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Abstract: Cerebral malaria (CM), a severe neurological pathology caused by Plasmodium falciparum
infection, poses a significant global health threat and has a high mortality rate. Conventional
therapeutics cannot cross the blood–brain barrier (BBB) efficiently. Therefore, finding effective
treatments remains challenging. The novelty of the treatment proposed in this study lies in the
feasibility of intranasal (IN) delivery of the nanostructured lipid carrier system (NLC) combining
microRNA (miRNA) and artemether (ARM) to enhance bioavailability and brain targeting. The
rational use of NLCs and RNA-targeted therapeutics could revolutionize the treatment strategies for
CM management. This study can potentially address the challenges in treating CM, allowing drugs
to pass through the BBB. The NLC formulation was developed by a hot-melt homogenization process
utilizing 3% (w/w) precirol and 1.5% (w/v) labrasol, resulting in particles with a size of 94.39 nm.
This indicates an effective delivery to the brain via IN administration. The results further suggest
the effective intracellular delivery of encapsulated miRNAs in the NLCs. Investigations with an
experimental cerebral malaria mouse model showed a reduction in parasitaemia, preservation of BBB
integrity, and reduced cerebral haemorrhages with the ARM+ miRNA-NLC treatment. Additionally,
molecular discoveries revealed that nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2)
and Interleukin-6 (IL-6) levels were reduced in the treated groups in comparison to the CM group.
These results support the use of nanocarriers for IN administration, offering a viable method for
mitigating CM through the increased bioavailability of therapeutics. Our findings have far-reaching
implications for future research and personalized therapy.

Keywords: nanostructured lipid carrier; miRNA; pharmacokinetics; intranasal delivery; brain
targeting; NOX2; IL-6; cerebral malaria
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1. Introduction

Cerebral malaria is a deadly neurological condition triggered by the insidious
Plasmodium falciparum. It has a significant incidence and affects children who live in
sub-Saharan Africa. Individuals who have endured such infections may be more vulnera-
ble to long-term neurological impairments [1]. The invasion of parasites increases oxidative
stress, which disturbs the delicate balance of redox reactions and results in abnormally
elevated concentrations of reactive oxygen and nitrogen species (ROS/RNS) [2]. This
oxidative and nitrosative stress surge can harm the host’s natural antioxidant defences. It is
worth noting that astrocytes, neurons, and microglia exhibit complex immune responses in
the presence of P. falciparum. The complex relationship between the parasite and the host’s
neural components highlights the intricate pathophysiology of CM, providing insights into
possible therapeutic interventions and preventive strategies [3]. In experimental cerebral
malaria (ECM), the activation of astrocytes and microglial cells is triggered by proteins
from both the parasite and the host. This activation releases unique signalling molecules,
such as IL-6, cytokines, chemokines, and ROS. Elevated oxidative stress plays a crucial role
in triggering tissue damage in the brain. This sequence of events unfolds as the dysfunction
of endothelial cells occurs, resulting in the compromise integrity of the BBB. As a result, the
compromised barrier integrity paves the way for neuroinflammation, marked by the release
of molecules that induce inflammation [4,5]. This complex sequence of reactions ultimately
leads to disruptions in brain function, emphasizing the interconnectedness of oxidative
stress, vascular integrity, and neuroinflammation in the progression of ECM [6]. ROS
contribute to the maintenance of various biological processes in the body, such as immune
responses, cell growth, and cellular differentiation [7]. Multiple research investigations
have produced valuable insights into the importance of nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase and NOX in the numerous physiological processes occurring
in the brain. Numerous studies have demonstrated a connection between NOX expression
and oxidative damage-related disorders, including Parkinson’s disease (associated with
motor dysfunction) and Alzheimer’s disease (linked to cognitive impairment), which are
associated with the generation of superoxides [8]. This generation of free radicals plays a
significant role in increasing oxidative stress and causing hippocampal lesions in CM [9,10].
It is noteworthy that the suppression of NOX expression has shown great promise in
addressing an array of central nervous system (CNS) disorders [11,12].

MicroRNAs (miRNAs) play a vital part in a broad spectrum of cellular processes, such
as differentiation, cell proliferation, and programmed cell death. A notable factor is miR-
223, which is generated by haematopoietic cells [13]. It significantly impacts the regulation
of monocyte–macrophage differentiation, neutrophil recruitment, and proinflammatory
responses [14,15]. During malaria infections, miRNA-223 exerts its effects through complex
molecular mechanisms involving the inhibition of ICAM-1 through the phosphorylation of
p38 MAP kinase (mitogen-activated protein kinase), JNK (c-Jun N-terminal kinase), and
ERK (extracellular signal-regulated kinase) and further dysregulates the nuclear transloca-
tion of NF-kB p65 (Nuclear Factor-kappa B), which could have direct or indirect effects on
parasite growth inhibition [16,17]. According to the research conducted by LaMonte et al.,
it has been predicted that miRNAs can impact gene expression in Plasmodium falciparum
through a distinct mechanism. Specifically, these miRNAs can infiltrate Plasmodium falci-
parum cells and attach themselves to mRNAs, impeding their translation. Hence, the rise
in miR-223 expression in mice suffering from CM suggests a potential immune reaction
against parasites, warranting further investigation into the therapeutic possibilities of
targeting miR-223 [18]. ARM, a semisynthetic derivative of artemisinin, has become increas-
ingly crucial in innovative antimalarial therapeutic strategies endorsed by the World Health
Organization (WHO) [19]. These approaches, which use several artemisinin compounds,
have enhanced safety and tolerability. The molecular mechanism of ARM in reducing CM
involves a multifaceted approach, including the inhibition of parasite growth by damaging
the DNA and increasing ROS production, which further causes membrane depolarization.
ARM also disrupts parasite sequestration by activating the heme cascade and the formation
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of c-radicals causing alkylation of the parasite proteins and induction of autophagy and
apoptosis [20,21]. These mechanisms collectively contribute to the efficacy of artemether in
alleviating symptoms, improving clinical outcomes, and reducing the mortality rates of
CM. Recent investigations have revealed ARM’s powerful cytotoxic and anti-inflammatory
properties, broadening its potential use in treating various diseases such as cancer, viral
and fungal infections, sepsis, haemorrhage, and arthritis [22].

