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Abstract: Fibrosis, sustained by the transformation of intestinal epithelial cells into fibroblasts
(epithelial-to-mesenchymal transition, EMT), has been extensively studied in recent decades, with
the molecular basis well-documented in various diseases, including inflammatory bowel diseases
(IBDs). However, the factors influencing these pathways remain unclear. In recent years, the role of
the gut microbiota in health and disease has garnered significant attention. Evidence suggests that an
imbalanced or dysregulated microbiota, along with environmental and genetic factors, may contribute
to the development of IBDs. Notably, microbes produce various metabolites that interact with host
receptors and associated signaling pathways, influencing physiological and pathological changes.
This review aims to present recent evidence highlighting the emerging role of the most studied
metabolites as potential modulators of molecular pathways implicated in intestinal fibrosis and
EMT in IBDs. These studies provide a deeper understanding of intestinal inflammation and fibrosis,
elucidating the molecular basis of the microbiota role in IBDs, paving the way for future treatments.

Keywords: gut microbiota; gut metabolites; postbiotics; intestinal inflammation; intestinal fibrosis;
epithelial-to-mesenchymal transition; EMT; inflammatory bowel disease; IBD; Crohn’s disease;
ulcerative colitis

1. Overview of Inflammatory Bowel Diseases (IBDs)

Inflammatory bowel diseases (IBDs), encompassing Crohn’s disease (CD) and ul-
cerative colitis (UC), represent a significant global health challenge due to their chronic
and relapsing nature, affecting millions of individuals worldwide. The pathogenesis of
IBDs is recognized as immunomediated and is still being investigated. These disorders
occur in genetically predisposed individuals exposed to certain environmental and lifestyle
factors, leading to dysregulated activation of the intestinal immune system (IIS) [1]. These
conditions impose a substantial burden on healthcare systems, patients, and caregivers,
leading to impaired quality of life and increased morbidity and mortality rates.

1.1. Epidemiology and Global Prevalence

IBDs have witnessed a steady rise in prevalence worldwide reaching 0.3–0.5% of
the global population, with Western countries experiencing particularly high rates of
incidence. However, emerging data suggest an increasing prevalence in developing regions,
indicating a shift in the global burden of these diseases. Epidemiological studies highlight
the significant economic and social implications of IBDs, with substantial healthcare costs
attributed to disease management, hospitalizations, and a loss of productivity [2,3].
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1.2. Clinical Manifestations and Disease Course

CD and UC exhibit different clinical manifestations and disease courses, although they
share common features such as abdominal pain, diarrhea, rectal bleeding, and weight loss.
CD can affect any part of the gastrointestinal tract, leading to transmural inflammation,
whereas UC primarily involves the colon and rectum, causing mucosal inflammation and
ulceration. The chronic and relapsing nature of IBDs contributes to long-term complications,
including strictures, fistulas, colorectal cancer, and extra-intestinal manifestations, further
exacerbating the disease burden [4,5].

2. Purpose of this Review: Are the Microbiota and Its Metabolites Key Players in
Fibrogenesis in IBDs?

It is well established that the intestinal microbiota has a central role in the pathogenesis
of IBDs by influencing all components of the intestinal barrier. While acknowledging
inflammatory pathways as key contributors to tissue damage, recent years have witnessed
a significant shift toward investigating the microbiota as a primary trigger. This shift in
research focus has also revealed that many bacterial end-products may play a crucial role
in modulating intestinal inflammatory pathways. Given the close interconnection between
inflammatory and fibrotic pathways, it is reasonable to speculate that certain metabolites
may influence the development of fibrosis in IBDs.

This review aims to explore the role of microbial metabolites in modulating the intricate
molecular pathways involved in the development of epithelial-to-mesenchymal transition
(EMT) and fibrosis in IBDs. Additionally, it seeks to investigate how recent discoveries
regarding postbiotics may impact the therapeutic landscape for CD and UC.

3. The Intestinal Barrier in Health and in IBDs

The intestinal barrier serves as a critical interface between the internal milieu of the
body and the external environment of the gut lumen. Comprising various components
such as the microbiota, mucus layer, epithelial cells, and mucosal immune system, it
selectively absorbs nutrients while preventing the entry of harmful pathogens and antigens
(immune tolerance) [6]. In IBDs, the integrity and functionality of the intestinal barrier
are compromised.

3.1. Dysbiosis: Alterations in the Intestinal Microbiota

The human microbiota consists of 10–100 trillions of microorganisms, predominantly
found in the gut, with over 1000 bacterial species contributing to a microbiome of 3 million
genes. Maintaining an optimal host–microbiota interaction, termed eubiosis, is crucial
for normal metabolic and immune functions, preventing disease development [7]. In fact,
the normal intestinal microbiota and its derivatives, including its fragments and metabo-
lites, represent a fundamental element of the intestinal barrier. Not only do they act as
a dynamic line of defense against external aggressions, preventing the proliferation and
adhesion of pathogens to the intestinal mucosa, but they also actively contribute to regu-
lating the functionality of the intestinal mucus and epithelium, maintaining the structural
integrity of the barrier, and promoting proper nutrient absorption. At the same time, the
microbiota plays a critical role in modulating the local immune response, contributing to
the promotion of immune tolerance and the prevention of undesired inflammatory and
autoimmune reactions.

The dominant gut microbial phyla are Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria,
Fusobacteria, and Verrucomicrobia, with Firmicutes and Bacteroidetes constituting 90% of the
gut microbiota. Dysbiosis, characterized by shifts in microbial composition and diversity,
is a hallmark feature of IBDs [8]. Studies have demonstrated alterations in the relative
abundance of bacterial phyla, with a decrease in beneficial commensal bacteria, such as
Firmicutes, and an expansion of potentially pathogenic species, including Proteobacteria
(Table 1). Dysbiosis is associated with functional changes in microbial metabolism, aberrant
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immune activation, and disruption of host–microbiota interactions, further exacerbating
intestinal inflammation in IBDs.

Table 1. Main changes in composition of microbiota in IBDs.

Phylum Class Order Family Genus Species CD Ref. UC Ref.
↓ [9] ↓ [9]

Clostridiales

Lachnospiraceae

Roseburia R. hominis ↓ [10]
R. intestinalis ↓ [11] ↓ [11]

Ruminococcus

R. albus ↓ [12]
R. callidus ↓ [12]
R. bromii ↓ [12]
R. gnavus ↑ [13] ↑ [13]
R. torques ↑ [13] ↑ [13]

Acidaminococcaceae Dialister D. invisus ↓ [14]
Eubacteriaceae Eubacterium E. rectale ↓ [12]

Clostridiaceae
Clostridium

C. difficile ↑ [12]
C. coccoides ↓ [15] ↓ [15,16]
C. leptum ↓ [12,15,16] ↓ [15]

Faecalibacterium F. prausnitzii ↑ [17] ↓ [10,11,15]

Clostridia

↓ [11,12,14,15]
↑ [9] ↑ [9]

Bacillales Listeriaceae Listeria ↑ [12]

Lactobacillales Enterococcaceae Enterococcus ↑ [12]

Firmicutes

Bacilli
Lactobacillaceae Lactobacillus ↑

↓
[12,18]

[19] ↓ [20]

↓ [9] ↓ [9]

Bacteroidales Bacteroidaceae Bacteroides
B. fragilis ↓ [11,12] ↓ [11]

↑ [21]
B. vulgatus ↓ [11,12] ↓ [11]

Bacteroidetes Bacteroidetes

↑ [21]
↑ [9] ↓ [22]

Bifidobacteriales Bifidobacteriaceae Bifidobacterium B. longum ↑ [11]Actinobacteria Actinobacteria
B. bifidum ↓ [22]

↑ [9] ↑ [9]
δ Desulfovibrionales Desulfovibrionaceae Desulfovibrio ↑ [23]

Enterobacteriales Enterobacteriaceae
Escherichia ↑ [11,21]

Shigella ↑ [11]
S. flexneri ↑ [12]

Proteobacteria
γ

Pseudomonadales Moraxellaceae Acinetobacter A. junii ↑ [21]
↓ [13,24] ↓ [13,24]Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae Akkermansia A. muciniphila ↓ [13,24] ↓ [13,24]

Legend: ↓ depleted; ↑ enriched. Abbreviations: CD, Crohn’s disease; UC, ulcerative colitis. Background colors
denote shifts in phylum/class abundance, with species details listed below. Only relevant species implicated
in IBD pathogenesis are featured. Interpretation should acknowledge limitations, including diverse detection
methods, samples from varied intestinal sites, and absence of disease activity and therapy specifications. Taxonomy
follows traditional nomenclature, as recent changes proposed by the International Committee on Systematics of
Prokaryotes (ICSP) [25] remain generally unadopted.

