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Abstract: Proteolysis-targeting chimeras (PROTACs) are an emerging therapeutic modality that show
promise to open a target space not accessible to conventional small molecules via a degradation-based
mechanism. PROTAC degraders, due to their bifunctional nature, which is categorized as ‘beyond the
Rule of Five’, have gained attention as a distinctive therapeutic approach for oral administration in
clinical settings. However, the development of PROTACs with adequate oral bioavailability remains a
significant hurdle, largely due to their large size and less than ideal physical and chemical properties.
This review encapsulates the latest advancements in orally delivered PROTACs that have entered
clinical evaluation as well as developments highlighted in recent scholarly articles. The insights and
methodologies elaborated upon in this review could be instrumental in supporting the discovery and
refinement of novel PROTAC degraders aimed at the treatment of various human cancers.

Keywords: PROTAC; cancer oral drug

1. Introduction

Target protein degradation (TPD) is a promising therapeutic strategy for disease treat-
ment. Proteolysis-targeting chimera (PROTAC) technology is one of the most dynamic
therapeutic modalities of TPD, which operates by hijacking the cellular ubiquitin protea-
some system (UPS) to induce pathogenic protein degradation. PROTAC molecules consist
of a protein-targeting moiety and a ubiquitin ligase moiety connected by a linker. These
heterobifunctional entities operate by bringing the target protein into proximity with a
ubiquitin ligase, leading to the transfer of ubiquitin and the subsequent degradation of the
target protein through the UPS (Figure 1) [1–3]. At present, the majority of PROTACs docu-
mented in research predominantly target either Mouse double minute 2 homolog (MDM2),
inhibitor of apoptosis proteins (IAP), Von Hippel–Lindau tumor suppressor (VHL), or
cereblon. Nevertheless, the range of E3 ligases leveraged by PROTACs is steadily growing,
as evidenced by the recent inclusion of ligases such as DCAF15/16 [4–7]. However, the
majority of MDM2 or VHL-based molecules failed to achieve significant levels of oral
bioavailability, a result that may have been expected due to their considerable molecular
weights and the contribution of hydrogen bond donors/acceptors (HBDs/HBAs) from the
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E3 ligand component. In contrast, cereblon-based molecules present a starting point that is
more compatible with oral drug properties owing to their reduced molecular weight, more
favorable HBD/HBA profile, and greater lipophilicity [8,9].
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2. The Rise of PROTAC Technology: A Versatile Game-Changer

The idea of PROTACs was groundbreaking because it imagined that a small molecule
could function as a catalytic inhibitor. Put differently, a single PROTAC molecule could
prompt a post-translational modification in the target protein (TP), allowing it to inactivate
numerous TP molecules [10]. This method, often referred to as “event-driven” inhibition,
operates through a transient interaction, contrasting with the constant presence required by
traditional “occupancy-driven” inhibitors that rely on forming stable, enduring complexes
for TP neutralization [2]. Such a paradigm shift suggested the possibility of effectively tar-
geting proteins that do not have the deep binding pockets standard for high-affinity small
molecule interactions. Apart from this, a significant benefit of PROTACs is that they do
not need the TP ligand to act as an inhibitor, allowing binding to areas on the TP that may
be distant from the functional site. This opens up substantial possibilities for streamlining
the development of highly selective degraders for specific proteins within families where
the active sites are nearly identical. This sub-stoichiometric degradation allows PROTACs
to be effective at low dosages, culminating in a prolonged pharmacodynamic response
with low risks of adverse effects. Moreover, the advantages of transient binding mode
and the low binding affinity requirement make it possible to turn “undruggable” proteins
into “druggable” targets [11–13]. This is especially relevant in diseases where achieving
functional activity with small molecules is challenging, such as those involving traditionally
undruggable targets, proteins with scaffolding functions, and protein aggregates. Addi-
tionally, PROTACs show promise in diseases where drug resistance is linked to target
protein overexpression or mutation as well as situations requiring isoform selectivity [1,2].
Therefore, over the past decade, PROTACs have gained tremendous momentum from
both academia and the pharmaceutical industry in exploring the potential of oral PROTAC
degraders as innovative therapeutic agents. Figure 2 shows the development timeline of
PROTAC degraders in clinical trials [14].
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3. Oral Protein Degraders: Progress and Limitations

In 2001, PROTACs were first proposed by Craig M. Crews and Raymond J. Deshaies
for proof-of-concept validation [3]. They have now become an established modality in
drug discovery, with the first examples reaching the clinic (ClinicalTrials.gov Identifiers
NCT03888612 and NCT04072952) [15]. Even though there is increasing curiosity in the use
of PROTACs as a treatment option and a surge in related scholarly articles, information
regarding their absorption, distribution, metabolism, and excretion (ADME) characteristics
is just starting to surface. Their impact on drug development was initially limited for several
years due to the absence of suitable drug-like ligands for E3 ubiquitin ligases, as the first
PROTACs used peptide ligands resembling natural degrons [16,17]. The landscape shifted
with the creation of a synthetic, cell-permeable peptidomimetic ligand for the VHL E3
ubiquitin ligase, paving the way for the development of cell-permeable PROTACs. Another
pivotal breakthrough came with the realization that small molecules such as thalidomide
and lenalidomide function as ligands for the cereblon E3 ubiquitin ligase [18,19]. Following
the emergence of these bioavailable E3 ubiquitin ligase ligands, there has been a surge
in the generation of PROTACs incorporating these entities, targeting a wide range of
target proteins (TPs). This surge in activity has recently culminated in the development of
the inaugural clinical candidates by different biotech firms, showcasing the advances in
PROTAC-based therapeutic applications (Figure 2).

Presently, as we experience a revival in the field of small molecule treatments, includ-
ing those involving PROTACs, the once well-regarded Lipinski’s Rule of Five increasingly
seems like a relic from a past era. The oral route of drug administration remains the most
favored due to its convenience and the ability to easily modify the dosage and timing. The
unique property of degrader molecules, especially those aimed at proteins with prolonged
half-lives, lies in their capacity to achieve lasting pharmacodynamic effects. This sustained
impact is often due to the slow clearance of the drug from the target site. For optimal
efficacy, it is essential to ensure that a sufficient level of the drug is delivered and sustained
at the site of action, even if the protein degradation does not remain constant throughout.
However, the development of PROTACs faces challenges due to their large size and poor
physicochemical properties, which result in a low degree of absorption and undesirable
pharmacokinetic properties when administered orally. These properties are categorized
as beyond the Rule of Five (bRo5) and include high lipophilicity, a high molecular weight
(MW), a large number of rotatable bonds (RBs), a large polar surface area (TPSA), and high
hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD) counts. These limitations
negatively affect the drug’s solubility, permeability, and metabolic stability, ultimately
affecting its oral bioavailability. For instance, a BET PROTAC that combines JQ1, a BET
protein inhibitor, and VHL exhibited a cell permeability 165,000 times lower than that of
JQ1 alone. Although this may be a particularly stark contrast, and the catalytic efficacy of
PROTACs can to some extent compensate for their permeability deficits, there is nonethe-
less a strong drive within the field to enhance the pharmacokinetic profiles of PROTAC
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molecules [20]. The higher lipophilicity of PROTACs has also introduced complications for
the standard ADME assay protocols. Traditional cell monolayer permeability tests, like the
Caco-2 assays, proved to be largely ineffective due to solubility problems in the test buffers
and non-specific binding, which led to poor recovery rates and skewed readings of appar-
ent permeability (Papp) rates [21]. To circumvent these issues, alternative methods such as
the Parallel Artificial Membrane Permeability Assay (PAMPA) have been considered due
to their adjustable assay conditions, which include variables such as incubation duration,
pH levels, and the incorporation of biologically relevant solubility systems. However, even
with these modifications, recent findings involving a series of androgen receptor PROTACs
showed poor permeability in these alternative systems and brought to light persistent
concerns regarding sample recovery [22,23]. Accurately measuring the fraction unbound
for highly lipophilic PROTACs has been challenging. A notable finding from our routine
plasma protein binding (PPB) assays, which utilize the Rapid Equilibrium Dialysis method,
is the frequent inability to retrieve satisfactory compound samples. Upon closer examina-
tion, it was discovered that the primary difficulty stemmed from the PROTAC molecules
adhering to the cellulose membrane, resulting in the retention of a significant portion of
the compound that was initially introduced into the incubator [24,25]. Considering the
significant link between lipophilicity and the inhibition of cytochrome P450 (CYP) enzymes,
it has become imperative to closely examine the potential for drug–drug interactions (DDIs)
when evaluating PROTACs [26]. Despite these challenges, there have been recent advances
in the development of orally bioavailable PROTACs (Table 1), and this review aims to
provide a comprehensive overview of the strategies used to achieve this goal [27].