In the context of cerebral malaria, ARM has been shown to possess anti-inflammatory
properties, which may contribute to its ability to reduce the expression of interleukin-6
(IL-6). IL-6 is a pro-inflammatory cytokine that plays a key role in orchestrating the immune
response to infection. Studies have suggested that ARM can modulate the production of
various cytokines, including IL-6, by suppressing inflammatory signalling pathways such
as the NF-κB and MAPK pathways [23]. Additionally, ARM may inhibit the activation
of immune cells, such as microglia and macrophages, which are major sources of IL-6
production in cerebral malaria [24]. Therefore, it is anticipated that ARM alone could
attenuate IL-6 expression, potentially contributing to its therapeutic efficacy in mitigating
neuroinflammation and improving clinical outcomes in CM patients. ARM is well-known
for its hydrophobic nature; however, it cannot cross the BBB on its own and maintain a high
concentration in cerebral tissues; thus, to address these challenges, diverse formulation
strategies have been tested to make it a promising contender for treating cerebral disor-
ders [25]. Although this drug shows potential, its limited brain vascular bioavailability is
a problem that has prompted researchers to investigate other formulation options. Our
research aimed to explore formulation strategies that work in concert with miRNA to boost
ARM’s effectiveness.

Typically, individuals suffering from CM are given oral drugs, which, regrettably,
have lower-than-ideal bioavailability and limited therapeutic benefits. The oral route poses
certain obstacles, such as vulnerability to first-pass metabolism, enzyme degradation, swift
clearance, and selective accumulation in peripheral tissues, all hindering the desired thera-
peutic outcomes [26]. Contemporary advancements in drug delivery technologies have
induced researchers to investigate the possibilities of IN administration as a viable alter-
native. This approach provides benefits by potentially bypassing the BBB and enhancing
the availability of therapeutic agents without the need for invasive procedures. The IN
administration method allows for the direct transportation of drug molecules to the CNS,
resulting in increased concentrations in the CNS. This effectiveness is backed by extensive
pre-clinical evidence, demonstrating the potential of the IN route to utilize trigeminal,
glymphatic, and olfactory pathways to achieve higher drug concentrations in the CNS.
Numerous studies have demonstrated the efficacy of IN delivery, highlighting its capacity
to target the CNS more precisely and offer improved therapeutic benefits over traditional
delivery modalities [27].

Recently, nanocarriers have become a highly intriguing strategy for drug delivery,
offering significant benefits compared to traditional techniques. Various carriers, including
exosomes, nanoparticles of polymers, extracellular vesicles, and liposomes, can encapsulate
and deliver drugs with precision to targeted tissues or cells. This precise delivery method
minimizes any unintended effects and decreases the potential harm. In the context of brain
inflammatory disorders, the application of nanocarriers has demonstrated great potential
in administering drugs that focus on the underlying neurological processes associated
with such conditions [28]. A recent study delved into the various strategies for enhancing
the effectiveness and accuracy of nanocarriers to achieve better therapeutic outcomes [29].
Nanocarriers are an enticing field of study that has the potential to revolutionize drug de-
livery by improving drug effectiveness and safety across an extensive spectrum of ailments.
In treating neurodegenerative illnesses and brain disorders, more effective and tailored
nanocarriers have great potential [30]. Enhancements in emerging methods for drug deliv-
ery allow pharmaceutical researchers to leverage the intriguing possibilities of nanocarrier
systems, resulting in enhanced clinical outcomes. These advancements have sparked inter-
est in exploring IN delivery using carrier systems to encapsulate therapeutic agents [31].
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However, enhancing benefits requires establishing appropriate release kinetics, optimizing
dosages, and ensuring that medication molecules are active when they reach the absorp-
tion site. Employing biocompatible polymers with amphiphilic properties in nanocarrier
systems offers significant benefits for transferring medicinal compounds. Because of their
remarkable adaptability, these nanocarriers can be tailored to meet the objectives of a given
research project and facilitate efficient dispersion [24,32]. A comprehensive investigation
has been carried out on distinct kinds of NLCs to explore their potential to cross the BBB.
Research communities are likely to be interested in this formulation strategy, which might
lead to more investigations and evaluations of its appropriateness for IN delivery to treat
numerous neurological disorders [33].

Our findings indicate that using NLCs loaded with miRNA and ARM can improve
CM treatment. This method aims to enhance the system’s drug bioavailability and brain-
targeting capabilities, potentially leading to more effective disease management. This
investigation aimed to assess and examine the pharmacokinetic specifications, efficacy, and
reliability of recently formulated NLCs in CM management. The outcomes of this research
might offer a foundational basis for future investigations on the effective administration
of medicinal compounds through the nasal route to treat disorders related to CM. NLCs
offer a highly effective method of administering drugs to the desired site of action by
efficiently crossing the BBB through the IN route. Including therapeutic agents in nanocar-
riers is crucial for ensuring the therapeutics’ secure and economical delivery to manage
CNS disorders. Considering the scarcity of research on the successful administration of
miRNAs through the nasal route, this study’s outcome provides significant knowledge and
establishes an essential basis for future studies. The findings indicate the potential for the
non-invasive IN administration of therapeutic compounds to the CNS, thus tackling the
difficulties linked to treating neurodegenerative conditions.

2. Results
2.1. Formulation and Characterization of ARM+ miRNA-NLCs

The particle size analysis of the prepared NLCs was performed by adopting the dy-
namic light scattering technique. The particle size of blank NLCs and ARM-NLCs was
found to be 76.84 nm and 87.26 nm with a polydispersity index (PDI) of 0.107 and 0.107,
respectively (Figure 1A,B). On the other hand, the particle size of ARM+ miRNA-NLCs
was found to be 94.39 nm with a PDI of 0.122 (Figure 1C). As anticipated, the outcomes
of the particle size analysis reflected an increase in particle size with the loading of ARM
and miRNA without any aggregation or polydispersity of the particles. The zeta poten-
tial recorded for ARM+ miRNA-NLCs was −11.8 mV, as shown in Figure 1D. Higher
entrapment levels were observed specifically at 93.06 ± 3.43%.

2.2. Evaluation of Linearity of Plasma Samples by Employing RP-HPLC

To ensure the absence of endogenous plasma constituents, blank plasma samples
were analysed initially. After that, rat plasma was isolated and spiked with standard
solutions containing 10–1000 µg/mL ARM and 10 µg/mL I.S. (DHA). A calibration curve
was generated for the linear range of 0.78–25 µg/mL, and Figure 2A,B depicts the blank
plasma and ARM standard bioanalytical chromatograms. The calibration curves were
plotted by graphing the ratio of ARM’s peak area to the internal standard. Using the
least-squares approach, the mean linear regression equation for ARM in the concentration
range of 0.78–25 µg/mL was calculated, yielding y = 2.5391x + 0.289, as portrayed in
Figure 2C (the equation represents the concentration of ARM in plasma as x, and the peak
area ratio of ARM to the I.S. as y). The ARM levels in the plasma were determined using
the ratios of the ARM peak areas to I.S. peak areas. The calibration curve demonstrated
remarkable linearity over the standard range under investigation during validation, with an
R2 correlation value of 0.9998 for ARM. The limit of quantification (LOQ) was found to be
1.5 µg /mL at a predefined signal-to-noise ratio of about 10. The recovery was calculated at
three distinct concentrations (1.5, 6.2, and 25 µg/mL ARM in plasma). The recovery range
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for ARM’s mean percentage was 91.42% to 97.29%. At 10 µg/mL, the mean percentage
recovery for the internal standard was 97.17%. The lower limit of quantification (LLOQ)
was within 20%, and the non-zero calibrators were within 15% of the nominal values, as
per US FDA guidelines [34].
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2.3. Agarose Gel Electrophoresis

