obesity [7].

Severe preeclampsia can lead to the development of HELLP syndrome (Haemoly-
sis, Elevated Liver enzyme, and Low Platelets). This syndrome is characterised by mi-
croangiopathic haemolytic anaemia, hypertension, proteinuria, oedema, liver dysfunction,
thrombocytopenia [8], increased CO, and inotropy [9].

Furthermore, endothelial cells, platelets, and neutrophils play pivotal roles in the
inflammatory, hypertensive, and prothrombotic processes observed in preeclampsia [10–12].
Although distinct neutrophil subpopulations have been characterized in different human
pathologies and experimental models [13–18], their specific roles in preeclampsia remain
under investigation. Numerous groups of molecules orchestrate the relationships between
neutrophils, platelets, and endothelial cells, such as the P-selectin-PSGL-1 axis [19] via
phosphodiesterase type-4 or Src family kinases and the vWF-glycoprotein Ibα axis [20].

Studies have demonstrated alterations in the quantity and functionality of phagocyto-
sis, degranulation, extracellular vesicle release, and the release of neutrophil extracellular
traps (NETs) in preeclampsia. These changes are intricately linked to the systemic in-
flammatory and immune state. Furthermore, there is compelling evidence indicating
increased elastase [21] and nucleosomes [22] release, particularly in early-onset PE. These
findings suggest that alterations in neutrophil functions, such as NETosis, may contribute
to inflammation and endothelial dysfunction, thereby promoting the development of PE.

In this review, we discuss the role of neutrophil activation and NETosis in the context
of preeclampsia. Additionally, we examined pharmacological compounds that exhibit
a negative regulatory influence on NETs, which could potentially be employed in the
treatment of preeclampsia. Additionally, we explored the mutagenicity and genotoxicity
associated with the use of these compounds.

To complete this review, we conducted a focused search and discussed the selection
of drugs for analysis with a panel of experts using a Delphi exercise. We searched on
PubMed, Google Scholar, and the Cochrane Library from 1 January 2023 to 31 January
2024, using the search terms “preeclampsia”, “neutrophils”, “neutrophil extracellular
traps”, “NETs”, “NETosis”, “preeclampsia and oxidative stress”, and “preeclampsia and
NF-κβ inhibitors”; we also cross-referenced these terms with the following: “aspirin”,
“acetylsalicylic acid”, “dexamethasone”, “glucocorticoids”, “resveratrol”, “cyclosporine
A”, “azithromycin”, “chloramphenicol”, “metformin”, “hydroxychloroquine”, “heparin”,
“vitamin D”, “disulfiram”, “curcumin”, “roflumilast, “apremilast”, “rolipram, “Glycyrrhiza
glabra”, “activated protein C”, and “recombinant human DNase I”.

2. Activation of Neutrophils in PE

Neutrophil activation in preeclampsia is characterized by distinct molecular and func-
tional changes. An analysis of the expression of 40 inflammation-related genes in leukocytes
has revealed a significant increase in the mRNA expression of the nuclear factor of Kappa
light chain (NFKβ 1A), Cyclin-dependent kinase inhibitor 1A (CDKN-1A), Interleukin-
8 (IL)-8, and IL-1b genes in leukocytes of pregnant women with PE compared to their
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healthy counterparts. This heightened expression favours the polarization of neutrophils
towards an inflammatory profile [23]. Additionally, peripheral blood neutrophils in PE
show lower expression of apoptosis markers compared to neutrophils from healthy preg-
nant women. Higher expression of these markers of apoptosis was observed in neutrophils
from non-pregnant women, suggesting that delayed neutrophil apoptosis contributes to
complications during pregnancy, such as PE [24,25].