Table 1. List of Orally Bioavailable PROTACs in Clinical Development.

Degrader Target Title Conditions Clinical Trial
Number (Status)

ARV-110 AR

Trial of ARV-110 and Abiraterone in Patients With
Metastatic Castration-Resistant Prostate Cancer
(mCRPC)

Prostate Cancer
Metastatic NCT05177042 (Phase I)

Trial of ARV-110 in Patients With Metastatic
Castration-Resistant Prostate Cancer

Prostate Cancer
Metastatic NCT03888612 (Phase II)

ARV-766 AR A Study of ARV-766 Given by Mouth in Men
With Metastatic Prostate Cancer

Prostate Cancer
Metastatic NCT05067140 (Phase II)

AC176 AR A Study of AC176 for the Treatment of Metastatic
Castration-Resistant Prostate Cancer

Metastatic
Castration-Resistant

Prostate Cancer
NCT05241613 (Phase I)

CC-94676 AR
Study to Evaluate the Safety and Tolerability of
CC-94676 in Participants With Metastatic
Castration-Resistant Prostate Cancer

Prostatic Neoplasms NCT04428788 (Phase I)

ARV-471 ER

A Phase 1/2 Trial of ARV-471 Alone and in
Combination With Palbociclib (IBRANCE®) in
Patients With ER+/HER2− Locally Advanced or
Metastatic Breast Cancer

Breast Cancer NCT04072952
(Phase I/II)

ARV-471 in Combination With Everolimus for the
Treatment of Advanced or Metastatic ER+,
HER2− Breast Cancer

Breast Cancer NCT05501769 (Phase 1)

A Study of ARV-471 (PF-07850327) Plus
Palbociclib Versus Letrozole Plus Palbociclib in
Participants With Estrogen Receptor Positive,
Human Epidermal Growth Factor Negative
Advanced Breast Cancer

Breast Cancer NCT05909397 (Phase 3)

A Study to Learn About a New Medicine Called
ARV-471 (PF-07850327) in People Who Have
Advanced Metastatic Breast Cancer.

Advanced Breast
Cancer NCT05654623 (Phase 3)
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Table 1. Cont.

Degrader Target Title Conditions Clinical Trial
Number (Status)

AC682 ER A Study of AC682 for the Treatment of Locally
Advanced or Metastatic ER+ Breast Cancer Breast Cancer NCT05080842 (Phase 1)

NX-2127 BTK A Study of NX-2127 in Adults With
Relapsed/Refractory B-cell Malignancies B cell malignancies NCT04830137 (Phase I)

NX-5948 BTK A Study of NX-5948 in Adults With
Relapsed/Refractory B-cell Malignancies B cell malignancies NCT05131022 (Phase I)

CFT8634 BRD9

A Study to Assess the Safety and Tolerability of
CFT8634 in Locally Advanced or Metastatic
SMARCB1-Perturbed Cancers, Including
Synovial Sarcoma and SMARCB1-Null Tumors

Synovial Sarcoma, Soft
Tissue Sarcoma NCT05355753 (Phase I)

CFT1946 BRAFV600E

A Study to Characterize the Safety, Tolerability,
and Preliminary Efficacy of CFT1946 as
Monotherapy and in Combination With
Trametinib in Subjects With BRAFV600 Mutant
Solid Tumors

Solid Tumors,
Melanoma, NSCLC

NCT05668585
(Phase 1/II)

4. Several Ways to Improve PROTACs’ Oral Bioavailability

In recent years, drug delivery systems have undergone remarkable advancements in
terms of drug solubility, permeability, and toxicity reductions. To tackle the limitations
of PROTACs, various drug delivery vehicles have been proposed in order to enhance
their ADME profiles and ensure that they reach their intended sites of action [28,29].
Formulation techniques are being innovated to improve the cellular uptake and solubility
of PROTACs and realize their therapeutic potential. Researchers have introduced structural
flexibility into PROTAC molecules by enabling intramolecular hydrogen bond (IMHB)
formation, resulting in a more soluble and permeable form [30]. Proteolysis-targeting
chimeras synthesized inside cells through click chemistry (CLIPTACs) were effectively
employed to break down two crucial targets in cancer therapy (BRD4 and ERK1/2) [31].
To selectively and effectively degrade challenging target proteins, PROTACs have been
engineered with specific peptides (p-PROTACs) [32]. Various delivery systems, such as
self-emulsifying drug delivery systems and polymeric nanoparticles, have been employed
to enhance the solubility of drugs. As an example, Rathod et al. developed an ARV-825-
enriched self-emulsifying drug delivery system that forms nano globules (ARVSNEP) in
aqueous media, which remarkably increased the solubility of ARV-825 by ~15-fold and
showed potential for treating vemurafenib-resistant melanoma [33]. Furthermore, Chen
et al. showed that embedding PROTACs and related E3-ligase proteins within a lipid
nanoparticle system boosted the permeability of PROTAC molecules and enabled them to
escape endosomal and lysosomal degradation post-endocytosis [34]. All these innovative
and targeted formulation methods hold significant promise for enhancing the efficacy of
drug delivery and action.

Taking food with PROTACs is also considered to be a method for boosting their oral
bioavailability, as they tend to have low solubility in water. Recent findings indicate that
the solubility of PROTACs improves when using buffers that simulate conditions in the
human gut, notably when food is present. Solubility tests in biologically relevant systems
like FaSSIF/FeSSIF revealed substantial improvements (>50-fold in some instances), sug-
gesting that such techniques should be more widely implemented [35]. This observation
is supported by clinical trial practices that often indicate “once daily” administration of
certain oral PROTACs along with food. The ongoing ARV-110 clinical trial (NCT03888612),
for instance, specifies that participants should take the medication with meals.
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Choosing a compact ubiquitin ligase (UL) moiety is key in determining the properties
of PROTACs. Smaller CRBNs are preferred for oral use, and the discovery of ligands with
even lower molecular weights is expected in the future (Figure 3).
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Selecting an appropriate protein-targeting moiety is critical for the development of
orally bioavailable PROTACs. The challenge lies in finding protein-targeting moieties
that exhibit a balance of characteristics, such as having fewer hydrogen bond donors and
acceptors, fewer rotatable bonds, a smaller polar surface area, and a lower molecular weight.
These properties are essential for designing effective oral PROTACs.

Boosting the metabolic stability of PROTACs is a crucial step to protect them from “first
pass” metabolism in the liver or intestine, thereby improving oral bioavailability. Strategies
include modifying the linker length, adjusting the linker’s anchor point, employing rigid
spiro linkers, and altering the linker attachment site.

Enhancing cellular permeability also plays a pivotal role in improving the oral bioavail-
ability of PROTACs by promoting their ability to penetrate target cells and navigate across
the intestinal membrane barrier effectively.