The results confirmed the successful loading of miR-223 (10 nM final concentration)
into the NLCs; there was a significant inhibitory effect on their migration when exposed
to the applied electrical field. Interestingly, the utilization of heparin to release loaded
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miR-223 from the NLCs led to a migration pattern in the agarose gel that closely resembled
the control conditions. This observation demonstrates that the loaded miR-223 remained
intact throughout the release process, as displayed in Figure 3. The migration patterns
observed in both the released miRNA and control group highlight the remarkable stability
and protection provided by the NLCs.
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2.4. Cellular Absorption Evaluation

Evaluating the effective cellular absorption of medicines from their delivery vehicles
is critical for establishing therapeutic efficacy. For the investigation of ARM-miRNA-NLCs,
they were labelled with FITC dye, a prominent dye used for fluorescence contrast imaging.
The FITC dye was chemically conjugated via covalent bonding with the NLC lipid. Detailed
data of the FT-IR spectral analysis confirming the chemical conjugation of FITC with the
NLCs is provided in the ‘Supplementary Materials’. The capacity of the ARM-miRNA-NLCs
to infiltrate the cell membranes and penetrate into the cytoplasm is critical in determining
the influence on HEK cells; after 6 and 24 h, the mean fluorescence intensity values were
6.65 ± 3.24 and 16.42 ± 5.78, respectively. Compared to untreated cells, which produced a
modest FITC signal (0.16 ± 0.02), this suggested a highly time-dependent cellular uptake
compared to the background NLC signal. Hoechst 33342 dye was utilized as a counter-stain
(Figure 4).

2.5. Pharmacokinetic Parameters

IN drug administration enables non-invasive access to the brain through the nose
through direct and indirect channels. In the current investigation, we evaluated the levels of
ARM in the brain after IN ARM-NLC and ARM suspension administration, and intravenous
injection of ARM-NLCs. The concentrations of ARM in the plasma and brain were plotted
against time, and pharmacokinetic characteristics such as Cmax, Tmax, AUC, and AUMC,
as well as neuro-pharmacokinetic parameters (DTI, DTP, and DTE) were estimated using
Equations (2)–(6). To enable comparability, the ARM dose was kept standard. Figure 5
displays the plasma and brain concentrations of ARM produced from the suspension and
NLCs after IN and intravenous administration, respectively. Two hours post intravenous
administration, the ARM plasma levels were higher than those from the other formulations.
Subsequently, two hours post IN administration, the highest plasma concentration of ARM-
NLCs was obtained; at four hours, there was no discernible alteration in ARM plasma
levels. Fascinatingly, after receiving ARM-NLC injections intravenously and intranasally,
ARM plasma concentrations of the mice stayed higher than those that were administered
free drug. There was a delay in the increase in plasma concentration for the IN distribution
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route due to the drug molecules having to pass through the nasal membrane. Contrarily, a
higher peak concentration was noted with intravenous infusions since the drug can enter
the bloodstream more quickly. There were significant concentration differences between
the free medication and the NLCs due to ARM diffusing through the polymer matrix.
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Likewise, the brain samples had a greater concentration of ARM at 2 h for intranasally
administered ARM-NLCs. Nevertheless, after 4 h, the ARM-NLCs administered in-
tranasally led to a greater concentration of ARM in the brain when compared to the free
drug. The brain ARM levels achieved by ARM-NLC were higher than those of other formu-
lations, suggesting enhanced permeation through the nasal mucosa, increased lipophilic
nature of the NLC, and superior drug efflux. The pharmacokinetic profile indicates a
heightened brain efficiency of ARM when utilized in the NLCs for IN administration. The
pharmacokinetic profiles for the blood and brain samples are displayed in Table 1.
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Figure 5. Pharmacokinetic profiles of artemether (ARM) in (A) Brain and (B) plasma following
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Table 1. Estimation of pharmacokinetic parameters for ARM-NLCs in brain and plasma.

Pharmacokinetic
Parameter

Route of Administration and Nature of Formulation

NLCs Loaded with ARM (IN) ARM Suspension (IN) NLCs Loaded with ARM (IV)

Brain Plasma Brain Plasma Brain Plasma

Cmax (µg/mL) 12.36 ± 0.18 5.30 ± 0.51 8.16 ± 1.01 8.24 ± 0.96 5.82 ± 0.45 12.64 ± 0.95

Tmax (h) 2 6 4 4 6 2

AUC0–24h (µg·h/mL) 72.88 ± 5.50 27.32 ± 3.79 54.38 ± 4.59 40.08 ± 9.45 28.13 ± 8.16 58.45 ± 7.55

AUC0–∞ (µg·h/mL) 78.23 ± 6.72 29.08 ± 6.59 58.96 ± 8.99 42.62 ± 8.57 30.60 ± 11.35 62.32 ± 11.45

AUMC0–24 (µg·h2/mL) 488.12 ± 26.54 177.92 ± 16.46 403.04 ± 10.88 226.36 ± 23.01 176.76 ± 11.62 323.92 ± 12.77

AUMC0–∞ (µg·h2/mL) 1054.85 ± 21.56 348.27 ± 16.46 906.30 ± 19.76 647.93 ± 23.01 393.50 ± 18.55 652.81 ± 12.77

Kel (h−1) 0.10 ± 0.08 0.09 ± 0.06 0.089 ± 0.06 0.10 ± 0.09 0.086 ± 0.12 0.11 ± 0.13

T1/2 8.01 5.98 7.73 6.45 6.69 7.12

MRT0–∞ 17.88 10.47 12.85 11.97 11.58 15.19

Relative bioavailability 132.95 ± 10.56

Absolute bioavailability 256.77 ± 14.80

The findings are expressed as mean ± SD; n = 3. The comparisons were considered significant if p < 0.05. The
results for the NLC formulation through the IN route were significantly different (p < 0.001) from the free ARM
drug suspension.

2.6. Estimation of Targeting Efficiency

In addition, our study thoroughly examined the transportation of ARM to the brain
through ARM-loaded NLCs and a free ARM suspension. When ARM-loaded NLCs were
administered via the IN route, the DTP and DTE estimates were higher than those of the
free ARM suspension. According to the DTP results, the intranasal delivery method allows
the medications to bypass the blood–brain barrier and reach the brain. When administered
intranasally, the ARM-NLCs showed a DTP value of 0.04%, while the ARM suspension
exhibited a DTP value of 0.01%. The brain-targeting effectiveness of the NLCs was further
demonstrated by the remarkable DTE value of 502.7% for the NLCs loaded with ARM.
Similarly, effective brain delivery was indicated by a DTI of 5.02% (DTI > 1). The higher
DTP and DTE values indicate that the drug moieties were transported from the nasal
cavity to the brain via the trigeminal and olfactory pathways. Therefore, the improved
DTP and DTE estimates in the developed NLCs and the free drug suspension indicate that
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ARM had a greater capacity to enter the brain through these formulations. In addition, the
drug’s encapsulation in the NLCs shields it from degradation and enables it to bypass the
efflux mechanisms.