In PE, neutrophil granule release and ROS production cause direct damage to the
cell membrane through peroxidation of membrane lipids, leading to cell death [26]. This
phenomenon triggers endothelial activation characterized by an increased expression of vas-
cular cell adhesion molecule-1 (VCAM-1) and inactivation of factors such as endothelium-
derived relaxing and prostacyclin (PGI2). In addition, there is an increase in the number
of activated neutrophils, which is associated with a programmed neutrophil extracellular
traps formation (NETosis) [27–29].

Neutrophils from pregnant women with PE exhibit increased expression of the adhe-
sion molecule CD11b, which serves as a marker of cell activation [30]. Furthermore, there is
a notable reduction in the surface expression of L-selectin (CD62L) on CD15+ neutrophils,
which correlates with immune activation in PE [31]. Studies have shown that NETs can
induce platelet activation and a prothrombotic state during PE [28,32]. This body of evi-
dence suggests that neutrophils are activated and potentially primed for NET release in
PE, both in the microcirculation and periphery, contributing to a feedback loop involving
inflammation and endothelial dysfunction.

3. Neutrophils in the Uteroplacental Microvasculature in PE

In the uteroplacental microvasculature of pregnant women with PE, there is a marked
infiltration of neutrophils associated with increased expression of the cell adhesion molecule
ICAM-1 and a positive gradient of IL-8. In addition, expression of the β-2 integrins
CD11a, CD11b, and CD11c is increased in neutrophils from women with PE compared to
their healthy counterparts [33]. This heightened presence of neutrophils and associated
molecules in the maternal tissue vasculature can cause vasoconstriction, ischemia, oxidative
stress, inflammation, and subsequent endothelial dysfunction [34].

Analyses of biopsies obtained by caesarean section in pregnant women with PE have
shown that the number of neutrophils attached to the vasculature is elevated [35,36]. A
higher concentration of neutrophils in the vasculature potentially contributes to endothelial
dysfunction [37].

The syncytiotrophoblast, the membrane layer that covers the placenta and is in di-
rect contact with maternal blood, releases microvesicles (placental syncytiotrophoblast
microvesicles, STBMs) [38] that can stimulate ROS production in neutrophils [39]. Syn-
cytiotrophoblast cells and serum from pregnant women with PE contain higher levels of
IL-32β compared to healthy pregnant women. IL-32 exerts multiple functions such as NET
induction [40].

4. NETs

NETs are structures consisting of nuclear or mitochondrial DNA with proteins such
as lactoferrin, actin, histones, neutrophil elastase (NE), and myeloperoxidase (MPO) [41].
The main function of NETs is the containment and elimination of pathogens [42,43]; how-
ever, their participation in thrombosis, autoimmune diseases, cancer, diabetes [44], and
cardiovascular diseases such as hypertension [45] has also been reported.

NETosis can be triggered by various stimuli, including microbial pathogens, inflamma-
tory cytokines, and chemical agents. The formation of NETs relies on histone citrullination,
catalysed by elevated levels of neutrophil peptidyl-arginine deaminase-4 (PAD4). Addi-
tionally, NET formation depends on the production of ROS and activation of MPO and
NE [46], leading to nucleosome histone digestion, chromatin decondensation, and release
of DNA and antimicrobial molecules [47].
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There are several signalling pathways involved in NET formation [48]; one pathway
involves the generation of ROS through the nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase. Activation of the NADPH oxidase complex 2 (NOX2) triggers the
Raf/MEK/ERK pathway and augments cytosolic ROS levels [49], resulting in citrullinated
histone H3-dependent (Cit-Histone H3) lytic or suicidal NETosis, Figure 1. These lytic
NETs are released by the presence of extracellular microbes, fungi, viruses, interferon,
phorbol myristate acetate (PMA), IL-8, antibody–antigen complexes, autoantibodies, and
concanavalin A.
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Figure 1. Mechanisms of NET formation. Neutrophils generate NETs in response to various stimuli.
Four types of NETs have been described based on structural changes during their formation. These
changes involve the activation of different signalling pathways. In the case of mitochondrial NETosis,
nuclear DNA remains inside the cell and has been observed in specific cases.

