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Abstract: Machine learning techniques are extensively employed in drug discovery, with a signifi-
cant focus on developing QSAR models that interpret the structural information of potential drugs. 
In this study, the pre-trained natural language processing (NLP) model, ChemBERTa, was utilized 
in the drug discovery process. We proposed and evaluated four core model architectures as follows: 
deep neural network (DNN), encoder, concatenation (concat), and pipe. The DNN model processes 
physicochemical properties as input, while the encoder model leverages the simplified molecular 
input line entry system (SMILES) along with NLP techniques. The latter two models, concat and 
pipe, incorporate both SMILES and physicochemical properties, operating in parallel and with se-
quential manners, respectively. We collected 5238 entries from DrugBank, including their physico-
chemical properties and absorption, distribution, metabolism, excretion, and toxicity (ADMET) fea-
tures. The models’ performance was assessed by the area under the receiver operating characteristic 
curve (AUROC), with the DNN, encoder, concat, and pipe models achieved 62.4%, 76.0%, 74.9%, 
and 68.2%, respectively. In a separate test with 84 experimental microsomal stability datasets, the 
AUROC scores for external data were 78% for DNN, 44% for the encoder, and 50% for concat, indi-
cating that the DNN model had superior predictive capabilities for new data. This suggests that 
models based on structural information may require further optimization or alternative tokeniza-
tion strategies. The application of natural language processing techniques to pharmaceutical chal-
lenges has demonstrated promising results, highlighting the need for more extensive data to en-
hance model generalization. 

Keywords: machine learning; ADMET; drug discovery; in silico screening 
 

1. Introduction 
Over the past few decades, the landscape of drug discovery has been significantly 

transformed by the integration of in silico methodologies, witnessing a substantial surge 
in efficiency and effectiveness. This revolution in computational approaches has been in-
strumental in streamlining the drug screening process, thereby offering the pharmaceuti-
cal industry considerable savings in terms of both costs and time. Among the various 
strategies employed, Quantitative Structure–Activity Relationship (QSAR) models have 
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emerged as a cornerstone for predicting the chemical properties of compounds. The foun-
dational premise of QSAR models is the assumption that compounds with analogous 
structures are likely to exhibit similar activities, thereby enabling the prediction of chem-
ical activity through structural analysis. 

Traditionally, QSAR models have relied on machine learning (ML) techniques, in-
cluding but not limited to support vector machines, decision trees, naive Bayes, and k-
nearest neighbors [1,2]. These methods typically dissect the structure of molecules into 
predefined molecular fragments or employ theoretical molecular descriptors, often deter-
mined through human judgment on a training dataset. Such an approach, while func-
tional, has its limitations, particularly in terms of predictability on novel datasets. 

However, the advent of deep learning is reshaping this landscape by addressing the 
shortcomings of conventional QSAR methodologies. Deep learning algorithms have the 
capacity to algorithmically define the criteria for analysis, thus bypassing the constraints 
imposed by human-set parameters. This advancement not only enhances the predictive 
accuracy of these models but also broadens their application. Furthermore, a significant 
limitation of traditional QSAR models has been their reliance solely on compounds with 
available ADMET experimental results for model construction. Considering the vast num-
ber of synthesized compounds, the subset with ADMET data is relatively small, posing a 
considerable challenge to the generalization of ADMET prediction models. 

An online competition held in 2012 revealed the potential of deep learning algo-
rithms to address problems with pharmaceuticals, such that there has been a shift toward 
the deep-learning techniques. Although deep learning has shown promising results that 
can replace traditional methods, some problems in deep learning remain[3]. Deep learn-
ing models tend to improve their performance by memorizing the inputs, which can in-
crease their dependency on the tested data [4–6]. This tendency is even more pronounced 
in pharmaceutical fields, for example, the relationship between a molecular structure and 
its properties. Because molecular data come in various forms depending on their specific 
domain, many efforts to generate compatible data and to make a link between various 
domains are under process. Due to the mutual understanding of computer-aided drug 
design (CADD) in pharmaceutical fields, various trials to predict pharmacologic features 
and endpoints in drug development are being made with machine learning. [7–9] In terms 
of pharmacology, the features concerning absorption, distribution, metabolism, excretion, 
and toxicity (ADMET) are of significant interest in typical drug development and can be 
used for weighing the systemic exposure and potential side effects of a candidate drug. 
Since this systemic exposure is affected by numerous factors and features, reliable AD-
MET prediction has the utmost priority before candidate drugs are further evaluated in 
real clinical situations [10]. 