2.7. Pharmacodynamic Evaluation: In Vivo Anti-Malarial Efficacy
2.7.1. Parasitaemia Evaluation

The results displayed an evident reduction in parasitaemia in both the ARM-NLC-
(p < 0.05) and ARM+ miRNA-NLC (p < 0.001)-treated groups when contrasted to the CM
group. In addition, the group treated with ARM+ miRNA-NLCs exhibited a noteworthy
reduction in parasite burden compared to the ARM-NLC-treated group (p < 0.01). It ap-
pears that the ARM+ miRNA-NLC formulation has exceptional effectiveness in combating
malaria (Figure 6). The combination of ARM+ miRNA-NLCs may have prolonged its
interaction with parasites, resulting in preserving innate immunity and a reduction in the
parasite burden compared to ARM-NLCs.
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blood cells (RBCs) and parasites in the untreated/control group and the treated groups (ARM-NLCs
and ARM-miRNA-NLCs). (B) The parasite burden in mice treated with ARM-NLCs and ARM-
miRNA-NLCs was reduced. $$ Demonstrates a significant difference (p < 0.01) compared to the
treatment groups. *** Denotes a highly significant difference (p < 0.001) compared to the CM and
ARM+ miRNA-NLCs groups, while # signifies a notable variance (p < 0.05) compared to the CM
and ARM-NLCs. The data are provided as mean ± SD (n = 3). One-way ANOVA was utilized for
statistical analysis, followed by Tukey’s multiple comparison test.

2.7.2. Histopathology Examinations

In the control group, there was a normal framework in myelinated hippocampal
neurons within the hippocampal region and pyramidal neurons in the cerebral cortex,
which is consistent with the anticipated baseline conditions. These findings provide a
foundation for comprehending the usual histological characteristics without any exper-
imental interventions. In contrast, the CM group showed significant neuropathological
alterations, such as severe multifocal degeneration and demyelination of neurons in the
cerebral cortex, coupled with foci of inflammation marked by the infiltration of inflamma-
tory cells. Furthermore, the appearance of multifocal necrosis and apoptotic neuron foci in
the hippocampus’s dentate gyrus (DG) area emphasized the disease’s adverse impact on
brain structures.

In the ARM-NLC group, mild multifocal necrosis and apoptotic foci in the DG area of
the hippocampus indicated minimal improvement in the observed neuronal degeneration
and apoptosis. Conversely, the ARM+ miRNA-NLC group showed a remarkable restorative
effect, as evidenced by the restoration of the normal morphology in myelinated hippocam-
pal neurons and pyramidal neurons in the cerebral cortex. These findings imply that the
ARM+ miRNA-NLC combination may offer a more optimistic therapeutic strategy, possibly
mitigating the neurodegenerative effects observed in the CM and ARM-NLC groups, as
shown in Figure 7. Additional investigations are needed to understand the underlying
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mechanisms better and enhance the combined benefits of this therapeutic approach for
treating CM.
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Figure 7. Histopathology H&E staining of hippocampus and cerebral cortex. The control group
shows normal myelinated hippocampal neurons (green arrow) and pyramidal neurons of the cerebral
cortex (green arrow). The CM disease group shows neuronal degeneration and inflammation in the
cerebral cortex (red arrows) and multifocal neuronal necrosis/apoptosis in the hippocampus (red
arrow). The ARM-NLC group has moderate inflammation in the cerebral cortex (yellow arrow) and
multi-focal neuronal necrosis/apoptosis in the hippocampus (DG and CA4 areas) (red arrow). The
ARM+ miRNA-NLC treatment resulted in normal cerebral cortex pyramidal neurons (green arrow)
and normal myelinated hippocampus neurons (green arrow).

2.7.3. Molecular Interplay Driving Pathogenesis in Cerebral Malaria

In the intricate realm of CM, the delicate interaction of molecular factors, particularly
the NOX2 gene and IL-6, plays a significant role in shaping the pathogenic processes.
Oxidative stress driven by NOX2 contributes to the disruption of the blood–brain barrier,
leading to damage to neurons and the development of neurological complications. Con-
currently, increased IL-6 levels intensify the inflammatory response, leading to a more
pronounced breakdown of the blood–brain barrier and making it easier for immune cells
to enter, ultimately causing severe consequences such as seizures and coma [35]. The
dysregulation of both NOX2 and IL-6 indicates that they are potential therapeutic targets
for reducing the severity of CM and its related neurological consequences.

Modulation of Gene Expression

The results of the gene expression analysis revealed a noteworthy reduction in IL-6
expression with both the ARM + miRNA-NLC (1.60 ± 0.03, *** p < 0.001) and ARM-
NLC (2.05 ± 0.06, ** p < 0.01) therapies in comparison to the CM group (2.48 ± 0.18)
(Figure 8A). The reproducibility of the data was increased by using GAPDH as a loading
control, showing a drop in IL-6 as a result of the combination therapy. This reduction was
consistent with the theoretical paradigm, implying that focusing on IL-6 might potentially
lessen the blood–brain barrier disruption, providing a promising option for therapy. As
IL-6 is a key mediator of pro-inflammatory signalling pathways, by targeting IL-6, either
through inhibition of its production or blockade of its signalling pathways, it may be
possible to reduce the overall inflammatory response in cerebral malaria. This could lead
to the decreased activation of endothelial cells and reduced production of inflammatory
mediators that contribute to BBB disruption [36]. Moreover, IL-6 is also involved in the
activation of astrocytes and microglia, which are resident immune cells in the central
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nervous system. These cells can produce additional inflammatory mediators that contribute
to neuroinflammation and BBB disruption. By reducing IL-6 levels, it may be possible to
mitigate the activation of astrocytes and microglia, thereby dampening neuroinflammation
and preserving BBB function [37].
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Figure 8. Reduction in the expression of IL-6 and NOX2. (A) Expression of the IL-6 and NOX2 in
whole brains. The expression levels were normalized using GAPDH, and the densitometric results
are shown. (B) The Western blot analysis demonstrates the quantification and normalization of the
protein expression levels of both the IL-6 and NOX2 genes relative to those of GAPDH. (** denotes
p < 0.01, *** denotes p < 0.001).