3.2. Impairment of the Mucus Layer

The mucus layer is composed of mucins and anti-microbial peptides (AMPs). Mucins,
produced by goblet cells, consist of O-linked glycoproteins and include secreted MUC2
forming polymeric networks, and transmembrane molecules like MUC1, MUC3, MUC4,
and MUC13 forming the glycocalyx [26]. The mucus layer protects the intestinal epithelium
from luminal antigens and maintains epithelial barrier function. In IBDs, alterations
in mucin production, glycosylation, and distribution lead to impaired mucus barrier
integrity, facilitating bacterial adhesion, epithelial contact, and immune activation. Bacterial
species like Akkermansia, Lactobacillus, and Bifidobacterium spp., impair mucus secretion,
composition, and thickness. Cytokines like TNF-α, IL-β, IL-4, and IL-10 modulate mucin
secretion. Differences in mucus disruption can be observed between the two IBDs:
in UC, the mucus layer is thinner due to reduced goblet cell function, while in CD,
the mucus layer is normal or thicker with increased MUC2 expression and goblet cell
hyperplasia [4,26].
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3.3. Epithelial Dysfunction and Increased Permeability: The “Leaky Gut”

The intestinal epithelium forms a physical barrier that regulates the selective transport
of nutrients, ions, and water while preventing the translocation of luminal antigens and
pathogens. In particular, the intestinal epithelial cells (IECs) create a semi-permeable barrier
maintained by the apical junctional complex (APC), consisting of adherens junction proteins
(e.g., E-cadherin), tight junction proteins (i.e., zonula occludens, claudins, and occludin),
and desmosomes. In IBDs, pro-inflammatory cytokines like TNF-α and IFN-γ promote the
internalization of junctional proteins, promoting impaired cell–cell adhesion and increased
epithelial permeability, resulting in a “leaky gut” [27]. Increased paracellular flux of
luminal antigens, microbial products, and inflammatory mediators across the epithelium
exacerbates mucosal inflammation and perpetuates the disease process in IBDs. In fact, it
is useful to remark that IECs are also crucial intermediaries between the “microbiological
barrier”—i.e., microbiota and its derivatives—and the immune barrier. They express
pattern-recognition receptors (PRRs), including Toll-Like Receptors (TLRs), responding to
microbial elements (microbe-associated molecular patterns, MAMPs) and other immune-
related receptors like the aryl hydrocarbon receptor (AhR). Moreover, in addition to their
primary functions, enterocytes, goblet cells, and M cells act as antigen-presenting cells
(APCs) [28].

3.4. Dysregulation of Mucosal Immunity

Mucosal immunity, orchestrated by a sophisticated interplay of innate and adaptive
immune cells, maintains gut immune homeostasis and regulates responses to luminal
antigens. In IBDs, under the multifactorial influx of genetic predisposition, environmental
and lifestyle factors, and impaired host–microbiota interaction, dysregulation of mucosal
immune responses leads to aberrant activation of innate immune cells, predominantly
macrophages and T lymphocytes, resulting in excessive and harmful inflammation [29–31].
This dysregulation contributes to tissue damage, fibrosis, and disease progression in IBDs
(Figure 1), with variations observed between CD and UC based on disease phase, elucidat-
ing clinical differences between the two conditions.

In UC, the acute phase is typified by elevated levels of pro-inflammatory cytokines (such
as TNF-α, IL-1β, and IL-6), driving a Th1-type response, with M1-polarized macrophages
amplifying inflammation. During the chronic phase, there is a shift toward Th2-type
cytokines (IL-4 and IL-13), recruiting M2-type macrophages that intensify the Th2 response.
Prolonged Th2 activation, influenced by mediators like IL-13, contributes to chronicity
and pro-fibrotic mechanisms, sustained by other cytokines like IL-4 and IL-33 [32–35]. In
CD, the predominant mechanism appears to involve innate immune response deficits,
characterized by reduced secretion of TNF-α, IFN-γ, and IL-6 by macrophages, possibly
due to dysfunctional secretory proteins linked to genetic polymorphisms [36]. This leads to
CD4+ lymphocyte responses, particularly Th1 polarization, contributing to a profoundly
pro-inflammatory microenvironment characterized by increased IL-12 and IFN-γ levels [37].

Overall, in both IBDs, an altered Th17/Treg balance is evident (Figure 1). Th17 cells,
crucial for defense against bacteria and fungi, as well as mucosal repair and homeosta-
sis, play a pivotal role in IBD pathogenesis, primarily influenced by pro-inflammatory
cytokines like IL-6 and IL-23 [38]. These cytokines, released by macrophages, confer re-
sistance to apoptosis in Th17 lymphocytes and induce Th1 and Th17 responses via the
JAK-STAT pathway. Elevated IL-17 and IL-22 levels, produced by Th17 cells, initially pro-
mote epithelial integrity but may induce pro-inflammatory patterns and tissue damage in
prolonged inflammation, potentially leading to chronic inflammation and neoplastic tissue
degeneration in CD and UC patients [39]. At the same time, while the immune system
mounts an inflammatory response to combat perceived threats, the anti-inflammatory
mechanisms aimed at resolving inflammation are often ineffective in IBDs. Regulatory T
cells (Tregs), through the secretion of cytokines like IL-10 and TGF-β, play a crucial role in
immune tolerance and suppression of excessive inflammation. These cells may become
dysfunctional or insufficient in IBD patients [40].
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pro-fibrotic effects of some metabolites in various organs, their specific role in IBD-related gut com-
plications remains less understood (purple question marks), and initial evidence has been reported 
for a limited number of metabolites, mainly impacting on TGF-β/Smad pathway and interconnected 
fibrotic pathways (right gray box). Legend: green arrow: stimulates; red line: inhibits. Abbreviations: 
α-SMA, alpha smooth muscle actin; MMPs, matrix metalloproteinases; PAI-1, plasminogen activa-
tor inhibitor-1; PPAR-γ, peroxisome proliferator-activated receptor gamma; SBE, Smad Binding El-
ements; TGF-β, transforming growth factor beta; Tβ-RI/II, TGF-β receptor I/II; TIMPs, tissue inhibi-
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Figure 1. Modulation of EMT and fibrosis in inflammatory bowel diseases (IBDs) by microbial
metabolites. The effect of microbial metabolites encompasses both direct and indirect pathways.
Dysbiosis alters the metabolism of ingested nutrients, impacting the levels of metabolites, with
diverse effects on the well-known inflammatory mechanisms underlying the pathogenesis of IBDs
(left gray box). While inflammation directly influences the clinical manifestations of IBDs, it also
indirectly regulates EMT and fibrosis pathways through the induction of many pro- and anti- fibrotic
cytokines (underlined molecules). Although evidence supports the direct anti-fibrotic and pro-fibrotic
effects of some metabolites in various organs, their specific role in IBD-related gut complications
remains less understood (purple question marks), and initial evidence has been reported for a limited
number of metabolites, mainly impacting on TGF-β/Smad pathway and interconnected fibrotic
pathways (right gray box). Legend: green arrow: stimulates; red line: inhibits. Abbreviations:
α-SMA, alpha smooth muscle actin; MMPs, matrix metalloproteinases; PAI-1, plasminogen activator
inhibitor-1; PPAR-γ, peroxisome proliferator-activated receptor gamma; SBE, Smad Binding Elements;
TGF-β, transforming growth factor beta; Tβ-RI/II, TGF-β receptor I/II; TIMPs, tissue inhibitors of
metalloproteinases. Figure created with BioRender.com.
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4. The Role of Immune Dysregulation in Driving Epithelial-to-Mesenchymal
Transition (EMT) and Fibrosis in IBDs