In techniques for deep learning, graph convolutional neural networks (GCNNs) en-
able the dynamic learning of chemical structures by considering a space for atoms and 
adjacent bonds [11]. After the advantages of GCNNs were demonstrated, new featuriza-
tion approaches based on multitasking or sequential learning were implemented using 
GCNNs, leading to further performance improvements [12]. However, despite these im-
provements, GCNNs have difficulties with unlabeled structures because they require 
many feature parameters. In a recent study, however, contrastive learning in GCNN was 
introduced to resolve this problem [13], showing remarkable performance improvements 
along the tasks. Just as there was a certain level of progression in the performance utilizing 
graph neural networks, this was also demonstrated in natural language processing. Trans-
former-based learning is vigorously performed in this field; recent natural language tech-
nique applications during drug development tasks were successful in improving bench-
mark results. Within natural language processing (NLP), bidirectional encoder represen-
tations from transformers (BERT) have significantly improved NLP over the past 4 years 
via transformer pre-training and task-specific model fine-tuning [14]. Because BERT is 
generally used in conjunction with masked language modeling (MLM), it is also expected 
to be able to deal with the atom, masking the problems seen in GCNNs. 
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In addition, BERT is capable of handling large amounts of data because it was origi-
nally designed to deal with large volumes of text. In 2020, Chithrananda et al. introduced 
ChemBERTa, which contains 77 million simplified molecular input-line entry systems 
(SMILES) from PubChem and was designed to perform large-scale self-supervised pre-
training for molecular property predictions. ChemBERTa is expected to provide promis-
ing performance for representation learning and molecular property prediction as a pre-
trained model [15]. 

In addition to BERT, models that employ transformers and that have shown effec-
tiveness in masked modeling, such as BART (Bidirectional Auto-Regressive Transform-
ers) [16] and ELECTRA (Efficiently Learning an Encoder that Classifies Token Replace-
ments Accurately) [17], could serve as promising pre-trained models in drug discovery. 
Performance metrics in these studies have exceeded those of traditional approaches in 
many tasks, as has been previously demonstrated in language tasks [18]. 

Both GCNN and NLP models are continuously evolving, complementing each 
other’s weaknesses, yet an examination in terms of the weaknesses and strengths of the 
NLP technique is not sufficiently considered across the aspects of pharmacy. In this study, 
(1) the performance of natural language models of ChemBERTa and ELECTRA were as-
sessed on benchmark datasets with other prediction models, and (2) large-scale transfer 
learning with fine tunings to natural language models in ADMET problems was carried 
out to test its ability to perform multi-task prediction. (3) The models were then assessed 
on the external dataset to investigate the NLP model’s generalization towards ADMET 
problems. 

2. Results 
2.1. MoleculeNet Dataset 

In Tables 1 and 2, the results from the MoleculeNet dataset are shown. The mean and 
standard deviation of AUROC or RMSE and MAP on each dataset are reported. In refer-
ence to the benchmark result from Wang et al., the performance metrics of supervised 
learning models or graph models were compared with those of ChemBERTa and ELEC-
TRA. In classification tasks, ChemBERTa recorded around mid-ranks on average and 
showed superior performance on toxicity problems like Tox21 and ClinTox (ranked 1st 
and 3rd, respectively). ELECTRA ranked slightly below ChemBERTa scores in general. 
Both ChemBERTa and ELECTRA scored almost the lowest in regression tasks. The per-
formance of ELECTRA was lower than that of ChemBERTa in most tasks except ESOL 
and QM7. 

2.2. DrugBank Dataset 
Based on the AUROC values, the encoder model had the best performance (76.0%), 

followed by the concat model (74.9%), the pipe model (68.2%), the DNN_A model (63.6%), 
the DNN model (62.4%), and the pipe_A model (61.2%). The encoder and concat models, 
which included pre-trained models, generally showed higher predictive power than the 
others. The pipe model showed comparatively low performance, even though it utilized 
a pre-trained model. The incorporation of attention slightly increased the performance of 
the DNN model but decreased the pipe model’s performance. 

Although DNN is the simplest model, it uses parameters that are considered im-
portant in drug development, and it can be identified that the performance is not signifi-
cantly inferior compared to other models. It was shown that the performance of the 
DNN’s simple model slightly improved due to the addition of attention. Considering that 
encoder and concat are similar in structure and differ only in the input information, it has 
been shown that important structural information can be sufficiently reflected by SMILES 
in the QSAR work process. 

The pipe model, comprising two steps that predict physicochemical information and 
ADMET properties, may have exhibited decreased performance due to uncertainties 



Pharmaceuticals 2024, 17, 382 4 of 16 
 

 

introduced during the learning processes. This issue was likely more pronounced in the 
pipe model, which utilized the attention algorithm, adding complexity. A summary of the 
performance of the output label is described in FiguresError! Reference source not found. 
andError! Reference source not found..  

 
Figure 1. Performance metrics of total features (Table A1) for suggested models. 

 
Figure 2. Box plots of the distribution of performance metrics for each feature (Table A4) of sug-
gested models. 

2.3. External Dataset 
The DNN, encoder, and concat models had AUROC values of 0.78, 0.44, and 0.50, 

respectively. When tested only with CYP 3A4 substrate prediction, the matched label pro-
portions for the test data were 0.631, 0.583, and 0.571. For weighted soft voting, which 
analyzes the abundance of CYP450 subtype enzymes, the matched label proportions for 
the test data were 0.619, 0.571, and 0.583, respectively. In all three assessment methods, 
DNN scored the best. 