NOX2-independent pathways can lead to the formation of non-lytic NETs, also
known as vital NETs [50]. These NETs are released in the presence of Staphylococcus
aureus (S. aureus), Escherichia coli (E. coli), damage-associated molecular patterns (DAMPs),
platelets, Toll-like receptors 2/4 (TLR2/4), and lymphocytes associated with a function
neutrophil antigen 1 (LFA1).

Other less-studied pathways that induce NETs include those involving signal in-
hibitory receptor 1 (SIRL1) [51] and extracellular cold-inducible RNA-binding protein
(eCIRP) through PD4 [52]. In addition, the formation of mitochondria-dependent vital NETs
by silent information regulator 1 (SIRT1) that has been reported in both tumour-associated
aged neutrophils (Naged, CXCR4+ CD62L low) in breast cancer lung metastasis [53] and
non-tumour pathologies [54] has not been studied in preeclampsia.

NETs can be identified and quantified by distinct visualisation methods or through
markers of their released products. Visualisation methods use molecules that are inter-
calated into DNA, such as propidium iodide and SYTOX Orange. On the other hand,
the markers include those that detect DNA-histone complexes (nucleosomes), MPO [55],
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circulating MPO complexes (MPO)-DNA [56], surface citrullinated histone (H3cit), double-
stranded DNA (ds), myeloid-related protein (MRP), DNase, and elastase [57,58].

5. NETs in PE

In PE, there is an increased trafficking of foetal cells into the maternal circulation. The
elevated concentration of DNA in blood from foetal-derived cells could activate the immune
response and induce cytokine production, potentially leading to pregnancy complications
and an increased risk of foetal rejection.

Higher concentrations of NET components (DNA, histones, and MPO) have been
reported in the plasma of pregnant women with preeclampsia compared to healthy preg-
nant women [55]. The first molecule associated with neutrophil activation in the blood of
women with PE was neutrophil elastase [59].

Concordantly, in vitro experiments have shown that neutrophils from pregnant women
with PE are more likely to form NETs compared to healthy pregnant and non-pregnant
women [28]. Also, women with PE and obesity have a higher presence of MPO in their
systemic vasculature. MPO catalyses the formation of ROS and RNS in PE by consuming
circulating nitric oxide [60,61].

Marder et al. analysed placental samples from women with PE, healthy pregnant
women, and abdominal tissue from non-pregnant women, revealing that MPO expression
is elevated in tissues from pregnant women compared to non-pregnant women. Notably,
NETs were found in the intervillous space in PE [62].

Using anti-NE, Gupta et al. demonstrated that NETs were present in the vicinity of
the syncytiotrophoblastic layer in healthy pregnant and preeclamptic women. However,
the intervillous space was frequently infiltrated by numerous NETs, and their presence
increased in PE [63]. Anti-histone 2A (H2A) staining showed that H2A was significantly
increased in the intervillous space of women with PE [64]. Gupta et al. showed that
inflammatory syncytiotrophoblast microparticles (STBM) and IL-8-induced neutrophil
extracellular DNA extrusion increased CD11b expression and ROS generation in PE [65].

PE is associated with markers of autoimmunity, including anti-β2 glycoprotein-I
(ab2GPI); anticardiolipin antibodies (aCL); lupus anticoagulant (LA); β1, β2, and α1
adrenoreceptors; prothrombin; endothelin-1 receptor type A (ETA-AA); and Angiotensin II
receptor type 1(AT1-AA) antibodies [66,67] as well as antibodies with different specificity
than AT1-AA [68]. Furthermore, the level of antineutrophil cytoplasmic autoantibodies
(ANCA) in PE patients was significantly elevated compared with a healthy pregnancy [69].
Although these autoantibodies may induce NETosis during PE, this hypothesis remains to
be addressed.