The creation of intramolecular hydrogen bonds in PROTACs can enhance their cell
permeability by reducing the molecular size and polarity.

Lastly, employing a prodrug strategy can enhance the oral bioavailability of a drug.
For example, attaching a lipophilic group to the CRBN ligand in a PROTAC compound to
create a prodrug has demonstrated an improvement in PROTAC bioavailability.

5. Recent Advancements in Orally Bioavailable PROTACs
5.1. Discovery of Orally Bioavailable AR PROTAC Degraders for the Treatment of Metastatic
Castration-Resistant Prostate Cancer (mCRPC)

The androgen receptor (AR) plays a crucial role as a nuclear transcription factor nec-
essary for prostate cell growth, survival, and multiplication. It plays a pivotal role in
the initiation and progression of human prostate cancer and a subset of human breast
cancers [36–38]. Androgen deprivation therapy (ADT), achieved through surgical castra-
tion or drugs that inhibit androgen production, has been successful in treating advanced
and metastatic androgen-dependent prostate cancer [39]. However, prostate cancer often
advances to a stage known as castration-resistant prostate cancer (CRPC) after several years
of castration therapy [40]. Metastatic castration-resistant prostate cancer (mCRPC) remains
incurable and fatal. AR antagonists, such as enzalutamide, apalutamide, and darolutamide,
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can effectively manage mCRPC [41,42]. Despite this, patients frequently develop resistance
to these treatments. In most AR antagonist-resistant tumors, the AR signaling is still ac-
tive, promoting tumor growth and progression [43]. Typical resistance mechanisms to AR
antagonists include amplification and mutation of the AR gene and the expression of AR
variants [44]. Therefore, in the last few years, new therapeutic strategies like PROTAC
technology have gained considerable momentum for discovering and developing new
therapeutic agents [45,46].

As stated above, a typical PROTAC degrader has an MW above 700 and falls outside
of Lipinski’s “Rule of Five”, which complicates the attainment of oral bioavailability.
Nevertheless, through rigorous optimization, orally administered AR PROTAC degraders
have been successfully developed, exemplified by the compounds shown in Figure 4.
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Bavdegalutamide (ARV-110) stands out as the first clinically evaluated orally bioavail-
able AR PROTAC degrader, and its structure was presented at the 2021 AACR national
meeting [47,48]. The strategic approach employed in the discovery of bavdegalutamide
(1) is outlined in Figure 5. The effort was initiated by evaluating various AR ligands and
E3 ligands and selecting the reported AR inhibitor [49] from Pfizer in combination with
thalidomide as the cereblon ligand, which yielded degrader 16 employing a flexible linker.
Compound 16 exhibited a DC50 ranging from 1 to 10 nM and a Dmax level < 50% in the
LNCaP cell line. Despite showing promise with oral bioavailability, compound 16 was
observed to have a high clearance rate in pharmacokinetic studies. Subsequent refinement
of the linker in 16 resulted in compound 17, which demonstrated a DC50 value of less
than 1 nM and a Dmax of over 50%. However, compound 17 exhibited suboptimal in vivo
efficacy and possessed a high melting point, indicating potential formulation difficulties.
By imposing a conformational constraint on the linker in 17, compound 18 was obtained,
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maintaining a DC50 value of <1 nM and a Dmax > 50%. The development process pro-
gressed by substituting the AR ligand in compound 18 with an alternative AR antagonist
and adding a fluorine atom to the thalidomide component, culminating in the discovery of
bavdegalutamide (ARV-110, 1) as a clinical candidate (Figure 5).
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In the LNCaP cell line, bavdegalutamide has a DC50 value of 0.24 nM and achieves
a Dmax of 82%. This potent degradative capability is further evidenced by its efficient
reduction of androgen receptor (AR) levels by more than 95% in the original VCaP cell line,
VCaP cells with AR mutations (including F877L, T878A, M897V, and H875Y), and a VCaP
cell line resistant to enzalutamide. Additionally, bavdegalutamide effectively inhibits the
production of prostate-specific antigen (PSA). Oral administration of bavdegalutamide is
effective at diminishing AR protein levels in VCaP and LNCaP xenograft tumor tissues.
Additionally, bavdegalutamide has demonstrated superior inhibition of tumor growth
compared with enzalutamide in various AR-positive prostate cancer xenograft models in
mice, solidifying its effectiveness [48,50–52].

Although bavdegalutamide has a high molecular weight (812), it is still able to achieve
sufficient oral bioavailability in mice, rats, and non-rodent species, lending support to
its oral use in preclinical safety studies and human clinical trials. Furthermore, it has
successfully validated the therapeutic principle of a PROTAC degrader targeting the
androgen receptor in metastatic castration-resistant prostate cancer (mCRPC). Recent Phase
2 clinical data have revealed that patients with AR 878/875 mutations have a radiographic
progression-free survival (rPFS) of 11.1 months when treated with this drug. Additionally,
the drug’s side effect profile has been deemed manageable and appropriate for patients
suffering from mCRPC [53,54].

Advancing its prostate cancer pipeline, Arvinas is currently exploring the potential of
ARV-766, a new orally available PROTAC molecule (Figure 6). ARV-766 is a novel, orally
administered PROTAC molecule under investigation for its ability to target and degrade
various resistance-inducing point mutations in the androgen receptor (AR), including the
L702H mutation.

The discovery of ARV-766 was presented at AACR 2023. Accordingly, replacement of
the six-membered ring in the POI moiety of ARV-110 (1) with a tetramethyl cyclobutane
ring resulted in the compound (19) with the desired genotype coverage. Following this
modification, the switch of a chlorine atom for a methoxy group within the AR binder
resulted in compound 20 with enhanced oral bioavailability. With a highly effective target
protein binder available, modifications to the CRBN component incorporating precise
stereochemistry culminated in the discovery of Luxdegalutamide (ARV-766, 2). Preliminary
findings from an ongoing Phase 1/2 clinical study are encouraging, showing that ARV-766
is generally well-tolerated and potentially effective.
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Figure 6. Discoveries along the way to ARV-766.

According to a recent study, there is a growing frequency of mutations in the ligand-
binding domain of the AR, and the incidence of a specific mutation (L702H) is on the
rise [55]. Projections indicate that around 11% of mCRPC cases in 2023 will involve the
L702H AR mutation (Table 2). Collectively, AR LBD mutations are identified in approxi-
mately 20–25% of mCRPC instances.

The reduced effectiveness of bavdegalutamide in treating patients with AR L702H
mutation-positive tumors may restrict its clinical benefits for the wider mCRPC patient
demographic. Contrastingly, ARV-766 appears to offer enhanced efficacy in patients with
AR L702H mutation-bearing tumors relative to bavdegalutamide, as disclosed in Table 3.
These findings suggest that ARV-766 is emerging as a promising treatment for individuals
with AR mutations associated with resistance to therapy. ARV-766, which represents a
new-generation pan-AR degrader, demonstrates an extended efficacy spectrum and a more
favorable tolerability profile in comparison with bavdegalutamide, indicating its potential
to benefit a broader patient cohort with conditions such as metastatic castration-resistant
prostate cancer (mCRPC) and metastatic castration-sensitive prostate cancer (mCSPC).
Table 3 shows a profile comparison between ARV-766 and bavdegalutamide [56,57].

Table 2. The Prevalence of AR LBD Mutations.

Estimates of AR LBD Mutation Prevalence

AR LBD Mutation 2016 2020 2023

L702H ~2% ~9% ~11%
T878X ~6% ~6% ~8%
H875Y ~4% ~4% ~5%

Our colleague from the University of Michigan has also reported multiple orally
bioavailable and potent AR PROTAC degraders, represented by ARD-2128 (3) [58], ARD-
2585 (4) [59], ARD-2051 (5) [60], and ARD-1676 (6) [61] (Figure 4).