2.4. Applicability Domain 
The models were developed using datasets from PubChem and DrugBank. Initially, 

the PubChem dataset was employed for the pre-training of the language model through 
MLM techniques. This step enabled the model to understand the structures of a wide va-
riety of substances. The models were then fine-tuned with the DrugBank dataset, with a 
focus on the ADMET features of substances classified as drugs. The scope of chemical 
structures targeted by these models was those cataloged in PubChem. To assess the 
model’s applicability and its limitations within this domain, the external dataset—com-
prising rates of CYP450 enzyme reactions for toxic substances not listed in DrugBank—
was employed for validation purposes. The validation showed that the DNN model, 
which is close to traditional QSAR models, had superior performance, but within the 
DrugBank dataset, other models performed better. This suggests that these models are 
more adept at predicting the ADMET features of therapeutic drugs rather than toxic sub-
stances.  
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Table 1. Mean and standard deviation (in parenthesis) of AUROC measures on 7 classification 
benchmarks. Supervised learning models: first seven rows. Self-supervised/pre-training methods: 
rows eight to thirteen. Tested models (ChemBERTa and ELECTRA): rows twelve and thirteenth. 
(RF: random forest. SVM: support vector machine. #: Number of). 

Dataset BBBP [19] Tox21 [20] ClinTox [21] HIV [22] BACE [23] SIDER [24] MUV [25] 
# Molecules 2039 7831 1478 41127 1513 1427 93,087 

# Tasks 1 12 2 1 1 27 17 
RF 71.4 (0.0) 76.9 (1.5) 71.3 (5.6) 78.1 (0.6) 86.7 (0.8) 68.4 (0.9) 63.2 (2.3) 

SVM 72.9 (0.0) 81.8 (1.0) 66.9 (9.2) 79.2 (0.0) 86.2 (0.0) 68.2 (1.3) 67.3 (1.3) 
GCN [26] 71.8 (0.0) 70.9 (2.6) 62.5 (2.8) 74 (3.0) 71.6 (2.0) 53.6 (3.2) 71.6 (4.0) 
GIN [27] 65.8 (4.5) 74 (0.8) 58 (4.4) 75.3 (1.9) 70.1 (5.4) 57.3 (1.6) 71.8 (2.5) 

SchNet [28] 84.8 (2.2) 77.2 (2.3) 71.5 (3.7) 70.2 (3.4) 76.6 (1.1) 53.9 (3.7) 71.3 (3.0) 
MGCN [29] 85 (6.4) 70.7 (1.6) 63.4 (4.2) 73.8 (1.6) 73.4 (3.0) 55.2 (1.8) 70.2 (3.4) 

D-MPNN [30] 71.2 (3.8) 68.9 (1.3) 90.5 (5.3) 75 (2.1) 85.3 (5.3) 63.2 (2.3) 76.2 (2.8) 
Hu et al. [31] 70.8 (1.5) 78.7 (0.4) 78.9 (2.4) 80.2 (0.9) 85.9 (0.8) 65.2 (0.9) 81.4 (2.0) 
N-Gram [32] 91.2 (3.0) 76.9 (2.7) 85.5 (3.7) 83 (1.3) 87.6 (3.5) 63.2 (0.5) 81.6 (1.9) 

MolCLR-GCN 
[13] 73.8 (0.2) 74.7 (0.8) 86.7 (1.0) 77.8 (0.5) 78.8 (0.5) 66.9 (1.2) 84 (1.8) 

MolCLR-GIN 
[13] 

73.6 (0.5) 79.8 (0.7) 93.2 (1.7) 80.6 (1.1) 89 (0.3) 68 (1.1) 88.6 (2.2) 

ChemBERTa 73.4 (1.4) 82.3 (0.9) 88.9 (3.6) 74.5 (3.1) 79.2 (2.0) 60.4 (2.0) 73.9 (3.4) 
ChemELEC-

TRA 
72.5 (2.0) 80 (1.0) 84.6 (3.3) 73.7 (2.9) 76.9 (2.5) 56.9 (1.8) 73.7 (2.8) 

Table 2. Mean and standard deviation (in parenthesis) of RMSE and MAE measures. RMSE for 
FreeSolv, ESOL, and Lipo dataset; MAE for QM7, QM8, and QM9. Supervised learning models: first 
seven rows. Self-supervised/pre-training methods: rows eight to thirteen. Tested models (Chem-
BERTa and ELECTRA): rows twelve and thirteen (RF: random forest. SVM: support vector machine. 
#: Number of). 

Dataset FreeSolv [33] ESOL [34] Lipo [35] QM7 [36] QM8 [37] QM9 [37] 
# Molecules 642 1128 4200 6830 21,786 130,829 

# Tasks 1 1 1 1 12 8 
RF 2.03 (0.22) 1.07 (0.19) 0.88 (0.04) 122.7 (4.2) 0.0423 (0.0021) 16.061 (0.019) 

SVM 3.14 (0.0) 1.5 (0.0) 0.82 (0.0) 156.9 (0.0) 0.0543 (0.001) 24.613 (0.144) 
GCN 2.87 (0.14) 1.43 (0.05) 0.85 (0.08) 122.9 (2.2) 0.0366 (0.0011) 5.796 (1.969) 
GIN 2.76 (0.18) 1.45 (0.02) 0.85 (0.07) 124.8 (0.7) 0.0371 (0.0009) 4.741 (0.912) 