Altogether, the studies mentioned above provide a compelling association between
preeclampsia and the increased presence of NETs in pregnant women, Figure 2. Strategies
targeting NETs in preeclampsia may hold promise for mitigating immune responses and
complications during pregnancy.
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Figure 2. NETs in preeclampsia. In preeclampsia, neutrophils can be activated in two different envi-
ronments. On the one hand, systemic inflammation with a consequent release of cytokines, DAMPs,
and activation of platelets and macrophages stimulates neutrophils, promoting the expression of
selectins and their migration to the site of damage, such as the uteroplacental microvasculature where
NETs will be released. In addition, neutrophil activation in the peripheral vasculature can lead to
the formation of NETs. These networks and their components promote thrombosis, inflammation,
damage, and endothelial dysregulation. Likewise, inflammation and ischemia activate neutrophils
resident in the uteroplacental tissue, promoting the formation of NETs. These NETs perpetuate
and increase inflammation, damaging local tissues and promoting the formation of inflammatory
mediators that reach the circulation, attracting more neutrophils.

6. Pharmacological Modulation of NETs

NETs can be targeted through different drugs with diverse mechanisms of action, Table 1.
Several pharmacological agents are currently being studied for the treatment of mod-

erate and severe preeclampsia (Figure 3), including aspirin, sildenafil citrate, hydrox-
ychloroquine, pravastatin, metformin, magnesium sulphate, nifedipine, labetalol, and
nitro-glycerine. However, only one trial has been reported, on clinicaltrials.gov, that was
designed to inhibit NET formation in PE using Toll-like receptor (TLR) blocking antibodies.
Some agents mitigate NETs by inhibiting ROS, including flavonoids like epicatechin and
rutin, along with vitamin C, 5-aminosalicylic acid (5-ASA), N-acetyl-L-cysteine (NAC),
dexamethasone, azithromycin, and Glycyrrhiza glabra [70,71]. Others inhibit the JAK/STAT
pathway such as tofacitinib, ruxolitinib, and baricitinib [72]. Furthermore, interleukin
antagonists, such as tocilizumab, canakinumab, anakinra, and rilonacept, also modulate
NETs [73].
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involved in reducing NETs include Raf-MEK-ERK signalling, calcineurin signalling, phosphorylation
of the p65 subunit of NF-κβ via Rac2, PAD4, and block receptors with monoclonal antibodies
and DNAases.

Amid the COVID-19 pandemic, there has been a surge in accelerated investigations
on drugs and molecules repurposed for their potential to inhibit NETs, as summarized in
Table 1. Some of them have garnered attention for their well-established anti-inflammatory
effects. Some have not only been utilized in inflammation management but also in aiding
lung maturation during preterm births and mitigating preeclampsia [74–81]. Aspirin,
vitamin D, and recombinant human DNase I have emerged as candidates worthy of study
due to their reported lower risk or absence of mutagenicity and genotoxicity.

The Raf-MEK-ERK signalling pathway is involved in NET formation through the
activation of NADPH oxidase. Drugs that reduce NET formation through this pathway
include curcumin, GW5074 [82], and Celastrol [83]. While drugs that inhibit NETs by
inhibiting the phosphorylation of the p65 subunit of NF-κβ are anti-inflammatory drugs
such as acetylsalicylic acid (ASA), BAY 11-7082, and Ro 106-9920 [84].

On the other hand, cyclosporine A uses the calcineurin pathway to reduce NETs [85],
while the antioxidants N-acetylcysteine, ethotrexate, trolox, tempol [86], epigallocatechin-
3-gallate [87], and diphenyleneiodonium chloride (DPI) [88] decrease NETs by reducing
mitochondrial ROS formation [85]. DPI also reduces NET formation through the PKC-βII
pathway [89] like metformin. Other drugs that have been shown to significantly inhibit
ROS-dependent NET production are propofol and lipid emulsion [90].