ARD-2128 was developed based on the structure of ARD-61 (Figure 7) [62,63]. ARD-61
is an extremely potent AR degrader and has also shown effectiveness in enzalutamide-
resistant systems and two distinct xenograft tumor models derived from LNCaP and
VCaP cells. Despite these successes, ARD-61 was not orally bioavailable in mice. Its lack
of oral bioavailability was attributed to factors such as its high molecular weight (MW,
1096), substantial topological polar surface area (TPSA, 189A◦), high CLogP value (8.2),
and other unfavorable chemical characteristics. To overcome these issues, modifications
were made to ARD-61 to enhance its chemical profile. These changes involved shortening
the linker and switching the E3 ligase target from VHL to cereblon [58]. The resulting
compound, ARD-2128, exhibits DC50 values of 0.28 nM in the VCaP cell line and 8.3 nM
in the LNCaP cell line. It also demonstrated an impressive pharmacokinetic profile in
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mice, which included low clearance, a favorable volume of distribution, and 67% oral
bioavailability. Oral administration of ARD-2128 effectively lowers AR protein levels
and downregulates AR-targeted genes within tumor tissue, significantly inhibiting tumor
growth in mouse models.

Table 3. Profile Comparison between ARV-766 and Bavdegalutamide.

Potential to Improve Outcomes in Patients
with Prostate Cancer Bavdegalutamide ARV-766

Degrades wild type and amplified AR
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PSA50 in patients with tumors harboring the
L702H mutation 7% (2 of 24) 50% (4 of 8)

Addressable mCRPC patient population ~11,000 (6–9%) ~35,000 (~25%)

Figure 8 illustrates the multi-step optimization process that led to the creation of
ARD-2585 [59]. First, an AR antagonist known as 21 was conjugated to thalidomide via
a linear linker, which facilitated the determination of the most effective linker length.
This resulted in the crafting of the potent degrader 22. Subsequently, linker rigidification
using different ring systems was investigated. The final phase encompassed refining the
AR antagonist element and meticulously adjusting the rigid linker, culminating in the
development of ARD-2585 (4). This compound is highly efficacious, achieving DC50 values
below 0.1 nM in both VCaP and LNCaP cell lines. Additionally, ARD-2585 suppresses
cellular proliferation in VCaP and LNCaP cells, with IC50 values of 1.5 nM and 16 nM,
respectively. It also demonstrates superior pharmacokinetic properties in mice, including
51% oral bioavailability. In comparison with enzalutamide, ARD-2585 is more effective in
suppressing tumor growth in the VCaP xenograft tumor model in mice at well-tolerated
doses [59].
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Figure 7. Medicinal chemistry campaign for the discovery of the potent and orally active AR
degrader ARD-2128.

Based on previous work, another oral AR degrader termed ARD-2051 was also devel-
oped by Wang et al. It has become increasingly evident that the oral pharmacokinetics of
PROTACs can vary markedly between species, posing challenges for their clinical develop-
ment [64]. As previously mentioned, ARD-2585 displayed a favorable oral bioavailability of
51% in mice, yet its bioavailability in rats was comparatively lower, at 13%. Therefore, the
project aimed to discover a new and potent PROTAC that exhibits excellent oral bioavail-
ability across a broad range of species. The authors hypothesized that decreasing the polar
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surface area of the target protein ligand might lead to a PROTAC with enhanced oral
bioavailability in various animals. Accordingly, compounds 24 and 25 were synthesized
with a reduced topological polar surface area (TPSA). In order to improve the binding affin-
ity of the protein of interest, the higher-affinity compounds 26 and 27 were designed [60].
Further analyzing the predicted binding model of the AR ligand, a chiral methyl group was
installed onto the 1-position of the spiro ring. This structural modification, along with the
subsequent linker refinement, led to the discovery of ARD-2051 (5), as depicted in Figure 9.
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degrader ARD-2585.

The in vitro assessments of ARD-2051’s degradation capability revealed that it was
several times more effective than ARV-110 at degrading the AR in VCaP and LNCaP
cell lines, achieving a DC50 value of 0.6 nM for both lines and Dmax levels of 97% and
92% in VCaP and LNCaP, respectively. Pharmacokinetic studies indicated that ARD-2051
possessed a satisfactory PK profile across multiple species, with oral bioavailability values
of 53% in mice, 82% in rats, and 46% in dogs. When evaluating the antitumor effects of
ARD-2051 using the VCaP xenograft model in mice, the results showed that the compound
significantly inhibited tumor growth, reaching a tumor growth inhibition (TGI) value of
80%, with no toxicity observed at an oral dose of 30 mg/kg.
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degrader ARD-2051.

ARD-1676 (6) is another highly potent and orally efficacious PROTAC degrader of the
androgen receptor (Figure 10) [61]. This molecule was crafted using AR ligands from the
same category as those in ARD-2051 and incorporates a novel cereblon-binding molecule,
TX-16. Regarding its degrading capability, ARD-1676 displays DC50 values of 0.1 nM in
AR-positive VCaP cells and 1.1 nM in LNCaP cells. Its inhibitory effects show IC50 values
of 11.5 nM in VCaP cells and 2.8 nM in LNCaP cells. ARD-1676 effectively induces the
degradation of a broad panel of clinically relevant AR mutants. ARD-1676 has an oral
bioavailability of 67% in mice, 44% in rats, 31% in dogs, and 99% in monkeys. Oral admin-
istration of ARD-1676 effectively reduces the AR protein level in the VCaP tumor tissue
in mice. It inhibits tumor growth in the VCaP mouse xenograft tumor model without any
sign of toxicity. Given these properties, ARD-1676 is viewed as an exceptionally promising
candidate for the development of treatments for AR-positive human prostate cancer [61].
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In summary, this medicinal chemistry effort demonstrated that substantial discrepancies
in PK profiles among different species could be mitigated through systematic structural
optimization, which included strategies such as reducing the polar surface area and making
targeted adjustments to the protein ligand, linker, and E3 ligase components [65].
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degrader ARD-1676.

Qin and colleagues recently reported on a promising orally available PROTAC, BWA-
522 (7), which has shown efficacy in promoting the degradation of both the full-length
androgen receptor (AR-FL) and the AR-V7 variant (Figure 11) [66]. BWA-522 was developed
from Ralaniten, a potent AR N-terminal transcriptional domain (AR-NTD) antagonist. By
introducing rigid links between Ralaniten and Thalidomide, they were able to form a stable
and efficient ternary complex, which led to an enhanced ability to degrade AR-V7 in the
synthesized compounds. Accordingly, a series of degraders with rigid linkers, such as
four- or six-membered heterocycles, was designed in order to constrain the conformation
of the PROTACs. Within this series, BWA-522 stood out with its substantial ability to
degrade AR-FL and AR-V7, achieving reductions of 52.4 and 73.1% for AR-FL and 77.3 and
84.6% for AR-V7 at concentrations of 1 and 5 µM in VCaP cells, respectively. Notably,
BWA-522 displayed impressive oral plasma levels with a Cmax of 376 ng/mL and an
AUC of 5947 h·ng/mL when administered orally at 10 mg/kg in mice, resulting in an oral
bioavailability of 40.5%. The pharmacokinetics of BWA-522 were further validated in beagle
dogs, showcasing an excellent oral bioavailability of 69% following a 5 mg/kg dose. In an
encouraging development, the evaluation of BWA-522 using the LNCaP xenograft mouse
model revealed a tumor growth inhibition (TGI) value of 76% at an oral dose of 60 mg/kg,
marking a more efficient tumor suppression rate than Ralaniten at 180 mg/kg. Collectively,
these findings indicate that BWA-522 is an orally bioavailable degrader targeting the AR-
NTD with the potential for clinical application in prostate cancer therapy.
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degrader BWA-522.