SchNet 3.22 (0.76) 1.05 (0.06) 0.91 (0.1) 74.2 (6) 0.0204 (0.0021) 0.081 (0.001) 
MGCN 3.35 (0.01) 1.27 (0.15) 1.11 (0.04) 77.6 (4.7) 0.0223 (0.0021) 0.05 (0.002) 

D-MPNN 2.18 (0.91) 0.98 (0.26) 0.65 (0.05) 105.8 (13.2) 0.0143 (0.0022) 3.241 (0.119) 
Hu et al. [31] 2.83 (0.12) 1.22 (0.02) 0.74 (0.0) 110.2 (6.4) 0.0191 (0.0003) 4.349 (0.061) 

N-Gram 2.51 (0.19) 1.1 (0.03) 0.88 (0.12) 125.6 (1.5) 0.032 (0.0032) 7.636 (0.027) 
MolCLR-GCN 2.39 (0.14) 1.16 (0.0) 0.78 (0.01) 83.1 (4.0) 0.0181 (0.0002) 3.552 (0.041) 
MolCLR-GIN 2.2 (0.2) 1.11 (0.01) 0.65 (0.08) 87.2 (2.0) 0.0174 (0.0013) 2.357 (0.118) 
ChemBERTa 5 (0.11) 2.06 (0.02) 1.2 (0.0) 187.7 (2.7) 0.0333 (0.0003) 20.941 (0.199) 

ChemELECTRA 5.03 (0.13) 2.05 (0.0) 1.2 (0.0) 179.1 (0.7) 0.0359 (0.0002) 24.228 (0.314) 

3. Discussion 
In the MoleculeNet benchmark dataset, the pre-trained NLP models generally exhib-

ited good performance in classification tasks. However, in most regression tasks, the NLP 
models demonstrated poor performance, with other models surpassing the NLP model 
metrics, especially in tasks predicting physicochemical properties. It is believed that the 
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regression tasks require more detailed information on atomic spacing, which the NLP 
models used in this study cannot fully consider. On the other hand, the classification tasks 
resulted in better outcomes with simpler model implementations. In the Tox21 dataset, 
the NLP models achieved a better AUROC (82.3% and 80%, respectively) compared to the 
latest GNN techniques. The lower performance of ELECTRA in this study, compared to 
BERT in previous studies, could be attributed to its pre-training on a smaller set of mole-
cules. It is anticipated that ELECTRA’s performance will improve with further pre-train-
ing using SMILES information. Moreover, as GNN techniques have enhanced their per-
formance by addressing atom-masking tasks, these NLP models could also see improved 
performance by developing an approach that considers the precise functional space or by 
introducing another tokenization method to generate the minimal unit of functional atom 
groups. 

The DNN model resembles the traditional QSAR model. Similar to its predecessor, it 
trains exclusively on datasets containing results from ADMET experiments without em-
ploying a pre-training approach. In contrast, other models, such as encoder, concat, and 
pipe, utilize a fine-tuning strategy with pre-trained NLP models. Except for pipe_A, these 
models demonstrated superior performance compared to the DNN. This outcome vali-
dates the efficacy of the NLP’s MLM training technique in capturing the structural nu-
ances of chemical compounds. 

In an effort to enhance model accuracy, we explored the concat model and pipe 
model, which integrate SMILES notation alongside the physicochemical properties of 
compounds. However, the encoder model, relying solely on SMILES notation, emerged 
as the most effective. This can be attributed to the fact that pharmaceutical development 
typically focuses on compounds adhering to specific physicochemical criteria, such as 
Lipinski’s rule of five and the Ghose filter. The limited variance in physicochemical prop-
erties within the training dataset presumably had minimal impact on the model perfor-
mance. 

When assessed using the external dataset, the DNN model’s performance surpassed 
its counterparts (the concat and encoder models). The external dataset comprised toxic 
compounds, which often deviate from conventional guidelines like Lipinski’s rule of five. 
This deviation suggests that the range of physicochemical properties in the training da-
taset is considerably narrower than that in the external dataset. This finding underscores 
the significance of employing diverse and unbiased datasets to bolster the model’s gener-
alization capability. 

4. Materials and Methods 
4.1. Data Collection and Preprocessing 

Three datasets were collected to evaluate the learning under different conditions. To 
derive quantitative benchmark results in comparison to other machine learning tech-
niques, the dataset from MoleculeNet was used [18]. The data from DrugBank [38] was 
used to assess the model’s schematic position during drug development steps. Among the 
labels used in learning in the DrugBank dataset, we created an external dataset (unseen in 
the learning process) to evaluate the model trained on the DrugBank data. 