Furthermore, drugs such as Hydroxychloroquine (HCQ) [91], PF3758309, and IPA-3
inhibit NETs through Rac2 [92]. Chloroquine (CQ) and HCQ can prevent NET formation by
inhibiting PAD4 [93] or TLR signalling as with HCQ, CQ, and enpatoran [94]. In addition,
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PDE4 inhibitors such as apremilast, rolipram, and crisaborole can reduce the formation of
NETs [95].

Table 1. Molecules that downregulate NETosis.

Drugs Substance Mechanism of Action

Evaluated for
NOX-Dependent (NOX-D)

and ROS-Independent
(ROX-I) NET Formation

Clinical
Trials/Models/Examples

Mutagenicity and
Genotoxicity In Vitro

Drugs

Aspirin (ASA)

Human neutrophils were
stimulated with Phorbol
12-myristate 13-acetate

(PMA) or TNF-α. In
addition, ASA, BAY

11-7082, and Ro 106-9920
prevented the formation
of NETs by reducing the
phosphorylation of the

p65 subunit of NF-κβ [84].

NOX-D

In isolated neutrophils
stimulated with sodium

hydroxide, ASA can
enhance the migration of

corneal epithelial cells
(HCEs) and reduce the
formation of NETs [96].

ASA can protect against
genotoxicity [97].

Dexamethasone

Inhibits neutrophil
functions such as
intracellular ROS,

degranulation,
and NETosis.

NOX-D

Neutrophils cultured with
dexamethasone showed
reduced NET formation,

after stimulation with
PMA [98].

It can induce significant
DNA damage in human

cells; however, it passes the
Ames/Salmonella assay

[99,100].

Resveratrol
Decreases the release of

free DNA from
neutrophils and NETosis

NOX-D

During in vitro tests in the
presence of PMA, it was
shown that resveratrol

decreases the formation of
NETs and cytokine

production in healthy
controls and with
COVID-19 [101].

Despite its genotoxic effects,
it does not cause

mutagenesis and is used for
its genotoxic activity against
gastric cell adenocarcinoma

[102,103].

Cyclosporine A
Inhibits IL-8-induced

NETosis by inhibiting the
calcineurin pathway.

NOX-D

In isolated neutrophils,
stimulated with PMA or
ionomycin, treated with

Cyclosporine A or
ascomycin, the formation
of NETs decreases [104].

It is not genotoxic in
humans. It inhibits the
protein phosphatase

calcineurin and can induce
lymphoma in Xpa/p53

mice [105].

Azithromycin Decreases the production
of ROS NOX-D

Pre-treatment with
Azithromycin decreases
NETosis in neutrophils

isolated from
PMA-stimulated healthy

subjects. This effect is
observed at low

doses [106].

It does not induce mutations
or chromosomal aberrations
in microbial or mammalian

cells [107].

Chloramphenicol

Reduces the formation of
NETs, possibly
by inhibiting

myeloperoxidase (MPO)

NOX-D

Pre-treatment with
chloramphenicol reduces

PMA-induced NET
release [94].

In rodents and human cells,
it is a pro-mutagenic

compound [108].

Metformin

Affects nuclear dynamics
(delobulation and

decondensation) as well as
PKC-βII membrane

translocation and NADPH
oxidase activation in

neutrophils [109].

NOX-D

Metformin decreases
NETosis and its

components such as
elastase, proteinase-3,

histones, and
double-strand DNA in

PMA-stimulated
neutrophils in in vitro and
clinical trial samples [109].

There is conflicting evidence
about the effects of

metformin. Micronucleus
assay suggests it may be

genotoxic; however,
analyses using chromosomal

aberration (CA) and
cytokinesis-block

micronucleus (CBMN) assay
report that it has a

radioprotective effect on
DNA damage and apoptosis

in human lymphocytes
[110,111].



Pharmaceuticals 2024, 17, 605 9 of 19

Table 1. Cont.