5.2. Discovery of Orally Bioavailable ER PROTAC Degraders for the Treatment of ER+/HER2−
Advanced Breast Cancer

Endocrine therapy is typically effective in treating the majority of patients with hor-
mone receptor-positive (HR+) advanced breast cancer. However, as time passes, cancer cells
become resistant to this therapy by acquiring new mutations or losing hormone receptor
expression [67]. This makes them insensitive to standard hormonal therapy inhibitors or
cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors. Researchers are addressing this
challenge by developing new therapies to treat the growing number of patients whose
disease progresses after effective treatment with CDK4/6 inhibitors. ARV-471 is the first
ER PROTAC that progressed into clinical development for treating patients with locally
advanced or metastatic ER+ BC (Figure 12) [47,68]. The latest findings from a Phase I/II trial
(NCT04072952) revealed that Vepdegestrant is an effective treatment option for patients
with ER+, HER2 advanced breast cancer [69–72].
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ARV-471 is a CRBN-based degrader featuring a rigid linker and lasofoxifene, a selective
estrogen receptor modulator. The degradation efficiency depends on the actual stereochem-
istry of the protein-targeting ligand, and the (S)-configuration of the cereblon moiety yields
a more potent PROTAC molecule than the (R)-configuration. ARV-471 demonstrated strong
ER degradation with a DC50 value of 1.8 nM in MCF7 cells. Preclinical animal studies
show that oral administration QD of ARV-471 at 3, 10, or 30 mg/kg leads to significant
antitumor activity in xenograft models. Preclinical in vivo studies also showcased that
a daily oral dose of ARV-471 induced a significant reduction in tumor size, with a 99%
decrease observed at a dose of 10 mg/kg in an ESR1 mutant PDX model. Pharmacokinetic
studies revealed that the dosage of ARV-471 correlated with the extent of exposure, far
exceeding the preclinical efficacy benchmarks. Oral administration of 30 mg/kg resulted
in an area under the curve (AUC) level reaching as high as 5717 ng × h/mL, along with
a substantial half-life (T1/2) of 28 h [73]. Therefore, given its status as one of the most
developed PROTAC molecules, there is significant optimism that ARV-471 will secure FDA
approval to treat a specific group of breast cancer patients.

In 2023, Wang et al. developed ERD-3111, an orally bioavailable estrogen receptor-
degrading PROTAC (Figure 13) [74]. The development of ERD-3111 is based on extensive
optimization of the linker and ER inhibitor core. The combination of Lasofoxifene and the
thalidomide-based orally bioavailable cereblon ligand TX-16 connected through a 6,6-spiro
linker produced ERD-1173, which demonstrated a decent estrogen receptor degradation
capacity (DC50, 5.5 nM; Dmax, 90%) and showcased good oral bioavailability in mice (35%)
but only moderate bioavailability in rats (13%). Optimization of the ER antagonist resulted
in a 10-fold improvement in the degradation potency of ERD-857 at the expense of oral
bioavailability in rats. Next, the ER antagonist core was swapped with the AZD-9833 core
to yield ERD-3237, which preserved the DC50 while improving the maximum degradation
level to 107% and slightly enhancing the oral bioavailability in rats to 14%. The final
iteration involved modifying the indazole inhibitor core of ERD-3237. By substituting
the pyridine ring with a more electron-deficient difluoro phenyl ring and changing a CF3
group to a CHF2 group, ERD-3111 was obtained. These adjustments increased the overall
hydrophobicity and reduced the intravenous clearance, resulting in an oral bioavailability
of 42% in mice, 20% in rats, and an impressive 66% in dogs while delivering an excellent
pharmacokinetic profile across these species.

5.3. Discovery of Orally Bioavailable BRAF Degraders

Over 300 different missense mutations in BRAF have been discovered in patients, but
today’s authorized drugs only address the V600 variants. In addition, resistance tends
to develop over time, mainly because of RAF alterations that stop BRAF V600 inhibitors
from being effective. Consequently, it is necessary to develop novel treatments that target
other mechanisms of activated BRAF [75]. CFT1946 is an orally administered degrader
specifically targeting the BRAFV600E mutant protein, and it functions via the recruitment
of the CRBN E3 ligase [76,77]. During preclinical studies, CFT1946 distinctly targeted
and degraded the BRAF V600E mutation with a DC50 of 14 nM in a melanoma cell line
containing roughly 9000 proteins. Notably, when combined with the trametinib treatment,
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CFT1946 led to a more pronounced reduction in ERK phosphorylation and tumor growth
inhibition than either CFT1946 alone, trametinib alone, or encorafenib monotherapy [78].
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The structural characteristics and in vivo pharmacokinetic (PK) details of CFT1946
were recently revealed at AACR 2023 (Figure 14). CFT1946 incorporates a unique E3 ligase-
binding component, achiral dihydrouracil, which avoids the potential for the spontaneous
racemization commonly seen in the glutarimide moiety of classic CRBN ligands. The
degrader also possesses a rigid linker with a piperidine structure that favors a confor-
mational collapse, resulting in a reduced solvent-accessible surface area (SASA). These
innovative structural elements combine to endow CFT1946 with exceptional oral bioavail-
ability, demonstrated by an oral bioavailability (F%) of 89% in rats, while maintaining
precise selectivity for degrading BRAF V600E. This showcases a stellar instance of how
high oral bioavailability for heterobifunctional PROTACs that exceed the conventional
‘Rule of Five’ can be achieved through a strategic medicinal chemistry initiative, which
includes a thoughtful design of the linker component [65].

5.4. Discovery of Orally Bioavailable BRD9 Degraders

The protein Bromodomain-containing protein 9 (BRD9), a crucial part of the ncBAF
variant of the SWI–SNF chromatin remodeling complex, has been identified as a potential
therapeutic target in a subset of sarcomas and leukemias [79]. Overexpression of BRD9
has been observed in various cancers, including non-small-cell lung cancer, hepatocellular
carcinoma, pediatric rhabdoid tumors, prostate cancer, and cervical cancer, making it a
compelling target for the development of a new therapy for the treatment of a number
of human cancers [80,81]. Furthermore, recent studies indicate that tumors deficient in
SMARCB1, like synovial sarcoma and malignant rhabdoid tumors, exhibit a synthetic lethal
dependency on BRD9 [82]. CFT8634 is a highly selective BRD9 PROTAC currently being
investigated in a Phase I clinical trial (Figure 15) [83,84].

The structure of CFT8634, featuring a novel E3 ligase ligand, has been made public,
and the process of its development is illustrated in Figure 15. Preclinical studies have shown
that CFT8634 is both potent and selective in degrading BRD9 in synovial sarcoma and
SMARCB-1-deficient cases, demonstrating a DC50 value of 2.7 nM. Additionally, CFT8634
has shown sustained tumor shrinking even after treatment cessation. Importantly, CFT8634
possesses excellent oral bioavailability (F = 83%), a Cl obs of 22 mL/min/kg in rats, and
low hERG inhibition (>30 µM).
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5.5. Oral PROTAC SMARCA2 Degraders

The disruption of epigenetic regulation is a widespread and notable characteristic
found in the vast majority of human cancers [85]. A growing body of evidence suggests
that targeting epigenetic mechanisms may be an effective strategy for treating, among other
diseases, human cancers. The SWI–SNF chromatin-remodeling complex is instrumental
in the repositioning of nucleosomes, thereby managing key cellular processes such as
transcription, DNA replication, and repair. Approximately 20% of human cancers have
been found to harbor mutations that affect the function of chromosome dynamics within
this complex [86]. Mutations of SMARCA4 have been identified in a range of cancer types,
including ovarian cancer, melanoma, and non-small-cell lung cancer, with an occurrence
rate sitting at around 11% across various human cancers. Experiments using RNA in-
terference to knock down SMARCA2 in cells lacking SMARCA4 have shown that these
SMARCA4-deficient cells are highly reliant on SMARCA2 for their survival in vitro and
in vivo, revealing a relationship of synthetic lethality between the two subunits. Such dis-
coveries powerfully support the potential of SMARCA2 as a valuable target for developing
therapies to treat cancers deficient in SMARCA4 [87–89].