4.1.1. MoleculeNet Dataset 
To assess the performance of the model on classification and regression problems, 

datasets from MoleculeNet were used [39]. A total of 13 datasets were selected for bench-
marking, consisting of 44 binary classification tasks and 24 regression tasks. The datasets 
of BBBP (Blood–Brain Barrier Penetration) [19], Tox21 (Toxicology in the 21st Century) 
[20], ClinTox (clinical trial toxicity) [21], HIV (AIDS Antiviral Screen Data) [22], BACE 
(beta-site APP cleaving enzyme 1) [23], SIDER (Side Effect Resource) [24], and MUV (Max-
imum Unbiased Validation) [25] were chosen for classification tests. For regression tests, 
the datasets of FreeSolv (Database of Experimental and Calculated Hydration Free 
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Energies) [33], ESOL (Estimating Aqueous Solubility) [34], Lipo (Experimental in vitro 
DMPK and physicochemical data on a set of publicly disclosed compounds) [35], QM7 
(quantum-machine 7) [36], QM8 [37], and QM9 [37] were chosen. The chosen datasets 
cover various domains, including physiology, biophysics, physical chemistry, and quan-
tum mechanics, coupled with molecular SMILES information. The benchmarks were com-
pared with known prediction models and GNN-based techniques. As a reference for GNN 
models, the results of Wang et al. were used [13]. 

4.1.2. DrugBank Dataset 
Datasets for training, testing, and validation were collected from DrugBank. We ob-

tained 13,856 raw JSON files. Each file contained drug information such as the name, de-
scription, attribute values, related molecules, and applications. In total, 5238 raw files con-
tained SMILES and ADMET data, and 18 features extracted from the ”Experimental Prop-
erties” and ”Predicted Properties” tabs were used for model training as follows: SMILES, 
LogP, LogS, pKa, water solubility, physiological charge, hydrogen acceptor count, hydro-
gen donor count, polar surface area, rotatable bond count, molar refractivity, polarizabil-
ity, the number of rings, bioavailability, and drug-likeness filters including Lipinski’s rule 
of five [40], the Ghose filter [41], Veber’s rule [42], and the MDDR-like rule [43] (Table A3). 
The filter properties of bioavailability, Lipinski’s rule of five, the Ghose filter, Vebers’ rule, 
and MDDR-like rule are Boolean-type data that determine whether the information is 
‘true or false’, and, for all other properties except the SMILES, it meant that molecular 
formulas were numeric data types. Among the extracted data, the four filter values of 
Veber’s rule, the MDDR-like rule, Lipinski’s rule of five, and the Ghose filter were ex-
cluded since those values could not be determined from the experiment, and possible 
overfitting was observed in the pre-test. The models were used to predict 21 ADMET fea-
tures extracted from the “Predicted ADMET Features” Table, and these features are de-
scribed in Table A4. To avoid semantic redundancy in the outputs, the labels of human 
intestinal absorption and Caco-2 permeability were combined into human intestinal ab-
sorption. Two p-glycoprotein inhibitor (I and II) descriptors were combined into one p-
glycoprotein inhibitor, and the same was performed for the two hERG inhibition de-
scriptors. If one of the 18 features was missing from a raw file, the corresponding chemical 
was excluded from the analysis. 

4.1.3. External Dataset 
Additional model testing was performed using 84 compounds externally collected 

by the CYP assay to evaluate the ability to perform CYP substrate prediction. The external 
dataset included the chemical structure, formula, and metabolism of CYP in human liver 
microsomes. These chemical structures were encoded in the SMILES format, and the clas-
sification of a compound as a CYP substrate was determined by the percentage of the 
chemical that remained following a specified reaction duration. 

4.2. Deep Learning Models 
For the MoleculeNet dataset, both ChemBERTa and ELECTRA were utilized in the 

benchmarks. For tokenization, a byte pair encoder (BPE) [44]-based SMILES tokenizer and 
WordPiece were used, respectively [15,45]. BPE is a sub-word level tokenization technique 
that processes the maximum number of words in a text corpus. Given the unlimited num-
ber of letter combinations, even unknown words can be processed by decomposing them 
into multiple-letter combinations. Thus, even SMILES can be expressed as a set of sub-
SMILES. WordPiece Tokenizer is a variant algorithm of BPE. The algorithm merges the 
pairs with the highest ’likelihood’ of the corpus when merged, as opposed to merging the 
pairs in which the BPE appears most frequently based on their ’frequency’. The ELECTRA 
model pays more attention to the efficiency of learning as well as the accuracy of the 
model. ELECTRA includes new pre-training tasks called Replaced Token Detection (RTD) 
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to improve learning efficiency, through which ELECTRA learns faster and more effec-
tively. For this study, we used ELECTRA-small and randomly extracted 10 M molecules 
that were pre-trained from the PubChem 109 M dataset with 10 epochs. For the DrugBank 
dataset, an NLP model with better performance in the benchmark was selected and used 
in learning. Six models with different structures were tested in this study (Figure 3); they 
were all trained using a cross-entropy loss function. 

 
Figure 3. Schematic flow of prepared core models, (A): DNN, (B): encoder, (C): concat, and (D): 
pipe. Single SMILES and Boolean features, five integers, and seven float values are concatenated 
and processed in the model before the values are transformed into 21 output values. I: input, h: 
hidden layer, EMB: embedding layer, LINEAR: full-connected layer. 

1. A deep neural network (DNN) model consists of fully connected and embedded lay-
ers. The model uses 18 input physicochemical values as input properties. One Bool-
ean feature was transformed into a 10-dimensional vector via embedding layers. Five 
integer-based and seven float features were transformed into a 10-dimensional vector 
via fully connected layers. Vectors were concatenated into a 30-dimensional vector, 
which passed through fully connected layers to return a vector with 21 dimensions 
(the predicted ADMET features). 