Likewise, significant decreases in NOX2 gene expression were seen with the ARM+
miRNA-NLC (1.61 ± 0.15, *** p < 0.001) and ARM-NLC (2.17 ± 0.07, ** p < 0.01) treatments
in comparison to the CM group (3.36 ± 0.14) (Figure 8A). The significant decrease in NOX2
expression highlights the potential of ARM+ miRNA-NLCs and ARM-NLCs in reducing
oxidative stress and preventing blood–brain barrier damage, positioning them as highly
promising therapeutic approaches in the treatment of CM.

Protein Expression Profiling

There was a decrease in IL-6 protein expression with ARM+ miRNA-NLCs (1.86 ± 0.08)
compared to the ARM-NLC (2.41 ± 0.12, ** p < 0.01) and the CM groups (3.564 ± 0.21,
*** p < 0.001), which is consistent with the gene expression findings (Figure 8A). The consis-
tent modulation at both the gene and protein levels highlights the substantial effectiveness
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of ARM+ miRNA-NLCs in reducing IL-6 expression, suggesting a comprehensive strategy
to control the inflammatory cascade in CM.

Corresponding to the gene expression findings, the expression of NOX2 protein
showed a significant decrease with ARM+ miRNA-NLCs (1.99 ± 0.04) compared to the
ARM-NLC (2.46 ± 0.13, ** p < 0.01) and the CM groups (3.560 ± 0.11, *** p < 0.001)
(Figure 8B). The potential of ARM+ miRNA-NLCs to successfully downregulate NOX2
expression is highlighted by the consistent findings at both the transcript and protein
levels, suggesting a possible therapeutic pathway for treating the oxidative stress and BBB
disruption in CM.

3. Discussion

Our research details the formulation of an NLC using the hot homogenization tech-
nique for intranasal delivery. Specifically, our focus was on examining the system’s physical
characteristics such as particle size, PDI, and zeta potential to enhance brain targeting. The
obtained size enables a greater surface area, resulting in optimized ARM release. Due to the
monomodal dispersion’s reduced PDI, colloidal dispersion enables the extended release
of the drug. The formulation had a higher EE of 93.06 ± 3.43% compared to the earlier
results of 91 ± 3.62% published by Vanka Ravisankar et al. [38]. This increased efficiency
is due to ARM’s remarkable solubility and strong lipophilic qualities in our formulation,
which stimulate drug release at the absorption site. The pharmacokinetic profiles of ARM
in the brain illustrate the efficacy of the NLC. After two hours, the brain concentration of
the ARM-NLCs administered through the nasal route was higher, surpassing the levels
achieved by the ARM suspension. This suggests a higher level of infiltration through the
nasal mucosa. The prolonged duration of ARM levels in the brain, lasting up to 4 h, indi-
cates the intriguing potential of NLCs in effectively preventing drug efflux and ensuring
a sustained availability of the formulation. The impressive abilities of the ARM-NLCs,
surpassing other formulations like the ARM suspension, highlight the lipophilic nature
of the developed NLCs and their exceptional ability to cross the blood–brain barrier. In
summary, the pharmacokinetic data suggest that including ARM in NLCs for intranasal
administration could potentially improve drug bioavailability and facilitate targeted drug
delivery to the brain.

The impressive DTE value of 502.7% for the ARM-loaded NLCs provides strong
evidence of the brain-targeting efficiency of the NLC. When DTE readings are above
100%, it implies that the delivery to the brain is effective. In addition, the DTI of 5.02%
(DTI > 1) provides further evidence of the successful delivery of ARM-NLCs to the brain.
The developed NLCs exhibited significantly higher DTP and DTE values compared to
the free drug suspension. The results revealed that the ARM-NLCs exhibited enhanced
brain permeability, evading the blood–brain barrier and entering the brain through the
olfactory bulb. The results highlight the importance of NLC encapsulation in safeguarding
against degradation and bypassing efflux mechanisms, enabling direct drug delivery to the
brain. The successful encapsulation of miR-223 (10 nM) in NLCs was demonstrated by its
ability to inhibit migration under an applied electrical field. The research highlighted the
NLCs’ exceptional stability and protective characteristics, which are essential for preserving
the therapeutic potential of the loaded miR-223. These findings highlight the strength of
ARM-NLCs as a promising vehicle for miRNA delivery.

This study confirmed the successful cellular uptake of FITC-tagged NLCs loaded
with ARM-miR-223. Through the time-dependent analysis, it was found that there was
significant penetration through the cell membrane. After 6 and 24 h of incubation, the mean
fluorescence intensity values were 6.65 ± 3.324 and 16.42 ± 5.78, respectively. The outcomes
highlight the promising capabilities of FITC-NLCs in delivering drugs directly into the
cellular cytoplasm. The group that received intranasal therapy with ARM+ miRNA-NLCs
had a notably lower parasite load than the group that received ARM-NLCs (p < 0.001),
as shown in Figure 6. This shows that the ARM + miRNA-NLC formulation has better
anti-malarial efficacy than ARM-NLCs. The anti-inflammatory, antioxidant, and neuropro-
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tective properties of ARM are well recognized, and miRNAs possess immune-protective
characteristics. The study outcomes showed that 10 nm of miRNA and 5 mg/kg of ARM
can confer neuroprotection in ECM and eradicate the parasite, protecting the integrity of
the brain.

In the histopathology examinations, it was revealed that the control group showed
normal histological changes, while the disease group displayed significant neuropatho-
logical changes, emphasizing the impact of CM. The ARM-NLC group displayed limited
neuronal degeneration, as indicated by the necrosis and apoptosis noticed in the DG region.
On the other hand, the ARM+ miRNA-NLC group showed a significant therapeutic effect,
indicating a positive therapeutic benefit with the restoration of normal neuronal morphol-
ogy. These findings indicate the potential of ARM and miRNA-loaded NLCs in reducing
neurodegenerative effects, highlighting the importance of additional research to enhance
this therapeutic approach for addressing CM. The complex molecular interactions in CM
revolve around increased NOX2 and IL-6 signalling which shape the disease’s progression
through leveraging ROS and pro-inflammatory cytokine production that causes hippocam-
pal neuronal damage and further intensifies the disruption of the BBB. Interestingly, the
intervention was proven to reduce the disease pathologies in ECM. Nevertheless, more
investigation is needed to clarify the physiological alterations that helped to preserve the
hippocampus in CM. This novel therapeutic approach has the potential to tackle the intri-
cacies of CM, paving the way for future investigations and potential clinical applications in
combating this devastating disease.