One rare example of an orally bioavailable PROTAC that utilizes a VHL E3 ligase
ligand is ACBI2. In 2022, research by the Farnaby group unveiled structural details of the
orally bioavailable SMARCA2 degrader ACBI2 (Figure 16). Their research began with the
discovery of compound 12, which had a relatively low oral bioavailability of 4.3% at a dose
of 30 mg/kg PO. Remarkably, by incorporating a chiral methyl group into the molecule’s
linker portion, they significantly improved the oral bioavailability to 22% in the resultant
compound ACBI2. This improvement highlights that 32 (PROTACs based on VHL E3
ligase ligands with suboptimal oral bioavailability) can be substantially improved through
deliberate modifications, particularly to the linker segment. Future research is anticipated
to concentrate on fine-tuning such linker modifications to further bolster oral uptake [90].
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5.6. Discovery of Orally Bioavailable BTK Degraders

Bruton’s tyrosine kinase (BTK), a member of the TEC family of kinases, is an essential
effector of B-cell receptor (BCR) signaling. Chronic activation of BTK-mediated BCR
signaling is a hallmark of many hematological malignancies, which makes it an attractive
therapeutic target. Pharmacological inhibition of BTK enzymatic function is now a well-
proven strategy for treating patients with these malignancies. In 2024, Nurix Therapeutics
published NX-2127 as their development candidate for BTK degradation for treating
patients with B-cell malignancies (Figure 17) [91,92]. NX-2127 is a BTK degrader with
concomitant immunomodulatory activity. NX-2127 degrades wild-type BTK and ibrutinib-
resistant C481S mutant BTK (BTKC481S) in TMD8 cells with a DC50 of 4.5 and 31 nM,
respectively. NX-2127 also degrades both IKZF1 and IKZF3 with a potency of 57 and 36 nM,
respectively, which is similar to the approved drug pomalidomide [93]. The development
process of NX-2127 is depicted in Figure 17, showcasing how the molecule evolved through
the systematic refinement of its inhibitors, linkers, and cereblon ligands. The linear linker-
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containing degrader (13) showed no oral exposure in mice, whereas rigidification of the
linker resulted in NX-0942 showing moderate oral bioavailability (5.4%) in mice. The
reduction in the molecular weight by removing the urea moiety from the inhibitor resulted
in NX-2127 showing a decrease in DC50 by 9-fold and a decrease in Dmax by 10 units but
a significant improvement in oral bioavailability in mice up to 36%. NX-2127 showed an
excellent to moderate pharmacokinetic profile across species of 36, 7.1, 1, and 1.2% in mice,
rats, dogs, and cynomolgus monkeys, respectively. Single oral doses of 0.3, 3, 10, and
30 mg/kg of NX-2127 in mice reduced BTK levels by 19%, 64%, 79%, and 88%, respectively,
in circulating B cells after 24 h. Oral doses of 10 mg/kg in dogs and cynomolgus monkeys
reduced BTK levels by 83% and 91%, respectively. In a Phase 1 human clinical trial, CLL
patients were treated with 100 mg of NX-2127 orally once daily [94].

NX-5948 is another selective BTK degrader developed by Nurix Therapeutics [95,96].
NX-5948 demonstrated potent degradation capabilities with a DC50 of 0.32 nM and 0.21 nM
in wild-type and C481S TMD8 cell lines, respectively, both achieving a Dmax value of
97%. In primary human B cells, the compound boasts a DC50 of 0.034 nM with a 98%
Dmax. Preclinical studies indicate that NX-5948 is able to cross the blood–brain barrier
and effectively degrade BTK in both microglial cells and lymphoma cells residing in the
brain. Notably, NX-5948 does not cause significant degradation of the IKZF1/3 proteins in
primary human T cells. The journey to developing NX-5948 is illustrated in Figure 17, where
it is highlighted that NX-5948 was derived from NX-0942 after a thorough optimization
of cereblon ligands. In terms of pharmacokinetics, NX-5948 shows acceptable clearance
rates and good oral availability at a 10 mg/kg dosing level in various species. Specifically,
after oral administration, the compound exhibited an oral bioavailability of 25% in mice,
16% in rats, 9% in dogs, and 2% in cynomolgus monkeys, ranging from excellent to
moderate levels.
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grader. 
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5.7. Discovery of Orally Bioavailable EGFR Degraders

Epidermal growth factor receptor (EGFR), a transmembrane glycoprotein critical in
various signaling pathways involved in cell proliferation, angiogenesis, and apoptosis,
is a valuable oncogenic drug target. Small-molecule tyrosine kinase inhibitors (TKIs)
and monoclonal antibodies (mAbs) have been developed to target the intracellular and
extracellular domains of the EGFR. However, EGFR catalytic structural domain alterations
and ongoing drug resistance restrict its clinical application [97]. To overcome these issues,
EGFR PROTACs are gaining attention as a novel and promising strategy. The EGFR C797S
mutation was identified as the primary on-target resistance mechanism to osimertinib in
patients with advanced non-small-cell lung cancer (NSCLC) [98]. Currently, no effective
treatment options exist for NSCLC patients harboring mutations (Del19/T790M/C797S
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and L858R/T790M/C797S). The orally bioavailable EGFR PROTAC HJM-561 (Figure 4)
can selectively degrade the EGFR C797S-containing triple mutants. HJM-561 potently
inhibits the proliferation of Del19/T790M/C797S and L858R/T790M/C797S Ba/F3 cells
while sparing cells expressing wild-type EGFR. Oral administration of HJM-561 shows
robust antitumor activity in EGFR Del19/T790M/C797S-driven Ba/F3 CDX and PDX
models unresponsive to osimertinib treatment [99]. HJM-561 displayed favorable oral PK
properties, with a Cmax of 3677.25 ng/mL, an exposure AUC of 1970.2 h × ng/mL, and
an oral bioavailability of 62.8% at 10 mg/kg in an EGFR Del19/T790M/C797S-Ba/F3 cell-
derived xenograft model. Osimertinib treatment at 10 mg/kg had no effect on the tumor
growth. However, the oral administration of HJM-561 resulted in a significant reduction
in tumor volume (58% and 84% at 20 mg/kg and 40 mg/kg doses, respectively). Taken
together, HJM-561 as a novel EGFR mutant PROTAC demonstrated robust oral antitumor
activity in EGFR Del19/T790M/C797S-driven and osimertinib-resistant Ba/F3 CDX and
PDX models [99].

5.8. Discovery of an Orally Bioavailable CDK 2/4/6 Degrader by Employing a Prodrug Strategy

Cyclin-dependent kinases (CDKs) are essential in controlling cell division and pro-
liferation in eukaryotic cells [100]. These catalytic proteins become active when bound to
regulatory proteins known as cyclins. Of the 16 or more cyclins identified in mammals,
several pairings, such as Cyclin B and CDK1, Cyclin A and CDK2, Cyclin E and CDK2,
Cyclin D and CDK4, and Cyclin D and CDK6, are crucial for proper advancement through
the cell cycle. Apart from their primary role in cell cycle regulation, cyclins and CDKs also
have additional functions, including gene transcription regulation, DNA repair, cellular
differentiation, and induction of apoptosis. Therefore, inhibitors targeting cyclin-dependent
kinases have emerged as potent anticancer agents. Specifically, the inhibitors targeting
CDK4/6 have shown significant promise in clinical settings for treating breast and other
forms of cancer, either as monotherapies or in combination with other drugs. Drugs such as
Palbociclib and Ribociclib, for example, have received FDA approval for use in combination
with aromatase inhibitors for treating hormone receptor-positive (HR-positive) and human
epidermal growth factor receptor 2-negative (HER2-negative) advanced or metastatic breast
cancers. However, the efficacy of these CDK4/6 inhibitors may diminish over time due to
the development of primary or acquired resistance to these drugs [101,102].