2. An encoder model includes a pre-trained ChemBERTa model. This model treats 
SMILES data as “natural sentences” and learns via MLM, which is RoBERTa. The 
SMILES data used for the pre-trained model are in the form of a 768-dimensional 
hidden vector, which is transformed into an 18-dimensional vector via fully con-
nected layers. 

3. A concat model combines the DNN and encoder models described above. The 30-
dimensional vector from the DNN model and the 768-dimensional hidden vector 
from the encoder model are concatenated and passed to the hidden layer of the con-
cat model. This 798-dimensional hidden vector is then transformed into 21 dimen-
sions. 

4. A pipe model, which subsumed a pre-trained ChemBERTa model, used a 768-dimen-
sional hidden vector based on SMILES data to predict 21 physicochemical properties. 
Those physicochemical properties were then used as input for a DNN model to pre-
dict ADMET features. 

5. A modified version of the DNN model is DNN A (where A stands for attention). We 
incorporated dot-product self-attention into the model, which uses hidden vectors 
from the DNN as the query, key, and value. By implementing dot-product self-
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attention, it was possible to identify which input most affected ADMET feature pre-
dictions. 

6. A modified version of the pipe model is pipe A, into which dot-product self-attention 
can be incorporated. 

4.3. Settings 
The data were divided into training, validation, and test sets (ratio of 7:1.5:1.5). All 

numeric data were normalized. The batch size was fixed at 32, with the learning rate at 5 
× 10−5. Early stopping was used during training; this automatically terminated training if 
the validation loss value did not drop for five epochs. A maximum of 30 epochs were 
allowed before early stopping. For more accurate performance measurements, each model 
was constructed five times, with identical parameters using different random seeds for 
generating random numbers during model initialization. As an optimizer, AdamW was 
used. For each classification and regression problem, binary cross entropy and mean 
squared errors (MSEs) were used for the loss function. No activation function was used 
except in the case of attention models, which used the tanh activation model. Model train-
ing was performed using a computer with an Nvidia A100 GPU, AMD EPYC ROME 7742 
CPU, and 1 TB of RAM. 

4.4. Evaluation 
In benchmark datasets, model evaluation was performed in the area under the re-

ceiver operating characteristic curve (AUROC) for classification tasks. For regression 
tasks, FreeSolv, ESOL, and Lipo used the root mean square error (RMSE), while QM7, 
QM8, and QM9 were measured with the mean absolute error (MAE) in accordance with 
MoleculeNet’s recommendation. Performance evaluation in the DrugBank dataset was 
based on accuracy, the area under the receiver operating characteristic curve (AUROC), 
F1, precision, and recall. Accuracy refers to the proportion of data correctly predicted by 
the model. Accuracy is an intuitive metric, but these data should be balanced to evaluate 
accuracy appropriately. For example, if a test dataset consists of 100 values, of which 99 
are true values and 1 is a false value, the accuracy would be 99% if the model predicted 
100 true values without any conditions, which implies that the metric is biased. When 
these data are unbalanced, it is difficult to obtain reliable results. Precision, recall, and F1 
should be included as performance metrics to overcome potential bias in the accuracy 
evaluation. Precision refers to the proportion of actual true values relative to all predicted 
true values. Precision evaluation does not take predicted false values into account; only 
true values are considered, which gives rise to bias. Therefore, precision alone is not a 
reliable metric. Recall refers to the proportion of true values correctly predicted by the 
model. This metric does not take predicted false values into account. The problem with 
recall is that if all values are predicted to be true, performance is considered perfect. Recall 
and precision are related; if precision increases, recall tends to decrease. 

Precision and recall are good metrics when several conditions are satisfied, but due 
to their bias, F1 (the harmonic average of precision and recall) is the most used metric. 
Precision and recall are complementary, but both values must be high for F1 to be high; 
thus, F1 represents a compromise that solves the problems of precision and recall. The 
receiver operating characteristic (ROC) curve can show the predictive performance of a 
model at different thresholds. ROC curves plot recall against specificity, which is also 
complimentary. Specificity is defined as the proportion of false values predicted correctly 
by the model. The AUROC is a commonly used metric that increases when a model pre-
dicts both true and false values accurately; therefore, it has good evaluation performance. 
The prediction results of the six models used in this experiment were voted on: when the 
result was a tie (3:3), the highest average prediction probability of each model was con-
sidered the final value. 

When evaluating the external data, the CYP450 substrate prediction performance 
was assessed with the DNN, encoder, and concat models. Since the label did not match 
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with what was predicted from the models, performance evaluation was conducted on the 
following three methods of transformation. (1) The CYP450 subtypes’ substrate-predicted 
value for each model was concatenated into one vector and then synthesized into one 
feature of the CYP substrate (logical, true, or false) with deep neural networks. (2) The 
CYP 3A4 (the major enzyme in CYP metabolism) substrate value was taken directly for 
the CYP substrate. (3) The prediction was compared to the results of weighted soft voting 
regarding CYP450 abundance. Abundance was set to 12% for the CYP450 subtype 2C9, 
4% for subtype 2D6, and 30% for subtype 3A4. In the case of (1), the performance was 
measured by the AUROC, and for the rest of the method, performance was measured in 
matched proportion with the test data. 