As discussed above, in IBDs, the equilibrium between pro-inflammatory and anti-
inflammatory cytokines is disrupted, leading to chronic inflammation. This chronic pro-
inflammatory stimulus is counteracted by anti-inflammatory mechanisms that may tem-
porarily quell inflammation and alleviate symptoms. Intriguingly, the same mechanisms
intended to facilitate inflammation resolution and mucosal healing become aberrant, con-
tributing to tissue damage (Figure 1). In this context, the altered Th17/Treg ratio affects the
concentration of the pleiotropic cytokines IL-10 and TGF-β in the different disease phases.
TGF-β may be reduced during acute phases due to the presence of pro-inflammatory
cytokines. This reduction may exacerbate inflammation and contribute to disease flares.
However, during phases of remission or tissue healing, elevated levels of TGF-β have been
observed, especially during fibrosis and tissue repair stages [41].

TGF-β belongs to a vast superfamily [42], whose members bind to transmembrane
receptors of two types, type I (TβR-I) and type II (TβR-II), containing a serine/threonine ki-
nase cytoplasmic domain. The ligand-receptor binding activates Smad-dependent signaling,
called the “canonical pathway”, well reviewed elsewhere [43,44] (Figure 1). Synthetically,
the binding of a ligand with two TβR-I and two TβR-II receptors induces the formation of a
heterotetrameric complex, which finally phosphorylates adaptor proteins called regulatory
Smads (R-Smads), Smad2/3 pathway for TGF-βs, or Smad1/5/8 for other family members
like Bone Morphogenetic Proteins (BMPs). The subsequent interaction with a co-adaptor
(Smad4) allows for their translocation in the nucleus, their interaction with target genes,
and their transcription. The translocation is inhibited by the inhibitory Smads (I-Smads),
namely, Smad6 and Smad7 [44]. Besides the “canonical pathway”, some TGF-β superfamily
members may also modulate Smad-independent “non-canonical pathways”, adding a layer
of complexity to the regulation of cellular responses to TGF-β [45]. Among them we include
the PI3K (PI3K, phosphatidylinositol-3-kinase), and MAPK (mitogen-activated protein
kinase) pathways. Beside TGF-β, these pathways are activated by many growth factors,
like Epithelial Growth Factor (EGF), Fibroblast Growth Factor (FGF), and Platelet-Derived
Growth Factor (PDGF) for the MAPK pathway, and IGF-1 (Insulin-like Growth Factor-1)
for the PI3K pathway, respectively [46,47].

As TGF-β is a pleiotropic cytokine, its transduction pathways influence the tran-
scription of three main categories of genes: (1) genes involved in embryogenesis, cell
proliferation, and differentiation; (2) immunomodulatory genes; (3) genes encoding pro-
teins, enzymes, and growth factors involved in extracellular matrix (ECM) homeostasis,
and subsequently acting on the mechanisms of healing and tissue repair.

While its role as an immunomodulatory agent has already be outlined in the pre-
vious paragraphs, TGF-β also maintains the barrier integrity by a regulated expression
of epithelial tight-junction proteins and by the transcription of ECM structural proteins,
like fibrillar collagen, as well as those of fibronectin, laminin, decorin, elastin, α-SMA
(alpha smooth muscle actin), and many others [48]. Together with other cytokines, it also
modulates the equilibrium of the breakdown/deposition of matrix proteins, through the
balance between matrix-degrading proteases and their inhibitors such as PAI-1 (Plasmino-
gen Activator Inhibitor-1), TIMP1 and TIMP2 (Tissue Inhibitors of Metalloproteinases), and
MMPs (metalloproteinases) [49,50] (Figure 1).

The altered secretion and function of TGF-β and its interconnected pathways are
one of the most studied triggers for the so called epithelial-to-mesenchymal transition
(EMT) and fibrosis development. Thus, in certain conditions, it could also be considered a
pro-fibrotic cytokine.

EMT is a biological process in which epithelial cells lose their characteristic features
and acquire mesenchymal cell properties. Mesenchymal cells include fibroblasts, myofi-
broblasts, and smooth muscle cells [51]. Normally, EMT is a process in which the transient
appearance of mesenchymal cells contributes to normal wound healing. In addition to this
role, EMT is involved in embryogenesis and oncogenesis [52], and various pathological
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settings characterized by fibrosis. In fact, EMT becomes harmful when the dysregulation
of the repair mechanisms, triggered by chronic inflammation and sustained by factors
like TGF-β, EGF, FGF, PDGF, and IGF-1, results in the persistent loss of typical epithelial
features. These changes consist of a loss of cell adhesion and polarity, while gaining the
ability to migrate and invade, as well as the capacity to deposit excessive ECMs. These
events have been described in various organs, including the cardiovascular system [53],
kidneys [54], and lungs [55], and the intestine [56]. Additionally, it is noteworthy that
besides EMT, mesenchymal-to-epithelial transition (MET) is possible and contributes to
wound repair and oncogenesis [57].

The above explained dual role of TGF-β, as an immunomodulatory and pro-fibrotic
cytokine, is pivotal in the pathogenesis of IBDs. On the one hand, although overexpressed,
it loses its anti-inflammatory ability because of a reduction in the number of Treg cells and
their inadequate action, together with the overexpression of the inhibitory Smad7 [56]. On
the other hand, the prolonged action of TGF-β during the chronic evolution of the disease
correlates with the fibrotic complications [58].

Interestingly, TGF-β/Smad effects are counteracted—beside the effects of I-Smads [44]—by
the peroxisome proliferator-activated receptor gamma (PPAR-γ). PPAR-γ is a member of
the ligand-activated transcription factors of the nuclear hormone receptor superfamily, with
pleiotropic effects on lipid metabolism, inflammation, cell proliferation, and fibrosis [59].
PPAR-γ expresses its anti-inflammatory and anti-fibrotic effects on the TGF-β pathway in
many ways. It can enhance the inhibitory effect of Smad7 or inhibit Smad2/3 interaction
with Smad4. Moreover, it blocks the nuclear translocation of the Smad2/3/4 complex [60]
(Figure 1). Significantly impaired PPAR-γ expression is observed in colonic epithelial
cells of IBD patients, suggesting that the disruption of PPAR-γ signaling may represent
a critical step of the IBD pathogenesis [61]. Overexpression of PPAR-γ prevents tissue
fibrosis, whereas its loss increases fibrosis [59].