4. Materials and Methods
4.1. Chemicals

ARM (purity of <98.8%) was acquired from IPCA Laboratories Ltd. (Mumbai, In-
dia), and miRNA-223 was procured from Symbio Technologies (Monmouth Junction, NJ,
USA). Precirol and Labrasol were gifts from Gattefosse (Mumbai, Maharashtra, India).
The HEK-293 (human embryonic kidney) cell line was sourced from NCCS (Pune, In-
dia). DMEM high-glucose media (Cat No: AL111) and Foetal Bovine Serum (#RM10432)
were obtained from Himedia, Mumbai, India. Hoechst 33342 dye (Cat No: 15547) and
fluorescein isothiocyanate (FITC) dye (Cat No: 46950) were procured from the Cayman
Chemical Company (MI, USA) and Sigma-Aldrich (Bangalore, Karnataka, India). Plasmod-
ium berghei ANKA was sourced from ICMR-NIMR (New Delhi, India). miR-223′s sense
chain sequence is UGUCAGUUUGUCAAAUACCCCA, while its anti-sense chain sequence
is GGGUAUUUGACAAACUGACAU.

4.2. NLC Formulation

ARM+ miRNA-NLCs were formulated using the hot-melt homogenization process.
Initially, a pre-emulsion was produced by combining the lipid and aqueous phases at 65 ◦C
with the help of a magnetic stirrer (REMI 1 MLH, Mumbai, Maharashtra, India) operating at
1000 rpm [39,40]. The lipid phase consisted of 3% (w/w) Precirol (solid lipid) and Labrasol
1.5% (w/v) (liquid lipid), with the addition of 0.1% (w/w) ARM in its melted state. The
aqueous phase contained 0.5% (w/v) tween-80 (surfactant) in Millipore water. The total
mass of the ARM-loaded NLCs was 20 g, and after forming the pre-emulsion, it underwent
homogenization at 10,000 rpm using an IKA T25 Ultra Turrax homogenizer (Bangalore,
India) for 10 min. Following homogenization, 10 nM of miRNA was embedded into the
ARM-NLCs, and the mixture was incubated for 35 min at room temperature (25 ◦C), as
portrayed in Figure 9.
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4.3. Characterization of ARM+ miRNA-NLCs
4.3.1. Particle Size and Zeta Potential Analyses for Nanostructured Lipid Carrier Systems

The dynamic light scattering approach was employed to measure the mean particle
diameter, PDI, and zeta potential (ζ) of the ARM+ miRNA-NLCs employing Nano ZS
90 equipment from Malvern, UK. Before being transferred into a disposable polystyrene
cuvette with a 1 cm depth, the samples were diluted 100 times with Milli-Q water (Merck
Milli Q Ultrapure Water Purification System, Chennai, Tamil Nadu, India). The average
particle diameter and distribution breadth were acquired using this methodology, with
the distribution breadth reported as the polydispersity index (PDI). At 25 ± 1 ◦C, the
particle diameter was quantified using light scattering at a 90◦ angle. The formulation’s
zeta potential (ζ) was estimated using transparent disposable zeta cells and Milli-Q water
as the dispersion solvent [41].

4.3.2. Encapsulation Efficiency (% EE)

The %EE of the ARM+ miRNA-NLCs was determined using ultrafiltration. This
procedure involved centrifuging a millilitre of the NLCs for ten minutes at 4000 rpm in the
top chamber of a centrifuge tube with an ultrafilter (Pall Laboratories, 2.5 kDa, Mannheim,
Germany) [42]. The quantity of ARM loaded in the NLCs was calculated by subtracting the
total amount of ARM incorporated in the formulation of the NLCs from the amount found
in the supernatant. The quantity in the filtrate was estimated utilizing RP-HPLC at 209 nm.
We calculated the % EE by applying the following equation:

%EE =
Total ARM used − Free ARM insupernatant

Total ARM used
× 100 (1)
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4.4. miRNA Retardation Assay Using Agarose Gel Electrophoresis

The complexation of miRNA with the ARM-NLCs delivery method was evaluated
using agarose gel electrophoresis [43]. The migration of unbound miRNA from the complex
was evaluated using an electrophoresis technique, with naked miRNA as a control. Ap-
proximately 10 nM of miRNA was combined with NLCs, blank NLCs, ARM-NLCs, ARM+
miRNA-NLCs, ARM+ miRNA-NLCs + heparin, and heparin alone. The reaction took place
at 37 ◦C for one hour. Following the addition of 10 µL of 2X DNA loading dye (containing
0.25% bromophenol, 0.25% xylene cyanol, and 30% glycerol), the samples were placed into
a 1.5% agarose gel with 0.5X Tris-acetate-ethylenediaminetetraacetic acid (TAE) buffer and
electrophoresed at 5 V/cm for one hour at room temperature. The visualization of nucleic
acids involved the incorporation of 0.5 µg/mL ethidium bromide into the agarose gel [44].

4.5. Cellular Uptake Visualization through Confocal Laser Scanning Microscopy

Understanding the cellular absorption of nanocarriers is essential for developing
effective drug delivery methods. Our current study’s primary aim was to explore and
examine the internalization of FITC-dye-tagged NLCs by cells. HEK293 cells were cultured
in a 35 mm glass-bottom plate at a density of 0.5 × 105 cells/1 mL for 24 h in a CO2 incubator
at 37 ◦C. After aspirating the spent medium, the cells were exposed to the necessary
concentration (5 µL) of NLCs labelled with 10 µg/mL of FITC dye in 1000 µL of culture
medium. The cells were incubated in a dark for 6 and 24 h. Post-treatment, the medium
was isolated from all wells, which were then washed with phosphate-buffered saline (PBS).
Subsequently, the cells were counter-stained with a 5 µg/mL Hoechst 33342 solution.
The image analysis was conducted using confocal laser microscopy (Carl Zeiss LSM 880,
Leica Microsystems, Mannheim, Germany) and ZEN Blue software of 2.5 version, and
the relative fluorescence intensity values of FITC were quantified using Image J software
(free version) [45]. This enhanced understanding of the nanoparticle uptake mechanisms
contributes to our comprehension of cell interactions with FITC-tagged NLCs and catalyses
advances in innovative nanocarriers for drug delivery applications. This advancement
holds promise for developing more potent and precisely targeted therapeutic approaches.

4.6. RP-HPLC Specifications and Mobile Phase

Drug quantification was performed utilizing RP-HPLC on a Shimadzu I series LC
2030 plus equipment fitted with a UV detector (Shimadzu, Kyoto, Japan). A C18 column
(150 × 4.6 mm, 5 µm) was employed, along with a gradient flow pump and an auto-
sampler. The mobile phase was a 70:30 v/v acetonitrile and 10 mM ammonium acetate
buffer combination. Elution was carried out at 0.6 mL/min, with an injection volume
of 10 µL. The column temperature was held at 35°C, and the detection of the drug peak
occurred at 209 nm, with a total runtime of 10 min. The retention times for the internal
standard (dihydroartemisinin (DHA)) and ARM were 2.5 and 4.1 min, respectively. The
data analysis was executed using Lab Solutions software (Version 5.90) [46].