In 2020, Wei et al. published a study on the prodrug-based, orally bioavailable PROTAC
36 that aims to target the degradation of cyclin-dependent kinases (CDK) 2/4/6 through
CRBN recruitment (Figure 18) [103]. Ribociclib was used as a target protein binder for its
compelling CDK4/6 binding affinity. However, Ribociclib demonstrated a poor inhibitory
effect on CDK2. To address this issue, the piperazine ring in Ribociclib was replaced
with a methyl ester group yielding compound 35. Among the synthesized PROTACs,
compound 35 was the most effective for the simultaneous degradation of CDK2/4/6, but
it had poor oral bioavailability (<1%). To enhance the oral uptake of the compound, a
lipophilic group was attached to the N of the glutarimide section in the cereblon ligand
moiety using a prodrug strategy. This increased the oral bioavailability of the compound
significantly, achieving an F% value of 68%, thus marking the first instance of improved
oral bioavailability for OB-PROTACs through a prodrug approach. Consequently, this
breakthrough has paved the way to novel avenues in the development of similar compounds.



Pharmaceuticals 2024, 17, 494 19 of 28

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 19 of 29 
 

 

a novel EGFR mutant PROTAC demonstrated robust oral antitumor activity in EGFR 
Del19/T790M/C797S-driven and osimertinib-resistant Ba/F3 CDX and PDX models [99]. 

5.8. Discovery of an Orally Bioavailable CDK 2/4/6 Degrader by Employing a Prodrug Strategy 
Cyclin-dependent kinases (CDKs) are essential in controlling cell division and pro-

liferation in eukaryotic cells [100]. These catalytic proteins become active when bound to 
regulatory proteins known as cyclins. Of the 16 or more cyclins identified in mammals, 
several pairings, such as Cyclin B and CDK1, Cyclin A and CDK2, Cyclin E and CDK2, 
Cyclin D and CDK4, and Cyclin D and CDK6, are crucial for proper advancement through 
the cell cycle. Apart from their primary role in cell cycle regulation, cyclins and CDKs also 
have additional functions, including gene transcription regulation, DNA repair, cellular 
differentiation, and induction of apoptosis. Therefore, inhibitors targeting cyclin-depend-
ent kinases have emerged as potent anticancer agents. Specifically, the inhibitors targeting 
CDK4/6 have shown significant promise in clinical settings for treating breast and other 
forms of cancer, either as monotherapies or in combination with other drugs. Drugs such 
as Palbociclib and Ribociclib, for example, have received FDA approval for use in combi-
nation with aromatase inhibitors for treating hormone receptor-positive (HR-positive) 
and human epidermal growth factor receptor 2-negative (HER2-negative) advanced or 
metastatic breast cancers. However, the efficacy of these CDK4/6 inhibitors may diminish 
over time due to the development of primary or acquired resistance to these drugs 
[101,102]. 

In 2020, Wei et al. published a study on the prodrug-based, orally bioavailable 
PROTAC 36 that aims to target the degradation of cyclin-dependent kinases (CDK) 2/4/6 
through CRBN recruitment (Figure 18) [103]. Ribociclib was used as a target protein 
binder for its compelling CDK4/6 binding affinity. However, Ribociclib demonstrated a 
poor inhibitory effect on CDK2. To address this issue, the piperazine ring in Ribociclib 
was replaced with a methyl ester group yielding compound 35. Among the synthesized 
PROTACs, compound 35 was the most effective for the simultaneous degradation of 
CDK2/4/6, but it had poor oral bioavailability (<1%). To enhance the oral uptake of the 
compound, a lipophilic group was attached to the N of the glutarimide section in the cere-
blon ligand moiety using a prodrug strategy. This increased the oral bioavailability of the 
compound significantly, achieving an F% value of 68%, thus marking the first instance of 
improved oral bioavailability for OB-PROTACs through a prodrug approach. Conse-
quently, this breakthrough has paved the way to novel avenues in the development of 
similar compounds. 

 
Figure 18. Medicinal chemistry campaign for the discovery of the potent and orally active CDK 2/4/6 
degrader. 
Figure 18. Medicinal chemistry campaign for the discovery of the potent and orally active CDK
2/4/6 degrader.

6. Overcoming the Limitations of Lipinski’s Rule of Five: Utilizing Uptake Transporters

Crafting a bivalent drug for oral administration poses a significant challenge compared
with creating inhibitor drugs. Therefore, researchers have been focusing on optimizing the
drug delivery system, understanding its metabolism, and improving its solubility and abil-
ity to cross cellular barriers. Lipinski’s Rule of Five is a useful guideline when considering
a compound’s physical and chemical characteristics, but it may not be applicable for drugs
designed for non-oral administration or those actively transported into cells by biological
transport mechanisms. To highlight this point, below are three case studies that shed light
on the exceptions and provide motivation for the creation of bivalent degrader drugs [104].
The first example of an exception to Lipinski’s Rule of Five is the inhibitors of the Hepatitis
C virus (HCV) nonstructural protein 5A (NS5A) replication complex (Figure 19). Despite
having large molecular sizes, ranging from 738.9 to 1113.2 Da, which might suggest subop-
timal oral bioavailability based on the Rule of Five, inhibitors such as ledipasvir, elbasvir,
velpatasvir, ombitasvir, and pibrentasvir have been successfully developed for managing
chronic HCV. This is due to the inclusion of an L-Pro-L-Val dipeptide segment in these
molecules, allowing them to be recognized by cellular transporters and achieving sufficient
plasma exposure when administered orally [105,106]. The second example involves the
BCL-2/BCL-XL dual inhibitor navitoclax (ABT-263) and the BCL-2-specific inhibitor vene-
toclax (ABT-199), which are designed to treat patients with relapsed or refractory chronic
lymphocytic leukemia (Figure 19). Despite their considerable molecular weights of 974.6 Da
for navitoclax and 868.5 Da for venetoclax, both drugs are orally bioavailable. Studies
have shown that their effective absorption can be attributed to transport by the intestinal
lymphatics, which also contributes to the increased systemic bioavailability by bypassing
the first-pass metabolism in the liver [107–109]. The third example is the bitopic mTOR in-
hibitor RapaLink-1, which has a molecular weight of 1784.2 Da (Figure 19). Despite its size,
RapaLink-1 has notable in vivo effectiveness, indicating its strong ability to permeate cells.
This suggests the existence of a cellular uptake mechanism that facilitates the entry of such
large compounds into the cytoplasm. Recent research has revealed that interferon-induced
transmembrane proteins (IFITMs) enhance the cellular absorption of these linked bitopic
substances. Interestingly, the assistance provided by IFITMs increases with the length of
the linker in the compounds. This discovery provides valuable insights for designing other
linked chemical structures that might also leverage this uptake mechanism [110–112]. In
conclusion, taking advantage of transporters in the intestines and brain for the absorption
of bivalent degrader drugs may offer a novel approach to overcoming challenges associated
with oral bioavailability and reaching into the central nervous system (CNS).
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Table 4 summarizes the physiochemical properties of oral PROTAC degraders. For
hydrogen bond donors (HBDs), four or less bonds is the regulating threshold for favorable
oral bioavailability. Specifically, molecules with three or more HBDs typically possess one
or two internally compensated hydrogen bonds. Hence, a more precise delineation would
be that only two to three unsatisfied HBDs are acceptable. This insight provides chemists
with additional information in designing molecules with HBD counts as long as they ensure
that any HBDs beyond two to three are internally neutralized. Similarly, for hydrogen bond
acceptors (HBAs), the approximate maximum limit is 15. Specifically, compound CFT1946
with 15 HBAs was successful in meeting this limit [64]. In previous studies, such as those by
Veber et al., the proposed cutoffs for oral bioavailability were ten or fewer rotatable bonds
(RBs) and a topological polar surface area (TPSA) not exceeding 140 Å2 [113]. However,
data from Table 4 indicate that extended boundaries of up to 14 RBs and a TPSA of up
to 200 Å2 are acceptable, which broadens the scope compared with the Veber guidelines.
Additionally, when compared with the Rule of Five (Ro5), our results suggest a notably
broader spectrum for molecular weight (MW) and calculated log P (clog P). According
to our findings, molecules can reach an MW of 950 and have a clog P ranging from 1 to
7. While the Ro5/Veber guidelines indicate a nitrogen atom count (NAr) limit of 5 for
favorable drug attributes, our data suggest a more pragmatic boundary would be an NAr of
4, except for ACBI2, which is a VHL-based PROTAC. Kihlberg has categorized the property
space for small-molecule drugs into three distinct zones (the traditional Rule of Five (Ro5)
in line with Lipinski’s criteria, the extended Rule of Five (eRo5) space, which reflects the
broader scope within the conventional Ro5 distribution, and beyond Rule of Five (bRo5)
territory, where additional mechanisms such as hydrophobic collapse and compensatory
hydrogen bonding come into play to facilitate oral bioavailability) [114,115]. The softer
boundaries for characteristics like clog P and TPSA could be attributed to the versatile
nature of larger molecules, which can adapt their structure and, consequently, their effective
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physicochemical traits to suit their surroundings. In contrast, one encounters definite limits
with hydrogen bond donors, which adhere more closely to the original Ro5 parameters.
Prior research has highlighted HBDs as a primary barrier for oral absorption even within
Ro5 confines, making this aspect the most limiting factor in the design of new compounds.
Thus, these data suggest that, despite the expected challenges in achieving good oral
bioavailability with bifunctional PROTAC molecules, the careful selection of ligands for
the target protein, the employment of highly rigid linkers with good physicochemical
properties, and the use of cereblon ligands can deliver orally active PROTAC degraders.