It should be noted that while the most extensively studied pathway implicated in ECM
deposition and EMT is the canonical TGF-β pathway, an expanding area of investigation
in the pathogenesis of IBDs relates to alternative pathways including other TGF-β super-
family members (especially BMPs), the non-canonical pathways, TLR receptors (TLRs),
and the pregnane X receptor (PXR). BMPs can impact the differentiation of stromal cells
contributing to fibrosis, while activins and inhibins influence the production of ECM com-
ponents [45,62,63]. TLRs, the main exponents of the PPR (Pattern Recognition Receptor)
family, detect pathogens and damaged cells through pathogen- and damage-associated
molecular patterns (PAMPs and DAMPs). They are expressed on immune cells and their
activation results in the secretion of pro-inflammatory cytokines (including IL-1, IL-6, IL-8,
TNF, IL-33, and IFN-γ) [64,65] and in the regulation of the balance between Th1 and Th2
immune responses [66]. Beside their pro-inflammatory role, some studies have suggested
that TLR2 and TLR4 are also involved in EMT through the modulation of the TGF-β path-
way [67]. The PXR, although less studied, is still known for its involvement in skin and
liver fibrosis and has been suggested as a novel mediator of intestinal fibrosis, with relevant
involvement of the mesenchymal compartment. As reported in animal models of colitis, its
loss results in protracted inflammation and fibrosis [68].

5. Microbial Metabolites: Established Players in Intestinal Homeostasis and IBD
Inflammation, with Potential Implications in Fibrosis

Intestinal microbial metabolites can potentially be derived from all macronutrients
present in food through complex metabolic mechanisms, including fermentation, decar-
boxylation, hydrolysis, and others. It is important to introduce the concept of “postbiotics”
which, as reported in the consensus statement of the International Scientific Association of
Probiotics and Prebiotics (ISAPP), are a “preparation of inanimate microorganisms and/or
their components that confers a health benefit on the host” [69]. This definition remarks
how the benefit of the host is a mandatory characteristic for postbiotics, which is also
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shared by pro- and postbiotics, and outlines how not all of the microbial metabolites can be
considered postbiotics, since some of them can be harmful to the host.

In the last few years, the role of microbial metabolites in maintaining the homeostasis
of the healthy gut barrier has been elucidated (Table 2).

Table 2. The main microbial postbiotics, related precursors, microbiota species involved in their
metabolism, and their effects on the homeostasis of the four components of the gut barrier in
healthy conditions.

Main Effects on the Parts of the Gut Barrier

Microbial
Metabolites Precursor Species Involved in

the Metabolism Microbiota Mucus Epithelium IIS Ref.

Short-chain fatty
acids (SCFAs)
• Acetate
• Propionate
• Butyrate

Non-digestible
dietary fibers,
amino acids,
and lactate.

• A. muciniphila→
propionate.

• Clostridium spp.,
R. bromii, F.
prausnitzii, and
E. rectale→
butyrate.

SCFAs interact
with other
bacteria such as
Lactobacilli and
Bifidobacteria,
enhancing
their growth.

SCFAs
stimulate goblet
cells and induce
the MUC2 gene.

SCFAs are the
principal
energetic source
for colonocytes
and contribute
to the integrity
of the APC.

SCFAs regulate
TLR and FFAR
activation, the
differentiation
of Tregs, and
IL-10 secretion.

[70–73]

Lactic acid (LA)
Fermented foods:
carbohydrate
fermentation.

“LAB”, Gram-positive
catalase-negative
bacteria resistant to
low pH, mainly
belonging to the
Lactobacillus genus.

LAB produce
bacteriocins,
peptides
involved in the
mucosal
defense.

Various strains
of LAB
differently
affect goblet cell
functions and
the expression
of
mucus-related
genes, MUC2
included.

LA promotes
the TCA for
energy
production,
maintains the
cellular redox
state, stimulates
the ACC for
fatty acid
synthesis, and
contributes to
normal
epithelial
proliferation.

LAB
administration
promotes
macrophage M2
polarization
and a reduction
in pro-
inflammatory
cytokines (e.g.,
IL-1β and IL-6)

[74–77]

Indoles

Tryptophan, the
essential amino
acid found in
meat, fish, dairy,
eggs, nuts,
seeds, legumes,
and whole
grains.

Tryptophanase-
expressing bacteria,
such as Clostridium,
Bacteroides,
Lactobacillus, and
Bifidobacterium spp.

Indoles
influence
bacterial
communication,
limiting
virulence gene
expression and
bacterial
invasiveness, in
a
dose-dependent
manner.

Indoles boost
MUC2 and
MUC4
expression and
goblet cell
activity.

Indoles reduce
the epithelial
permeability by
enhancing tight
junctions.

[78–82]

Urolithin A (UA)

Polyphenolic
compounds
(ellagitannins)
in fruits, nuts,
and tea.

In the small intestine,
ellagitannins are
hydrolyzed to ellagic
and gallic acid
intermediates, and
further metabolized
by Gordonibacter
urolithinfaciens and
Ellagibactrer into UA.
Only about 40% of
elderly humans
possess a suitable gut
microbiota able to
produce UA.

UA and its
synthetic
analogue,
UAS03, have
been reported
to upregulate
tight junction
proteins.

UA reduces the
production of
ROS and
suppresses the
TLR4, MAPK,
and PI3K
pathways, with
decrease in the
expression of
pro-
inflammatory
mi-RNA and
cytokines
(IL-1β, IL-6,
and TNF-α).

[83–85]

Hydrogen
sulfide (H2S)

Sulfate (SO4
2−)

derived from
amino acids
(mainly
cysteine and
methionine),
additives,
preservatives,
and IEC
production
(CBS activity).

Sulfate-reducing
bacteria (SRB), like
colonic Desulfovibrio,
Desulfotomaculum, and
Bilophila, utilize SO4

2−

as a terminal electron
acceptor in their
metabolic pathways,
reducing it to H2S.

Exogenous H2S
confers to the
bacteria’s high
resistance to
oxidative stress.

High
concentrations
of H2S
destabilize the
disulfide bonds
of the mucin-2
network,
resulting in
increased
contact between
bacteria and
the epithelium.

H2S is the
primary
mineral energy
substrate for
colonocytes,
but in high
concentrations,
it inhibits the
mitochondrial
respiratory
chain. Also, it
negatively
interferes with
butyrate
metabolism.

[86–92]
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Table 2. Cont.

Main Effects on the Parts of the Gut Barrier

Microbial
Metabolites Precursor Species Involved in

the Metabolism Microbiota Mucus Epithelium IIS Ref.

Trimethylamine
(TMA)

Choline,
carnitine, and
betaine,
contained in
red meat, eggs,
fish, and dairy.

Several bacterial
species (e.g., E. coli,
Enterococcus,
Clostridium, Proteus,
Shigella, Klebsiella, and
Providentia spp.)
transform the
precursors in TMA,
which is further
oxidized in the liver to
form TMAO.

TMA and
TMAO
modulate the
composition of
the microbiota.

[93,94]

Abbreviations: ACC, acetyl-CoA carboxylase; FFARs, free fatty acid receptors; H2S, hydrogen sulfide; IECs,
intestinal epithelial cells; IIS, intestinal immune system; LAB, lactic acid bacteria; LA, lactic acid; SCFA, short-
chain fatty acid; SRB, sulfate-reducing bacteria; TCA, tricarboxylic acid cycle; TLRs, Toll-Like Receptors; TMA,
trimethylamine; TMAO, trimethylamine-N-oxide; Trp, tryptophan; UA, urolithin A.

Table 1 outlines the alterations in microbiota composition observed in IBDs, while
Table 2 delineates the primary species responsible for synthesizing specific metabolites.
Integrating this information reveals how changes in microbial composition disrupt the equi-
librium between detrimental and beneficial metabolites, consequently impacting various
components of the intestinal barrier. While the effects of microbiota-derived metabolites
on modulating inflammatory pathways have been extensively studied and have even
led to some therapeutic applications, the existence of self-perpetuating, microbiota- and
metabolite-related fibrosis mechanisms remains less clear and constitutes an area of re-
search to explore, particularly given the varying responses to anti-inflammatory therapies
among IBD patients and the lack of anti-fibrotic therapies.