4.7. Pharmacokinetic Parameters and Animal Husbandry

We employed a validated bioanalytical method to perform pharmacokinetic studies on
ARM in mice. Female C57BL/6 mice, aged 4–6 weeks (weighing 15–20 g), were procured
from Adita biosys Pvt Ltd. (Tumkuru, Karnataka, India). The mice were housed in
clean cages under standard laboratory conditions, with access to sterilized bedding, food,
and portable mineral water provided ad libitum. The animals went through a seven-
day acclimatization period in controlled laboratory conditions. Following an overnight
fast with unrestricted access to water, each mouse in the corresponding groups received
the treatments given in Table 2. Blood and brain samples were collected at 0, 15, and
30 min, and 1, 2, 4, 6, 8, 12, and 24 h (n = 3) post-dosing through a retro-orbital puncture
and cervical dislocation. For the sample preparation for HPLC, the protein precipitation
method was applied [47].
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Table 2. Treatments for pharmacokinetic studies.

Group Name Administration
Route Description Dosage

ARM suspension
(free drug) IN

ARM dispersed freely in PBS
solution was administered through

IN route to the mice.
5 mg/kg

ARM-NLCs IN Mice received IN administration of
ARM-loaded NLCs. 5 mg/kg

ARM-NLCs Intravenous (IV) Mice were administered
ARM-loaded NLCs intravenously. 5 mg/kg

The collected blood underwent centrifugation for 10 min at 3500 rpm at 4 ◦C. The
extraction of ARM from the plasma involved the addition of 0.3 mL of HPLC-grade ace-
tonitrile. The mixture was then vortexed for 10 min and subjected to a final centrifugation
for 10 min at 10,000 rpm to ensure thorough extraction. The ARM concentration in the
supernatant was estimated using RP-HPLC. The mice were humanely euthanized through
cervical dislocation at specific time intervals after blood collection. The brain samples were
obtained by carefully opening the skull, gently rinsing with a saline solution, and cautiously
dry blotting them. The brain samples were thoroughly minced in PBS with a pH of 7.4. The
brains were extracted and cleaned with PBS to eliminate any clinging tissues and were then
homogenized with acetonitrile using a high-speed tissue homogenizer (FastPrep-24TM
Classic, MP Biomedicals India Pvt Ltd., Navi Mumbai, India). The homogenate underwent
centrifugation at 6000 rpm for 15 min at 4 ◦C. The resulting supernatant was carefully
collected and stored at −20 ◦C for subsequent analysis. RP-HPLC was used to determine
the concentration of ARM in the clear supernatant.

The pharmacokinetic parameters for both the plasma and brain were analysed using
concentration–time graphs. Non-compartmental modelling was utilized during the ap-
praisal of the pharmacokinetic metrics for ARM, such as the area under the curve (AUC),
time to reach maximum concentration (Tmax), and maximum concentration (Cmax). These
specifications can reveal valuable insights into the drug’s activity in the body and its clinical
applications. The experiments were conducted with precision, revealing critical informa-
tion on ARM’s pharmacokinetics. The pharmacokinetic metrics for ARM were subjected to
statistical evaluation using GraphPad Prism version 9.0 software (GraphPad Software, San
Diego, CA, USA), utilizing paired t-tests to examine the probability value.

4.8. Assessment of Targeting Efficiency

The partition coefficient (Kp) of the brain-to-plasma concentration ratio can be ap-
plied to compare the targeting efficacy of ARM-NLCs and the ARM suspension following
IN administration. This coefficient is derived as the proportion of Cbrain (brain concen-
tration) to Cplasma (plasma concentration). A high Kp following IN treatment reflects
strong brain targeting. The metrics adopted for estimating the targeting efficiency include
the drug targeting index (DTI), direct transport percentage (DTP), and drug targeting
efficiency (DTE) [48,49].

% DTE =

AUC0 − 24(brain)IN
AUC0 − 24(blood)IN

/
AUC0 − 24(brain)IV
AUC0 − 24(blood)IV

× 100 (2)

% DTP =
AUC0 − 24(brain)IN −

(
AUC0−24(brain)IV
AUC0−24(blood)IV × AUC0 − 24(blood)IN

)
AUC0 − 24(brain)IN

× 100 (3)
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DTI =
[AUC (brain)/AUC (Blood)]IN
[AUC (brain)/AUC (Blood)]IV

(4)

Absolute bioavailability =
AUC(brain)IN(NLCsFormulation)
AUC(brain)IV(NLCsFormulation)

× 100 (5)

Relative bioavailability =
AUC(brain)IN(NLCsFormulation)
AUC(brain)IN(DrugSuspension)

× 100 (6)

4.9. In Vivo Assessment of Antimalarial Effectiveness in Mice Infected with Plasmodium berghei
ANKA (PbA)

Plasmodium berghei ANKA (PbA) of parasitic blood stages (1 × 106) was diluted in
200 µL of sterile 1x PBS at pH 7.4 was intraperitoneally injected into 24 female mice. The
choice to focus on this distinct age group was made due to the observation that elderly
mice with PbA infection frequently lack obvious signs of CM [50]. The investigation
concentrated on animals that exhibited PbA infection. The mice had unlimited access to
conventional food and water during the study and the treatments are listed in Table 3.
Ketamine (150 mg/kg) and xylazine (10 mg/kg) (Raghu Lal Chemicals, Mysuru, Karnataka,
India) were used to as anaesthetics for essential operations.

Table 3. Treatments for pharmacodynamic studies.

Group and Substance No. of Animals Description Treatment

Control 6 No malaria infection No treatment

CM 8

Female mice infected intraperitoneally
with 1 × 106 Plasmodium berghei ANKA
(PbA) of parasitic blood stages diluted
in 200 µL chilled sterile 1x PBS pH 7.4.

No treatment

ARM-NLCs 8
Animals with PbA infection exhibiting

neurological symptoms were
considered for the experiment.

ARM-NLCs were administered intranasally
at a dosage of 5 mg/kg per day for a period

of 7 days in a 40 µL volume.

ARM+ miRNA-NLCs 8 The infected mice showing behavioural
symptoms were chosen.

ARM-miRNA-NLCs were administered
intranasally at a dosage of 5 mg/kg of the
drug and 10 nmol of the miRNA daily for

a duration of 7 days.

4.9.1. Evaluation of Parasitaemia in ECM

Parasitaemia was determined in each of the groups by examining Giemsa-stained
blood smears obtained from the caudal vein under a microscope. The obtained smears
were stained for 20 min at ambient temperature and examined using an Olympus BX51
(Life Science Technology, Tokyo, Japan) light microscope at a 100× resolution. We closely
observed the mice which were infected with the parasite until they displayed symptoms
of CM. Afterwards, they underwent a one-week treatment with ARM-NLCs and ARM+
miRNA-NLCs to prevent the recurrence of parasites. The treatment began on the 6th day
post infection, coinciding with the appearance of parasitaemia.