5. Conclusions 
In traditional ADMET prediction models, the scope was narrowly confined to com-

pounds with pre-existing experimental ADMET data. This limitation significantly cur-
tailed the models’ generalizability, as the dataset of compounds with known ADMET out-
comes was substantially smaller than the entire pool of synthesized compounds. Addi-
tionally, these conventional models often introduced bias by incorporating human-de-
fined molecular fragments or theoretical molecular descriptors. In contrast, NLP (Natural 
Language Processing) models have adopted the strategy of unsupervised pre-training on 
extensive datasets, which is a technique proven to bolster model performance while also 
reducing the potential for human-induced biases. However, when evaluated against the 
external dataset, simpler models, such as the DNN model, outperformed more complex 
ones. This discrepancy unveiled a decline in performance when dealing with heterogene-
ous datasets, suggesting that generalization capabilities might be compromised due to 
dataset bias. Enhancing our dataset with a more diverse array of data points could, there-
fore, further refine the accuracy of deep learning models. To improve model robustness 
and lessen reliance on large datasets, we advocate for methodological advancements, in-
cluding data augmentation, few-shot learning, and the adoption of sophisticated pre-
trained models proficient in interpreting the SMILES notation. 
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Appendix A. Supplementary Results 

Table A1. Total performance metrics. 

Feature Model AUROC F1 Accuracy Precision Recall 

Ames test 

Concat 0.679  0.730  0.901  0.790  0.679  
DNN 0.504  0.583  0.878  0.689  0.504  

DNN_A 0.500  0.467  0.878  0.439  0.500  
Encoder 0.655  0.700  0.891  0.751  0.655  

Pipe 0.510  0.614  0.879  0.773  0.510  
Pipe_A 0.500  0.467  0.878  0.439  0.500  

Biodegradation 

Concat 0.840  0.853  0.917  0.867  0.840  
DNN 0.749  0.771  0.875  0.795  0.749  

DNN_A 0.757  0.779  0.879  0.802  0.757  
Encoder 0.854  0.857  0.917  0.860  0.854  

Pipe 0.806  0.821  0.899  0.835  0.806  
Pipe_A 0.500  0.452  0.823  0.412  0.500  

Blood–Brain Bar-
rier 

Concat 0.845  0.832  0.868  0.820  0.845  
DNN 0.624  0.697  0.798  0.791  0.624  

DNN_A 0.677  0.715  0.805  0.757  0.677  
Encoder 0.835  0.844  0.885  0.854  0.835  

Pipe 0.757  0.804  0.861  0.857  0.757  
Pipe_A 0.669  0.733  0.818  0.811  0.669  

Caco-2 permeable 

Concat 0.792  0.828  0.868  0.867  0.792  
DNN 0.772  0.783  0.831  0.794  0.772  

DNN_A 0.776  0.790  0.837  0.804  0.776  
Encoder 0.859  0.865  0.893  0.872  0.859  

Pipe 0.768  0.796  0.845  0.827  0.768  
Pipe_A 0.624  0.644  0.739  0.665  0.624  

Carcinogenicity 

Concat 0.607  0.690  0.973  0.801  0.607  
DNN 0.500  0.493  0.971  0.485  0.500  

DNN_A 0.500  0.493  0.971  0.485  0.500  
Encoder 0.627  0.688  0.972  0.762  0.627  

Pipe 0.520  0.579  0.969  0.653  0.520  
Pipe_A 0.500  0.493  0.971  0.485  0.500  

CYP450 1A2 sub-
strate 

Concat 0.810  0.823  0.872  0.836  0.810  
DNN 0.722  0.747  0.823  0.773  0.722  

DNN_A 0.758  0.777  0.841  0.796  0.758  
Encoder 0.782  0.811  0.866  0.843  0.782  

Pipe 0.791  0.821  0.873  0.853  0.791  
Pipe_A 0.782  0.804  0.860  0.826  0.782  

CYP450 2C19 in-
hibitor 

Concat 0.762  0.788  0.884  0.816  0.762  
DNN 0.575  0.637  0.831  0.713  0.575  

DNN_A 0.577  0.632  0.828  0.699  0.577  
Encoder 0.780  0.802  0.891  0.825  0.780  

Pipe 0.722  0.770  0.879  0.824  0.722  
Pipe_A 0.664  0.716  0.856  0.777  0.664  

CYP450 2C9 inhib-
itor 

Concat 0.759  0.764  0.903  0.769  0.759  
DNN 0.528  0.570  0.874  0.619  0.528  

DNN_A 0.515  0.608  0.883  0.742  0.515  
Encoder 0.751  0.754  0.898  0.756  0.751  

Pipe 0.673  0.737  0.907  0.814  0.673  
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Pipe_A 0.514  0.547  0.874  0.585  0.514  

CYP450 2C9 sub-
strate 

Concat 0.500  0.800  0.997  0.999  0.667  
DNN 0.500  0.499  0.996  0.498  0.500  

DNN_A 0.500  0.499  0.996  0.498  0.500  
Encoder 0.666  0.705  0.996  0.749  0.666  