5.1. Short-Chain Fatty Acids (SCFAs)

SCFAs are essential for maintaining gut homeostasis. As indicated in Tables 1 and 2,
certain bacterial species such as Clostridiales (e.g., F. prausnitzii) and Bacteroidetes, which
are involved in SCFA metabolism, are depleted in IBDs, leading to reduced SCFA levels
in both CD [95] and UC [96]. This depletion highlights the significance of SCFAs in
IBD pathogenesis, culminating in the fact that interventions such as the administration
of butyrate-related pre- and probiotics or topical/oral butyrate supplementation have
been found to be beneficial in managing these diseases, both in preclinical and clinical
models [97–100]. The beneficial effects are largely attributed to the anti-inflammatory
properties of SCFAs, particularly butyrate. For instance, butyrate has been shown to
modulate Tregs, reduce the production of pro-inflammatory cytokines such as TNF-α, IL-
1β, and IL-6, promote the differentiation of M2 macrophages, and inhibit M1 macrophages
and neutrophils [101–104].

Regarding the involvement of SCFAs in fibrosis pathways, most evidence comes from
extra-intestinal studies. A study on renal cells exposed to elevated concentrations of bu-
tyrate reported the suppression of TGF-β1 synthesis and signaling [105]. The administration
of a butyrate-producing strain not only attenuated cisplatin-induced renal inflammation
but also decreased the expression of ECM molecules like collagen IV, fibronectin, and
α-SMA [106]. Similarly, in preclinical models of diabetic nephropathy, the administration of
sodium butyrate reduced TGF-β1-induced fibrosis, with lower deposition of ECM proteins
like collagen, fibronectin, and α-SMA [107]. In the heart, butyric acid ameliorated fibrosis
by regulating M1/M2 polarization of macrophages [108], or by targeting the deposition of
collagen [109]. In the liver, different SCFAs exert different effects, and regarding fibrosis,
sometimes contrasting results have been found. For example, high doses of propionate are
known to be hepatotoxic and are used to induce liver fibrosis in animal models [110]. In
some studies, butyrate and acetate have shown anti-fibrotic properties through the deacti-
vation of TGF-β signaling and of some non-canonical TGF-β pathways [111,112]. Other
authors have found that in patients with metabolic dysfunction-associated steatotic liver



Pharmaceuticals 2024, 17, 490 10 of 25

disease (MASLD), higher serum levels of propionate (p = 0.02) and butyrate (p = 0.03) were
associated with fibrosis severity. In such patients, gut dysbiosis has been reported—with
Ruminococcaceae and Veillonellaceae as the main microbial taxa associated with significant
fibrosis—and stool propionate levels are significantly elevated, in correlation with fibrosis
severity [113]. These discrepancies might be explained by the fact that SCFAs are normally
absorbed in the liver, and higher serum levels potentially reflect the impaired hepatic func-
tion in cirrhosis or the existence of portosystemic shunts [114]. In the lungs, propionate was
found to reduce EMT in alveolar epithelial cells through the inhibition of PI3K/Akt/mTOR
signaling [115].

An indirect role of butyrate and its related microbiota in fibrosis pathways has been
attributed to the modulation of TLRs and macrophage polarization [116]. Among other
possible indirect anti-fibrotic effects of butyrate, we cite its ability to inactivate the histone-
deacetylases (HDACs) and activate the histone-acetylases (HATs), or to influence the
histone butyrylation, acting as a regulator of the epigenetic processes, possibly influencing
the fibrotic mechanisms too [117,118]. Moreover, it is an emerging AhR ligand, a receptor
that has been proposed as a pivotal mediator of diet–microbiota–host interaction thanks
to its duplex ability to recognize many xenobiotic compounds and modulate immune
cell function [119]. Furthermore, other receptors and pathways may contribute to the
anti-fibrotic effects of SCFAs. For instance, G-protein-coupled receptors (GPRs) and free
fatty acid receptors (FFARs) have been documented to modulate the TGF-β pathway and
ECM deposition in different organs [120–122].

Unfortunately, the direct role of SCFAs in EMT and fibrosis in the gut remains elusive
and little, inconclusive evidence is available. In the intestine, SCFAs producing Clostridiales
promote a TGF-β1-rich environment by stimulating its secretion by Tregs and by IECs [123].
In the colon, the ability of butyrate to induce PPAR-γ has been described, and linked to a
subsequent reduction in Enterobacteriaceae, especially E. coli [124–126]. Interestingly, some
bacterial species which have been found to inhibit colitis and strongly activate the butyrate-
related PPAR-γ induction—namely, R. hominis and R. intestinalis—are depleted in the gut
of patients with IBDs [127,128]. Additionally, a protective role against colorectal cancer
has been suggested, depending on the ability of butyrate to induce Smad3, enhancing
TGF-β-mediated repression of the inhibitors of differentiation (Ids), with subsequent apop-
tosis [129]. It is worth noting that the role of butyrate and butyrate-producing bacteria, such
as C. butyricum and F. prausnitzii, has also been examined concerning their contribution to
EMT in oncogenesis. Indeed, studies have reported that butyrate could potentially mitigate
the development of colorectal cancer, a formidable complication of UC, by modulating the
Wnt/β-catenin pathway [130].

5.2. Lactic Acid (LA)

Lactic acid bacteria (LAB) appear to have an anti-inflammatory function (Table 2)
that has been demonstrated in both CD and UC [131]. The effect seems greater for UC, in
which LAB promote the induction and maintenance of remission by promoting the shift of
macrophages from M1 to M2, reducing the pro-inflammatory TNF-α and NF-κB signaling
and increasing the anti-inflammatory IL-10, inhibiting the inflammasome, and modulating
the gut microbiota by favoring the selection of beneficial species, resulting in increased
SCFA content [132,133].

The role of LA in fibrotic pathways has been explored in various organs. For example,
Kottman et al. demonstrated how LA can promote myofibroblast differentiation in patients
with idiopathic pulmonary fibrosis by activating TGF-β [134]. Another study showed that
treatment with certain LAB species would increase TGF-β expression in asthmatic patients
and be able to reduce eosinophilic airway infiltration [135]. In a rat model of thioacetamide-
induced liver fibrosis, the oral administration of a mixture of LAB (L. paracasei, L. casei,
and W. confuse) produced a protective effect, characterized by a significant reduction in the
deposition of collagen and α-SMA, and a decreased concentration of TGF-β [136]. In the
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skin, some LAB seem to be photoprotective thanks to their ability to modulate MMPs in
fibroblasts [137,138].

At the intestinal level, the oral administration of L. gasseri appears to have beneficial
effects on the mucosa as it stimulates the release of IgA from DCs through the activation
of TGF-β [139]. The administration of fermented soymilk to a preclinical model of DSS-
induced colitis showed that LAB enhanced the growth of SCFA-producing bacteria, with
an increase in PPAR-γ and a subsequent reduction in the inflammatory cytokines [140].
Although there are few studies analyzing the relationship between LA and pro-fibrotic
patterns at the intestinal level, we speculate that LA may protect the gut from acute
inflammatory responses in part by up-regulating anti-inflammatory pathways such as
TGF-β, and in part by decreasing the fibrosis mediated by this cytokine. In the context of
IBDs, this speculation is in line with the evidence that species belonging to LAB groups are
decreased in those patients, especially in the ones affected by UC (see Table 1). However,
it should be noted that while human cells mainly produce L-lactate, LAB can produce D-
lactate, levels of which have been correlated with disease activity and serum inflammatory
markers in IBDs [141]. This evidence suggests that the role of lactic acid and LAB in
inflammation and fibrosis might also depend on the balance between different isoforms
of lactate.