The parasitaemia percentage was computed as follows:

%Parasitaemia =
Number of parasite infected red blood cells (RBCs)

Total no of RBCs
× 100 (7)

4.9.2. Histopathological Analysis: Brain Examination through Haematoxylin and Eosin
(H&E) Staining

Following euthanasia, the animals were subjected to intracardial perfusion using a
saline solution, followed by a chilled solution containing 4% paraformaldehyde (PFA).
All the brain specimens were subsequently gathered and preserved in a 4% PFA solution.
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H&E staining, a broadly used method for analysing tissue changes in different diseases,
was conducted on 10 µm thick sections of the hippocampus. The Harris haematoxylin
stain was applied to all brain sections using well-established techniques. Images of the
stained sections were obtained with an Olympus BX-51 microscope at 100× and 40×
magnification [51,52].

4.9.3. Evaluation of Brain Samples through Reverse Transcription Quantitative PCR
(RT-qPCR) and Western Blot Analysis

Total RNA was derived from whole brain tissues in each experimental group (n = 4
per group) using Trizol reagent (T9424 Sigma Aldrich, Mumbai, India). A NanoDropTM
2000 UV–visible spectrophotometer (Shimadzu, Bangalore, India) was used to quantify
the RNA. Following that, cDNA was synthesized from 1 µg of RNA using the Takara Bio
PrimeScriptTM 1st Strand cDNA Synthesis kit (6110A Takara Biotechnology, Dalian, China).
For the PCR process, 5 µL of 2x Dreamtaq Green PCR master mix (K1081 Thermo Fisher
Scientific, Pittsburgh, PA) was combined with 0.5 µg/L of cDNA (0.5 µL) and 10 pM of both
the forward and reverse primers (1 µL each). Water devoid of nuclease (3.5 µL) was added
to bring the total reaction volume to 10 µL. Semi-quantitative PCR was performed with the
mixture for 25 cycles using an Applied Biosystems Veriti 96-well Thermal Cycler (Applied
Biosystems, Foster city, CA, USA). The PCR technique included a 30 s denaturation phase
at 95 ◦C (stage 1) and a 2 min denaturation step at 95 ◦C (stage 2). The annealing stage
took 45 s at the proper melting temperature (Tm), while the extension step took 5 min at
72 ◦C [53,54]. Integrated DNA Technologies (IDT) provided the primers for the IL-6, NOX2,
and GAPDH genes, and their sequences are shown in Table 4.

Table 4. Primers used for RT-qPCR.

NCBI Reference
Sequence Sequence (5′->3′) Length Product

Length
Annealing

Temperature (◦C)

IL-6

Forward Mus musculus IL6
Cybb X54542.1

TTGCCTTCTTGGGACTGATGC 21
187 55.8

Reverse TTGGAAATTGGGGTAGGAAGGA 22

NOX2

Forward Mus musculus
Nox2 (Cybb)
Fj168469.1

TGGAAACCCTCCTATGACTTG 24
216 57.5

Reverse AACTTGGATACCTTGGGGCAC 24

GAPDH

Forward
NM_008084.3

GTGTGAACGGATTTGGCCGTATTG 24
146 58.8

Reverse TTTGCCGTGAGTGGAGTCATACTG 24

4.9.4. Western Blot

Before homogenization, whole brain samples were lysed with sucrose Radio-Immuno-
precipitation Assay buffer (RIPA), which included 0.32 M sucrose, 10 mM Tris-HCl, 0.5%
sodium deoxycholate, 150 mM NaCl, and 1% NP-40 and was adjusted to pH 7.2. A Dounce
homogenizer was employed for blending the mixture at 4 ◦C, and 10 µL of protease
inhibitor (P0044, Sigma-Aldrich, Mumbai, India) was added for every 1 mL of solution.
The samples were subjected to the Bradford technique for protein quantification, and
50 µg of proteins was extracted on a 10% SDS-PAGE (Sodium Dodecyl Sulphate-Poly
Acrylamide Gel Electrophoresis) gel. The proteins were transferred onto a nitrocellulose
membrane immersed in Towbin buffer (Tris-HCl, 3 g; glycine, 14.4 g; methanol, 200 mL;
deionized water, 800 mL; pH 8.3) and left to incubate for several hours at 4 ◦C. The
membranes were then blocked for 1 h at room temperature in a buffer containing 5%
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skimmed milk. The membrane was then incubated at 4 ◦C for an entire night with primary
antibodies, specifically, GAPDH (#5174, Cell Signalling Technology, Danvers, MA USA)
and NOX2 rabbit-raised polyclonal antibodies (Abcam, ab80508) at a dilution of 1:1000.
This was followed by a 5 min wash with a Tris-buffered PBS solution containing 0.05%
Tween 20 (TBST). Following the TBST wash, an alkaline phosphatase-conjugated secondary
antibody for rabbit IgG (1:30,000) (whole molecule) (A3687, Sigma-Aldrich, Mumbai,
India) was employed to probe the membrane for two hours at room temperature. The
immunoreactivity was detected by adding 120 µL solution of BCIP (5-bromo-4-chloro-3-
indolyl-phosphate) and NBT (Nitro Blue Tetrazolium, Sigma-Aldrich, Mumbai, India) to
an alkaline phosphatase buffer. After applying this mixture to the membrane, it was left in
a dark area at room temperature for 5–10 min [55,56].

5. Conclusions

To summarize, our study focused on creating highly efficient NLCs for effectively
delivering ARM to the brain through the nasal route. The NLCs displayed impressive
attributes, with a particle size of 94.39 nm and a remarkable entrapment efficiency of 93.06%.
The pharmacokinetic profiles exhibited enhanced drug bioavailability, with higher concen-
trations in the brain after administration of ARM-NLCs intranasally. The encapsulation
of miR-223 in NLCs and the noteworthy cellular uptake demonstrated the stability and
potential of the carrier for effective drug delivery.

In the context of CM, the ARM + miRNA-NLC treatment demonstrated remarkable
anti-malarial effectiveness, leading to a notable decline in parasite burden that surpassed the
results of the ARM-NLC treatment alone. Finally, the histological investigations illustrated
the deleterious consequences of CM on brain structures and studied possible interventions.
While the ARM-NLC group displayed limited effects, the ARM+ miRNA-NLC group
showcased a promising beneficial effect, indicating that the use of ARM+ miRNA-NLCs is
a potential therapeutic approach. Interestingly, the molecular effects of CM, especially the
effects on NOX2 and IL-6 levels, were predominantly reduced by the therapy compared
to the CM group. Additional research is needed to optimize the benefits of ARM and
miRNA-NLCs for the efficient management of CM.

Our research highlights the strength of NLCs as a carrier system for IN drug deliv-
ery. They provided improved drug bioavailability, effective brain targeting, and feasible
applications in treating CM.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph17040466/s1. Figure S1: Overlain FT-IR spectra of (A) FITC,
(B) ARM-miRNA-NLCs, and (C) FITC-ARM-miRNA-NLCs.
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