Drugs Substance Mechanism of Action

Evaluated for
NOX-Dependent (NOX-D)

and ROS-Independent
(ROX-I) NET Formation

Clinical
Trials/Models/Examples

Mutagenicity and
Genotoxicity In Vitro

Hydroxychloroquine
Inhibits the expression of

PAC4, Rac2, and the
formation of NETs

NOX-D

Hydroxychloroquine
alleviates hepatic

ischemia/reperfusion (IR)
injury in severe combined
immunodeficiency (SCID)
mice and C57BL/6 mice

by inhibiting NETosis [91].

It induces both oxidative
DNA damage detected by
8-oxodG and the induction

of mutants in mouse
embryonic fibroblasts [112].

Heparin

NET molecules, such as
neutrophil elastase,

interact with heparin and
heparin oligomers to form
molecular complexes that
can regulate NETosis [113].

Low molecular weight
heparin (LMWH)

can repair
nucleosome/histone

3-mediated damage in
trophoblasts [69].

--

In vitro studies have
shown that heparinized

adsorbents such as
heparin sepharose

deplete PF4,
histones/nucleosomes,

and HMGB1 [114].
Heparin pre-treatment

decreased serum and lung
NETs in a C57BL/6J mice

model [115].
Circulating histones
bound to H3 and H4

nucleosomes are increased
in patients with

preeclampsia and
intrauterine growth

restriction. H3 affects
extravillous trophoblast
migration, invasion, and

survival. This effect can be
reversed in vitro by

LMWH, but not with
ASA [69].

LMWH does not show any
mutagenic activity [116,117].

Vitamin D

Vitamin D
supplementation has been
shown to reduce the risk
of preeclampsia [118], as

well as decrease the
generation of NETs,
particularly when

combined with omega-3
PUFAs [119].

NOX-D

PMA-stimulated
neutrophils from patients

with systemic lupus
erythematosus (SLE) and
hypovitaminosis D were

treated with
calcitriol/1,25(OH)2D3.
The authors reported a

dose-independent
decrease in externalised
neutrophil elastase (NE)

during NETosis [120].

In cancer rodents treated
with cyclophosphamide, it
reduced the frequency of

chromosomal aberrations in
Chinese hamster lung cells
and reduced micronuclei

and lymphocyte damage in
mice [121].

Disulfiram Inhibits NETs [122]. NOX-D

It reduced NETs and
perivascular fibrosis and

downregulated innate
immune and

complement/coagulation
pathways [111].

--

Curcumin
Inhibits the generation of
NETs by suppressing the

MEK/ERK pathway [123].
NOX-D

In a mouse model,
curcumin was shown to

reduce hepatic
ischemia-reperfusion

injury by inhibiting NET
formation [91].

High concentrations are
cytotoxic and increase the

frequency of micronuclei in
PC12 cells; at low doses, it

reduces the number of
micronuclei induced by

cisplatin [124].
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Table 1. Cont.

Drugs Substance Mechanism of Action

Evaluated for
NOX-Dependent (NOX-D)

and ROS-Independent
(ROX-I) NET Formation

Clinical
Trials/Models/Examples

Mutagenicity and
Genotoxicity In Vitro

Phosphodiesterase
Type-4 (PDE4)

inhibitors such as
Roflumilast
(Daliresp),

Apremilast (Otezla),
and Rolipram

Roflumilast blocks PDE4
and reduces in vitro and

in vivo NETosis in animal
models [125].

Inhibition of PDE4 by
rolipram prevents the

adhesion of platelets and
neutrophils, which

involves members of the
Src family kinase (SFK)

[126,127].

ROX-I

Clinical trials have been
conducted with

Roflumilast for severe
chronic obstructive
pulmonary disease

(COPD) and with Otezla
for psoriasis [128].

--

Glycyrrhiza glabra

Inhibits ROS,
mitochondrial ROS

(mtROS), NET generation,
and cytokine release.