5.3. Indoles

Indoles are produced by intestinal microbiota from the essential amino acid tryptophan
(Trp). In the human body, the microbiota-mediated indole pathway is interconnected with
other two endogenous Trp metabolic pathways, the kynurenine and the serotonin pathways.
Indoles have been found to normally modulate the function of the gut barrier (Table 2) and
to exert both beneficial and detrimental effects in various organs through the modulation
of inflammatory and fibrotic pathways (Table 3).

In the context of active IBDs, reduced Trp absorption, heightened activity in the
kynurenine pathway, elevated availability of interstitial serotonin, modifications to the
indole pathway, and activation of signaling through the AhR have been revealed. Once
again, as reported for SCFAs and LA, most of the beneficial effects of indoles in mitigating
the IBDs reside in the protective effects on the components of intestinal barrier, having anti-
inflammatory effects [142,143]. For example, it has been observed that dietary Trp deficiency
promotes DSS-induced inflammation, while it is alleviated by Trp supplementation [144].
Trp availability could decrease because of the depletion of some bacterial species (Table 1),
with subsequent reduction in beneficial indoles that have shown the ability to affect non-
Trp-producing bacteria’s (e.g., C. albicans, S. enterica, P. aeruginosa, E. coli, and Klebsiella
spp.) invasiveness, motility, and toxicity. Moreover, these alterations might affect mucus
composition and the intercellular tight junctions, contributing to the mechanism of a leaky
gut [78].

Regarding the direct anti-fibrotic effects, in a distinguished study by Flannigan et al.,
conducted in a mice model of colitis, the supplementation of the Trp metabolite Indole-3-
propionic acid (IPA) notably reduced the development of fibrosis through the modulation of
the PXR receptor. In the same study, this receptor was found to be reduced in IBD patients,
and their IPA fecal levels were lower when compared to healthy subjects. The authors
also found a reduced expression of pro-inflammatory cytokines in human myofibroblasts
challenged with LPS after a pretreatment with IPA [68]. Interestingly, some studies have
revealed that diet-derived indoles, like the indole-3-carbinol (I3C) contained in some
Brassica family vegetables and yet to be investigated for its anti-inflammatory effects
through the modulation of AhR [145], can impact the synthesis of PPAR-γ in mice fed with
different diets [146].

An analysis of the action of the various indoles in various organs (Table 4) suggests
that since they can coexist in the same milieu, their influence on the pathways of fibrosis
may depend on various factors, such as the type of diet (e.g., high-fat diet), the dietary
availability of Trp-related molecules, the microenvironment and the activity of the kynure-
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nine and serotonin pathways, the target cells, the specific modifications of the microbiota,
and their final balance between pro-fibrotic and anti-fibrotic effects.

Table 3. Main interactions between indoles and main molecular pathways involved in inflammation
and fibrosis.

IAA IPA ILA IS IC

AhR
Kidney: IPA suppresses
the IS effect on the
receptor [147].

Gut: Supplementation
with L. acidophilus, or its
metabolite ILA,
attenuates inflammation
and restores IL-22 levels
through AhR signaling in
mice [142].
Similar results were
observed in a mice model
of DSS-induced colitis
supplemented with two
strains of ILA-producing
B. bifidum [143].

Liver: IS is an
agonist of
the AhR
receptor [147].

Gut: depletion of
dietary IC is fatal in
AhR IEC-deficient mice
and worsens chronic
colitis in C57BL/6 mice;
in contrast, its
administration reduces
the Th17/Treg ratio in
the same model
[145,148].

TGF-β

Peritoneum: the novel IAA
analogue MA-35 reduces
TGF-β-positive cells in a
murine model of peritoneal
fibrosis [149].

Kidney: IPA suppresses
the IS effect on the
receptor [147].
Liver: IPA aggravates
CCl4-induced fibrosis by
activating TGF-β1/Smads
signaling in HSCs [150].

Kidney: IS
induces
fibrosis
through the
stimulation of
TGF-β1 [147].

Smads

Kidney: the IAA novel
analogue, MA-35, inhibits
the phosphorylation of
Smad3, thus reducing
TGF-β1 signaling and
related renal fibrosis [151].

Liver: IPA aggravates
CCl4-induced fibrosis by
activating TGF-β1/Smads
signaling in HSCs [150].

PPAR-γ

Adipocytes: the
administration of I3C
restores the levels of
PPAR-γ, which were
deregulated in mice fed
with a high-fat
diet [146].

ECM

Peritoneum: the treatment
with the novel IAA
analogue MA-35 reduces
α-SMA-positive
myofibroblasts in a murine
model of peritoneal
fibrosis [149].

Liver: IPA reduces α-SMA
and collagen deposition
and MMP expression while
inducing TIMPs in
TGF-β1-stimulated hepatic
stellate cells [152].
Liver: IPA aggravates
CCl4-induced fibrosis by
activating TGF-β1/Smads
signaling in HSCs [150].

Kidney: IS
enhances
α-SMA
expression
[147].

PXR

Gut: IPA reduces
PXR-induced fibrosis in a
mice model of colitis; IBD
patients showed lower
levels of PXR and fecal
IPA [68].

Abbreviations: AhR, aryl-hydrocarbon receptor; α-SMA, α-smooth muscle actin; DSS, dextran Sulfate Sodium;
ECM, extracellular matrix; HSCs, hepatic stellate cells; IAA, indole-3-acetic acid; IBD, inflammatory bowel disease;
IC, indole-3-carbinol; IECs, intestinal epithelial cells; ILA, indole-3-lactic acid; IPA, indole-3-propionic acid;
IS, indoxyl sulfate; MA-35, mitochonic acid-35; MMPs, metalloproteinases; PPAR-γ, peroxisome proliferation-
activated receptor-γ; PXR, pregnane X receptor; TGF-β, transforming growth factor-β; TIMPs, tissue inhibitors
of metalloproteinases. Please note that the table does not encompass all indoles produced by the intestinal
metabolism of tryptophan, and only those indoles for which publications related to their involvement in fibrosis
pathways have been found are included in the table.
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Table 4. The article search conducted at the end of March 2024. The number in the first column repre-
sents the quantity of articles acquired through the PubMed query, while the bold number denotes the
quantity of articles selected for review after reading the title and abstract, with duplicates removed.

QUERY
AND

(“IBD” OR “Gut”) AND (“TGF-Beta”
OR “Smad” OR “PPAR-Gamma” OR
“Fibrosis” OR “EMT” OR
“Alpha-SMA” OR “MMP” OR “PAI-1”
OR “TIMP”)

Title and
Abstract
Check

“butyrate” OR “butyric acid” 83 16
“acetate” OR “acetic acid” 58 4
“propionate” OR “propionic acid” 41 5
“lactic acid” 27 1
“indole-3-acetic acid” 5 1
“indole-3-carbinol” 2 0
“indole-3-lactic acid” 0 0
“indole-3-propionic acid” 5 2
“indoxyl sulfate” 1 0
“urolithin” 5 1
“hydrogen sulfide” 1 0
“trimethylamine” OR “TMAO” OR
“trimethylamine-N-oxide” 52 8

Total 280 38

5.4. Urolithins (Uros)

The evidence about Uros preservation on the gut barrier and their anti-inflammatory
effects is less with respect to other metabolites (Table 2). Nevertheless, the anti-fibrotic
potential of UA has been observed in organs different from the gut. In a study by Chen et al.
conducted on a TGF-β1-treated cardiac fibroblasts model, the administration of UA caused
the activation of the Nrf2 pathway. This pathway is known for its role in redox homeostasis
and anti-oxidant response, which has been proposed to counteract TGF-β-induced oxida-
tive stress and related fibrosis [153]. The inhibitory effect of urolithin on TGF-β/Smad
has been reported in the kidneys, while the induction of PPAR-γ has been described in
the endothelium, but these effects have not yet been reported in the gut [154]. However,
there is some evidence on the ability of ellagic acid, a precursor of urolithins, to enhance
the proliferation of SCFA-producing bacteria in the gut and to activate the PPAR-γ path-
way [155]. Cheng et al. reported that UA administration in lung cancer cells could affect
EMT by influencing the p53-Mdm2-Snail pathway. Specifically, Snail, identified as a zinc
finger transcriptional repressor, plays a role in EMT by suppressing the crucial epithelial
marker, E-cadherin [156]. All of the mentioned mechanisms may contribute to mitigating
inflammation [83] and fibrosis in the intestine, even if most of the available evidence comes
from preclinical studies.