Table 4. The Physiochemical Properties of Currently Reported Orally Bioavailable PROTAC Degraders.

ID Oral Degraders MW HBD HBA RB TPSA NAr CLogP Fraction Csp3

ARV-110
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Table 4. Cont.

ID Oral Degraders MW HBD HBA RB TPSA NAr CLogP Fraction Csp3
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7. New Technology Based on PROTACs and Concluding Remarks

This brief review describes the advancements and challenges in the development
of oral PROTACs over recent years as they progress through clinical trials. The concept
of targeted protein degradation has surged in popularity due to its significant poten-
tial [116]. Although PROTACs demonstrate several advantages compared with traditional
small-molecule inhibitors, they also exhibit similar drawbacks. PROTACs, derived from
inhibitors of the protein of interest (POI), can still produce off-target effects. Additionally,
their substantial molecular weight hampers cell membrane penetration and can lead to
suboptimal pharmacokinetic profiles, diminishing their biological efficacy and therapeutic
impact. Even though some PROTACs can effectively trigger protein degradation, their
limited biological impact makes them less practical for disease treatment. Moreover, the
scarcity of small-molecule binders for certain proteins, like transcription factors, which
are pivotal in the onset and progression of many diseases, limits the breadth of PROTAC
applications. It is critical to incorporate alternative drug design approaches into PROTAC
technology to overcome these hurdles. In response to the challenges outlined, several
innovative PROTAC-related technologies have emerged, such as Antibody-PROTACs [117],
Aptamer-PROTACs [118], Dual-target PROTACs [119], Folate-caged PROTACs [120], and
Transcription factor-PROTACs [121].

While these newer technologies offer distinct benefits over conventional PROTAC
approaches, the development of oral PROTACs still faces a significant challenge. Our
comprehension of traditional small-molecule ADME properties is deep and grounded in a
broad, historical dataset, revealing a solid understanding of their physicochemical charac-
teristics. By contrast, our understanding of PROTAC ADME attributes is still developing,
with expectations that it will deepen as new data emerge. Predictive methods for human
PK in small molecules are well established and have a high success rate. Whether these
methods will apply directly to PROTACs, or if there will be a greater need for empirical
data at the outset, remains to be seen. Despite initial worries about their physicochemical
attributes, PROTACs have demonstrated ADME and PK profiles that are unexpectedly pos-
itive when contrasted with initial assumptions based on the Rule of Five. The forthcoming
crucial hurdle for PROTACs as a therapeutic class will be to validate their pharmacological
and PK properties in a clinical context, thereby paving the way to their successful devel-
opment into efficacious drugs. Progress in launching these transformative treatments for
patients will rely on the persistent efforts of scientists and the pharmaceutical industry
to master the sophisticated endeavor of engaging with high-value proteins once deemed
‘undruggable’. Collectively, there exists the potential to forge a revolutionary path in the
realm of cancer therapy, offering new hope for patients engaged in the fight against cancer.

Author Contributions: Conceptualization, R.K.R.; writing—original draft preparation, R.K.R., S.R.A.,
J.R., R.K.A., I.N.C.K., Y.A. and V.D.; writing—review and editing, R.K.R., S.R.A., J.R., R.K.A., I.N.C.K.,
Y.A. and V.D. All authors have read and agreed to the published version of the manuscript.



Pharmaceuticals 2024, 17, 494 23 of 28

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable.

Acknowledgments: All figures were made using chem draw version 22 and SwissADME for ADME
calculations (http://www.swissadme.ch/).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

DME, absorption, distribution, metabolism, and excretion; ADT, Androgen depriva-
tion therapy; AR, androgen receptor; BRAF, B-Raf proto-oncogene; BRD9, Bromodomain-
containing protein 9; bRo5, beyond the Rule of Five; BTK, Bruton’s tyrosine kinase;
CLIPTACs, click-formed proteolysis targeting chimeras; CNS, central nervous system;
CRPC, castration-resistant prostate cancer; CYP, cytochrome P450; DCAF, DDB1-and-
Cul4-associated factor 15; DDIs, drug–drug interactions; HBA, hydrogen bond acceptor;
HBD, hydrogen bond donor; HCV, Hepatitis C virus; IAP, inhibitor of apoptosis pro-
teins; IFITM, nonstructural protein 5A; IMHB, intramolecular hydrogen bond; MDM2,
Mouse double minute 2 homolog; mCSPC, metastatic castration-sensitive prostate cancer;
mCRPC, Metastatic castration-resistant prostate cancer; MW, molecular weight; NS5A,
Nonstructural Protein 5A; PAMPA, Parallel Artificial Membrane Permeability Assay; P-
PROTAC, Peptide Proteolysis-targeting chimeras; PPB, plasma protein binding; PRO-
TACs, Proteolysis-targeting chimeras; UL, ubiquitin ligase; ULL, ubiquitin ligase ligand;
RBs, rotatable bonds; SASA, solvent accessible surface area; SMARCA, SWI/SNF-Related
Matrix-Associated Actin; SMARCB1, SWI/SNF-related matrix-associated actin-dependent
regulator of chromatin subfamily B member 1; TGI, tumor growth inhibition; TPL, Target
protein ligand; TPD, Target protein degradation; TP, target protein; TPSA, polar surface
area; UPS, ubiquitin proteasome system; VHL, Von Hippel–Lindau tumor suppressor;
NS5A, interferon-induced transmembrane protein.
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