--

In an animal model,
Glycyrrhiza glabra was

proven to decrease
COVID-19 pathology by
reducing NETosis [129].

--

Protein molecules

Activated protein C
(APC)

Cleaves and detoxifies
extracellular histones and
its effect on reducing NETs
dependent on endothelial
protein C receptor (EPCR),

protease-activated
receptor 3 (PAR3), and
macrophage antigen-1

(Mac-1) [130].

--

A clinical trial was
conducted evaluating the

safety and efficacy
of recombinant

human-activated protein
C (rhAPC; drotrecogin alfa

[activated]) in
preeclampsia, but further
studies are needed [131].
APC variants have been

designed to have a greater
ability to destroy histone

H3 with fewer
anticoagulant

properties [132].

Drotrecogin alfa (activated)
has not been studied for

carcinogenicity [133].

Recombinant
human DNase I

(rhDNase I,
rhDNase,

Pulmozyme®,
dornase alfa)

Hydrolyses extracellular
DNA released by
neutrophils [134].

--

Intravenous
administration of
rhDNase to mice

degraded NETs and
attenuated coagulopathy
in the acute respiratory

distress syndrome (ARDS)
model [135].

It does not show cytotoxicity
in human peripheral blood

mononuclear cells [136].

Other molecules such as PGE2, which has been used in labour induction, decrease
NET formation through cAMP production. However, there are also no reports of trials with
PGE2 to reduce NETs in preeclampsia [137–139].

Others, although they reduce NET formation, are not considered due to the risk of
mutagenicity or genotoxicity during pregnancy. A mutagenic agent causes damage to DNA
and results in mutation, while a genotoxic agent can cause damage to DNA or chromosomes
but without necessarily resulting in mutation [140], such as 5-fluorouracil (5FU) [141].

7. Therapeutic Approaches to Inhibit NET Formation in PE

Low-dose aspirin (75 mg) is used in the clinic to prevent preeclampsia; its best-known
action is the inhibition of prostaglandin and thromboxane A2 synthesis by cyclooxygenases
COX-1 and COX-2.

Preeclampsia is characterized by elevation of TXA2 and decreased prostacyclin. TXA2
is a procoagulant molecule related to thrombosis observed in preeclampsia; prostacyclin
PG1 is a vasodilator molecule. In PE, there is an increase in TXA and a decrease in PGI;
aspirin acts on both, although platelets are the main producers of TXA2 [142].
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PE is related to an inflammatory and prothrombotic state, and thus the effect of aspirin
in inhibiting inflammation and platelet aggregation is considered to prevent and treat
it; however, beyond its antithrombotic action, the effect of aspirin on the activation and
modulation of the inflammatory response of neutrophils has recently been studied.

During pregnancy, neutrophils express PAR-1 and F2R, which are thrombin receptors.
Aspirin prevented p65 translocation of NF-kβ to the nucleus and TXA2 production in neu-
trophils from pregnant women via PAR-1. In addition, aspirin inhibits lipid peroxidation
by COX-2 in pregnant neutrophils [143]. These PAR-1 and F2R receptors are not expressed
in neutrophils from pregnant women.

Both aspirin and glucocorticoids reduce NF-κβ activity. It is a family of transcrip-
tion factors, phosphorylated p65 (RelA), RelB, c-Rel, p105/p50 (NF-κβ1) and p100/52
(NF-κβ2), that regulate the immune response, inflammatory response, apoptosis and prolif-
eration [144].

In PE, neutrophil adhesion to the vasculature increases. This adhesion could be
reduced in the presence of an intermediate in aspirin metabolism and aspirin-activated
lipoxin A4 (ATL, 15-epi-LXA4) [145]. Aspirin generally inhibits NETosis, but more studies
are needed to analyse its usefulness in preeclampsia.