5.5. Hydrogen Sulfide (H2S)

There is evidence that both excessive and insufficient H2S levels can have various
beneficial or harmful consequences on the gut barrier (Table 2). In IBDs, studies suggest
that H2S may play a bidirectional role, with both protective and damaging effects, with a
major impact in UC patients. While appropriate levels of H2S may have anti-inflammatory
effects and contribute to maintaining intestinal mucosal integrity, elevated levels are re-
lated to inflammation and gut barrier damage, including fibrosis. For example, while
the administration of the compound has been able to alleviate DSS-induced colitis by
lowering the levels of pro-inflammatory IL-1β, IL-10, and TNF-α [157], other studies have
suggested that the metabolic impairment that leads to lower ATP mitochondrial synthesis is
a pro-inflammatory trigger in the gut of CD patients, since it leads to IL-6 production [158].
When it comes to the mechanisms of EMT and fibrosis, studies performed in several dis-
ease contexts have shown that H2S might affect TGF-β receptor signaling (potentially
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inhibitory) and PPAR-γ activity (potentially stimulatory), exhibiting varied effects on Smad
proteins [159–161]. However, the specific impact of these pathways in the context of CD and
UC is still being elucidated but it seems that the prevalent effect of H2S in these illnesses is
the pro-inflammatory one, in line with the evidence that H2S-producing bacteria seem to
be more abundant in both conditions (Table 1).

5.6. Trimethylamine (TMA) and Trimethylamine-N-Oxide (TMAO)

The role of the TMA-derived metabolite, trimethylamine-N-oxide (TMAO), has been
mainly studied in cardiovascular health, since at elevated concentrations, it has been associ-
ated with a higher incidence of cardiovascular diseases, including atherosclerosis and heart
disease. Interestingly, in preclinical models of cardiac failure, there is evidence that this
compound may promote cardiac fibrosis through the fibroblast–myofibroblast transition
mediated by the activation of TGF-β/Smad3 signaling [162,163], whilst an analogue of
choline, the 3,3-dimethyl-1-butanol (DMB), has protective effects on cardiac remodeling
through the inhibition of the same pathway [164]. An interesting study on 44 subjects
with myocardial infarction who underwent percutaneous coronary intervention demon-
strated that the administration of the probiotic L. rhamnosus GG strain (LGG) improved
the echocardiographic indices of ventricular function and reduced the serum concentra-
tions of cardiac remodeling biomarkers, including TMAO and TGF-β [165]. Similarly,
in a preclinical model of obstructive apnea and dietary high salt intake, high levels of
TMAO have been related to a depletion of gut Lactobacilli, a higher incidence of hyper-
tension, and Th1 polarization of lymphocytes. The administration of LGG was able to
mitigate these manifestations [166]. Profibrotic effects of TMAO have been reported also
in the kidney [167–169], skin fibroblasts, vascular endothelial cells, adipocyte progenitor
cells [170], and periodontal tissue [171]. In this context, preclinical models exposed to
targeted inhibition of gut microbial TMAO production showed enhanced cardiac and renal
function, also attributed to the regulation of pro-fibrotic pathways such as TGF-β [172,173].
Although there is evidence on TGF-β-related TMAO-induced fibrosis in various organs,
the data on intestinal fibrosis are scarce. In the gut of IBD patients, it has been reported
that there is an increased TMA/TMAO ratio, probably related to the reduction in TMA-
metabolizing bacteria (Table 1) [174]. TMA exerts detrimental effects, both in vitro and
in vivo, on colonic cells by causing oxidative stress-induced DNA damage, cell cycle arrest,
and increased inflammatory infiltration [175]. Moreover, it activates fibroblasts toward a
profibrogenic phenotype [174]. Regarding the relationship between TMAO levels and IBD
predisposition and activity, the concentrations of the metabolite have been found to be
reduced or normal [176,177].

6. Discussion: Current Knowledge and Therapeutic Perspectives of Microbiota
Metabolite Modulation in Intestinal Fibrogenesis

Despite evolving data on microbiota changes in IBDs, it is widely agreed that beneficial
bacteria decrease, while harmful species increase (Table 1). These changes affect various
aspects of the intestinal barrier and can influence intestinal permeability and immune
activation (Table 2). Although the anti- or pro-inflammatory effects of probiotics are
understood, their impact on fibrogenesis remains unclear.

We included specific metabolites in this review based on evidence of their effects on
inflammation and fibrogenesis: SCFAs, lactic acid, tryptophan, urolithins, hydrogen sulfide,
trimethylamine, and TMAO. However, bacterial end-products encompass a wide range of
compounds including LCFAs, vitamins, bile acids, endogenous alcohols, branched amino
acids, flavonoids, and more, many of which are gaining attention in the context of IBDs.
We distinguished two ways in which microbial metabolites modulate fibrogenesis: indi-
rectly, through the regulation of inflammation, particularly macrophage and lymphocyte
polarization [178], and directly, which is less explored in the gut but was the focus of our
review (Figure 1).
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Our analysis reveals limited studies with small sample sizes, often conducted in vitro
or on animal models, sometimes yielding contradictory results (Table 4). Notably, while
many studies investigate the role of microbial metabolites in fibrosis across distant organs,
their primary production site is the intestine.

Fibrosis in various organs involves enhanced ECM deposition and EMT, mainly
regulated by the canonical TGF-β/Smad pathway. However, the pleiotropic nature of
the cytokine poses a “TGF-β paradox”: it can inhibit proliferation in benign cells while
promoting cancer progression [179]. From our point of view, in IBDs, this paradox manifests
differently as a conflict between the anti-inflammatory action of TGF-β and its pro-fibrotic
effects. In fact, despite being secreted by the M2/Th2 arm of the IIS in an effort to limit the
uncontrolled inflammatory burden of the M1/Th1 arm and promote the mucosal healing,
the chronic inflammatory stimulus induces the pro-fibrotic changes culminating in EMT
and eventually in cancer progression. This paradox implicates that TGF-β and related
pathways are interesting but potentially harmful targets for new therapies.

In fact, our impression is that the existence of the TGF-β paradox has directed IBD
research toward understanding inflammatory mechanisms in order to control them early on
and prevent complications, including fibrosis, rather than directly influencing fibrogenesis.
However, this linear view (acute inflammation—chronic inflammation—fibrosis) only
partially captures the molecular complexity of IBDs, where various phenotypes can coexist.

From our literature review, despite limitations such as predominant preclinical data
from studies in other organs and to a lesser extent in the intestine, several observations can
be made.

The initial hypothesis that dysbiosis causes a depletion of postbiotics has been gen-
erally confirmed [95,144]. Accordingly, some studies indicate that the administration of
postbiotic-producing bacteria, or of the postbiotics themselves, can reduce both inflam-
mation and fibrogenesis in colitis models. Even if contradictory data may arise from the
separate analysis of each metabolite (see Section 5), it should be considered that these
alterations often coexist in patients with IBDs. Therefore, the final effect likely results
from the interaction of various metabolites and related pathways, including both pro- and
anti-inflammatory as well as pro- and anti-fibrotic mechanisms, which influence each other
throughout the pathology stages.

Furthermore, CD and UC exhibit significant differences in immune pathways, his-
tological and clinical manifestations, and complications, which also reflect on microbiota
features. For instance, the small intestine has lower bacterial counts compared to the colon,
and dysbiotic oscillations differ between CD and UC [180]. These differences may affect
the production and availability of metabolites (Table 1), influencing molecular pathways
and explaining various disease features. Given the higher bacterial abundance in the colon,
most metabolic events occur there, with postbiotics being absorbed by the intestinal mucosa
and potentially affecting distant organs via the bloodstream. For example, while SCFAs
play a well-described role in UC due to their derivation from the fermentation of fibers in
the colon [96], they have also been implicated in CD exacerbations [95].

The advantages of using postbiotics in preventing IBD exacerbations and complica-
tions might stem from their potentially greater stability, both during industrial processes
and storage, and safety [69]. In fact, even if probiotic administration has been found to be
safe, it involves the use of one or more strains of live bacteria with potentially unpredictable
interactions with the recipient’s microbiota, including the extremely rare but dreaded
bacteremia. Similarly, other emerging methods such as fecal transplantation entail adminis-
tering material from a healthy donor, with the caveat that the composition of a “healthy”
microbiota is not fully understood [7]. Instead, postbiotics supplement what is lacking in
the organism without introducing living deficient microbial species. A similar rationale
applies to prebiotics, which can also be supplemented, but dysbiosis might result in an
unpredictable production of end-products due to a lack of species necessary to convert
prebiotics into the desired molecule. Furthermore, the potential advantage lies in the fact
that microbial metabolites, especially postbiotics, can trigger beneficial feedback signals
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on the altered microbiota, potentially promoting restoration of normal bacterial flora. An
example of this principle’s applicability is the positive effect of butyrate oral or topical
administration in the treatment of ulcerative colitis [97,98]. The basis for this strategy
primarily lies in inflammation modulation, while from our literature review, the potential
anti-fibrotic effects have not been extensively investigated.

It is noteworthy that some studies on Crohn’s disease have revealed the histological
heterogeneity of intestinal strictures. While both inflammatory and fibrotic conditions can
coexist, strictures may predominantly exhibit either inflammatory or fibrotic character-
istics. This discrepancy suggests the need for distinct therapeutic approaches: an initial
medical approach focusing on anti-inflammatory therapy might be suitable for primarily
inflammatory strictures, while a surgical approach may be necessary for predominantly
fibrotic strictures. Currently, there are no effective preventive or reversal medical therapies
available for such strictures. Proposed strategies to avoid surgery include endoscopic
ballooning or local corticosteroid injections, but these methods have high recurrence rates.
However, the concept of an intermediate scenario where progression toward a fibrotic
morphology of the stricture can be slowed or prevented through modulation of fibrosis
pathways could generate interest in the potential anti-fibrotic effects of certain metabolites.
These could serve as complementary therapy to other molecules currently under investi-
gation, primarily monoclonal antibodies and growth inhibition factors [181]. Moreover,
it has been reported that the various polymorphisms of the NOD2 gene correlate with a
higher risk of surgery, suggesting that different defects in microbial sensing by NOD2 are
differently predisposed to fibrosis. Despite significant therapeutic advancements targeting
inflammation suppression, the occurrence of intestinal complications such as strictures
and penetrations in CD patients has shown little change. These findings indicate that
solely targeting inflammation may not substantially alter the clinical outcomes of intestinal
fibrosis in CD patients [116]. Moreover, there is evidence that CD patients experiencing
persistent symptoms in the absence of inflammation show a depletion in butyrate and
indole-producing bacteria, thus suggesting that as for fibrosis, other clinical aspects of the
disease might also not solely depend on inflammatory mechanisms and that microbial
metabolites are once again implicated in those mechanisms [182].

In conclusion, the authors’ interest in reviewing the role of microbial metabolites in
the development of fibrosis in IBDs was driven by three main considerations.

Firstly, despite the efficacy of current anti-inflammatory therapies for IBDs, a subset of
patients, particularly those with CD, still experience fibrotic complications, leading to a
persistent need for surgery. This discrepancy suggests that while chronic inflammation and
the concomitant inadequate anti-inflammatory response are primary triggers of fibrosis
and EMT, there may also be non-inflammatory pathways contributing to fibrosis that are
not targeted by existing anti-inflammatory treatments.

Secondly, the absence of specific anti-fibrotic therapies for intestinal fibrosis may be
attributed to the characteristics of the mechanisms underlying IBD complications, which
raises concerns about the potential side effects. In fact, these mechanisms not only play a
role in normal wound healing but are also implicated in processes such as embryogenesis
and oncogenesis. For instance, the TGF-β pathway, also implicated in the development
of colorectal cancer in UC patients, underscores the complexity of fibrotic pathogenesis
in IBDs.

Thirdly, recent advances in understanding the role of the microbiota in IBDs have
highlighted the impact of bacterial end-products on intestinal barrier integrity and disease
manifestation. Besides the growing literature exploring the effects of these metabolites
on microbiota modulation, mucus layer maintenance, epithelial functionality, and inflam-
matory pathways, surprisingly few studies have investigated their potential effects on
fibrotic pathways. This is particularly striking considering that many of these metabolites
are produced in the gut and then absorbed into the bloodstream to reach distant organs.
However, research on the effects of these metabolites on EMT and fibrosis in various organs,
including the lungs, heart, kidneys, and skin, has revealed a consistent trend. Metabolites
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known to be beneficial in the intestine, such as butyrate, lactic acid, certain indoles, and
urolithin A, have generally demonstrated anti-fibrotic effects in other organs. These effects
are often mediated through the modulation of regulatory factors like PPAR-γ, ultimately
reducing the activity of the TGF-β/Smad pathway [105,111,124,125,136,147]. In the gut,
the mechanisms remain elusive but the most consolidated evidence suggests that SCFA-
producing bacteria and LAB collaborate in anti-fibrotic mechanisms through the induction
of PPAR-γ [132,133,140]. Specifically, SCFA-producing bacteria can induce PPAR-γ, while
LAB create a microenvironment conducive to the growth of the SCFA-producing bacteria.
Currently, there is insufficient strong data to support the routine use of LAB and SCFA-
producing bacteria in the therapy of all patients with IBDs. However, one of the most
promising therapeutic strategies appears to be modulating these bacteria to intervene in
the anti-fibrotic mechanisms controlled by PPAR-γ. Challenges such as the instability of
purified microbial metabolites [183], the differing pathophysiology between CD and UC,
and the varied impact of fibrosis in these two conditions currently hinder its application.

The lack of data related to the study of metabolites as mediators of intestinal fibrogen-
esis should be addressed, initially with preclinical studies and subsequently with clinical
trials, as they could contribute to the development of potential new therapies complemen-
tary to those currently available. The interest addressed to preventive strategies and/or
alternative/complementary therapeutic strategies based on prebiotics, probiotics, and
postbiotics finds place in the fact that current therapies, although effective, do not lack
adverse effects [184]. Further studies on microbial metabolites could not only enhance
the understanding of IBD pathogenesis and their treatment but also contribute to a better
understanding and treatment of other common and dangerous conditions characterized by
fibrosis that can potentially affect any organ.

7. Methods

The search reported in Table 4 was performed at the end of March 2024 in the PubMed
database and filtered for the last five years, 2020–2024. English-language original papers,
short communications, clinical trials, randomized controlled trials, meta-analyses, letters,
editorials, and articles were evaluated. Emphasis was placed on the selection of original
papers and randomized controlled trials whenever possible. A total of 280 were acquired
with the PubMed search; after the duplicates were removed and titles/abstracts were
checked, a total of 38 articles were selected for full-text reading. From the reference list
of those articles, the authors selected another 27 papers, based on scientific and clinical
relevance, resulting in a total number of 65 publications.
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