Some meta-analyses and individual cases have shown that low-dose aspirin can
prevent preeclampsia in people with a risk factor, but aspirin crosses the placental barrier
and can inhibit foetal platelet aggregation, increasing the risk of spontaneous abortion;
thus, its use is under medical supervision. The use of aspirin has been empirical, but more
data are needed to implement it as a treatment [146].

Furthermore, the therapeutic use of glucocorticoids in PE is primarily indicated in cases
of foetal growth restriction. It has been proposed that single doses after week 24 (2 doses
of 12 mg betamethasone 24 h apart or 6 mg dexamethasone 12 h apart before delivery)
help foetal lung maturation in PE [147,148]. Dexamethasone has been shown to transiently
restore absent end-diastolic flow in the umbilical artery in early-onset preeclampsia [149].
However, dexamethasone treatment for PE should be carefully considered, as the use of
high doses and repeated doses should be avoided for fear of possible long-term adverse
effects on the foetal brain [150].

On the other hand, glucocorticoids such as dexamethasone, prednisone, and rimex-
olone interact through glucocorticoid receptor antagonism in PE [151]. Glucocorticoid
receptors are expressed in the trophoblast, and their inhibition favours the expression
of angiotensin 2 receptor antagonist (ART2), which has vasodilatory effects. In normal
pregnancy, ART2 predominates, reducing hypertension, while ART1, which has a vaso-
constrictor effect, increases in PE [152]. Numerous studies show that dexamethasone in
early pregnancy has harmful effects such as deficient trophoblast development, increased
trophoblast invasion inhibitor SERPINE1, and increased systolic blood pressure [153,154],
even causing DNA damage (Table 1). Dexamethasone caused abnormal mitochondrial
morphology and mitochondrial dysfunction in the placentas of pregnant rats, in addition
to altering placental signalling pathways such as oxidative phosphorylation, inflammation,
and the insulin-like growth factor system [155].

PE is characterized by a state of systemic inflammation where platelet abnormalities
occur. It has been shown that dexamethasone significantly inhibited degranulation, intra-
cellular ROS production, CXCL8 release, and neutrophil NETosis in patients with severe
COVID-19 pneumonia [98]. Dexamethasone has been shown to inhibit Staphylococcus au-
reus-induced NET formation via upregulation of TLR2 and TLR4 receptors [156], this could
mean that Dexamethasone induces vital NETs. In PE, dexamethasone has been shown to
delay neutrophil apoptosis in early-onset preeclampsia; however, it does not affect the rate
of neutrophil apoptosis between late-onset preeclampsia and normal pregnancy [157].

Another drug with a potential therapeutic effect, particularly in preeclampsia as-
sociated with severe obesity [158], is metformin. This is a hypoglycemic agent that at
therapeutic doses has a reduced impact on trophoblast differentiation [159]. Metformin
activates AMPK signalling pathways involved in the regulation of NF-κβ/sFlt-1, and
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Nrf2/HO-1 signalling pathways, thus inhibiting the inflammatory response and oxidative
stress [160].

Finally, several systematic reviews have reported that 25-hydroxyvitamin D supple-
mentation before 20 weeks of gestation could reduce NETosis (Table 1) and the risk of
PE [161,162], through inhibition of lysosome-associated membrane glycoprotein 3 [163].

8. Conclusions

The pathophysiology of preeclampsia is significantly aligned with the activation
of neutrophils and the release of mediators, especially those associated with neutrophil
extracellular traps (NETs). Consequently, understanding the role of neutrophils and NETs
becomes imperative in the context of preeclampsia treatment. Currently, certain drugs are
already under review in clinical trials; these include azithromycin, hydroxychloroquine,
aspirin, and metformin. Additionally, promising results have already been observed in
the use of vitamin D for preeclampsia. This underscores the importance of exploring and
considering neutrophil and NET-targeted treatments in the comprehensive approach to
managing preeclampsia.
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