Pipe 0.500  0.499  0.996  0.498  0.500  
Pipe_A 0.500  0.499  0.996  0.498  0.500  

CYP450 2D6 inhib-
itor 

Concat 0.616  0.673  0.949  0.743  0.616  
DNN 0.584  0.698  0.954  0.867  0.584  

DNN_A 0.610  0.752  0.959  0.979  0.610  
Encoder 0.669  0.765  0.962  0.894  0.669  

Pipe 0.608  0.722  0.957  0.888  0.608  
Pipe_A 0.500  0.487  0.948  0.474  0.500  

CYP450 2D6 sub-
strate 

Concat 0.698  0.782  0.973  0.888  0.698  
DNN 0.500  0.490  0.962  0.481  0.500  

DNN_A 0.533  0.644  0.963  0.815  0.533  
Encoder 0.664  0.743  0.969  0.844  0.664  

Pipe 0.500  0.490  0.962  0.481  0.500  
Pipe_A 0.500  0.490  0.962  0.481  0.500  

CYP450 3A4 inhib-
itor 

Concat 0.738  0.750  0.874  0.761  0.738  
DNN 0.535  0.590  0.842  0.656  0.535  

DNN_A 0.520  0.588  0.845  0.675  0.520  
Encoder 0.758  0.764  0.879  0.771  0.758  

Pipe 0.654  0.704  0.868  0.763  0.654  
Pipe_A 0.558  0.620  0.847  0.696  0.558  

CYP450 3A4 sub-
strate 

Concat 0.870  0.864  0.879  0.858  0.870  
DNN 0.755  0.766  0.803  0.778  0.755  

DNN_A 0.766  0.769  0.802  0.772  0.766  
Encoder 0.838  0.850  0.873  0.863  0.838  

Pipe 0.826  0.827  0.850  0.828  0.826  
Pipe_A 0.786  0.786  0.814  0.786  0.786  

CYP450 inhibitory 
promiscuity 

Concat 0.843  0.832  0.874  0.822  0.843  
DNN 0.723  0.736  0.818  0.750  0.723  

DNN_A 0.727  0.729  0.807  0.732  0.727  
Encoder 0.854  0.848  0.888  0.842  0.854  

Pipe 0.821  0.826  0.877  0.832  0.821  
Pipe_A 0.786  0.799  0.860  0.813  0.786  

hERG inhibition 
(precisiondictor I) 

Concat 0.557  0.610  0.966  0.673  0.557  
DNN 0.500  0.492  0.968  0.484  0.500  

DNN_A 0.500  0.492  0.968  0.484  0.500  
Encoder 0.538  0.603  0.967  0.685  0.538  

Pipe 0.500  0.492  0.968  0.484  0.500  
Pipe_A 0.500  0.492  0.968  0.484  0.500  

hERG inhibition 
(precisiondictor II) 

Concat 0.835  0.830  0.905  0.825  0.835  
DNN 0.641  0.688  0.854  0.743  0.641  

DNN_A 0.690  0.724  0.864  0.762  0.690  
Encoder 0.821  0.828  0.907  0.836  0.821  

Pipe 0.746  0.775  0.885  0.806  0.746  
Pipe_A 0.743  0.767  0.880  0.793  0.743  

Human intestinal 
absorption 

Concat 0.884  0.854  0.896  0.827  0.884  
DNN 0.727  0.771  0.868  0.820  0.727  
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DNN_A 0.767  0.795  0.878  0.824  0.767  
Encoder 0.883  0.878  0.921  0.873  0.883  

Pipe 0.848  0.867  0.919  0.887  0.848  
Pipe_A 0.615  0.693  0.835  0.795  0.615  

P-glycoprotein in-
hibitor I 

Concat 0.780  0.816  0.916  0.856  0.780  
DNN 0.634  0.703  0.878  0.789  0.634  

DNN_A 0.711  0.744  0.885  0.780  0.711  
Encoder 0.800  0.828  0.920  0.857  0.800  

Pipe 0.736  0.782  0.903  0.835  0.736  
Pipe_A 0.672  0.748  0.893  0.845  0.672  

P-glycoprotein in-
hibitor II 

Concat 0.683  0.716  0.894  0.753  0.683  
DNN 0.577  0.629  0.879  0.692  0.577  

DNN_A 0.552  0.601  0.875  0.660  0.552  
Encoder 0.657  0.683  0.882  0.712  0.657  

Pipe 0.608  0.659  0.884  0.720  0.608  
Pipe_A 0.556  0.602  0.874  0.656  0.556  

P-glycoprotein 
substrate 

Concat 0.851  0.850  0.849  0.850  0.851  
DNN 0.798  0.799  0.800  0.800  0.798  

DNN_A 0.804  0.804  0.805  0.805  0.804  
Encoder 0.866  0.867  0.868  0.868  0.866  

Pipe 0.840  0.840  0.841  0.841  0.840  
Pipe_A 0.824  0.824  0.824  0.824  0.824  

Renal organic cat-
ion transporter 

Concat 0.774  0.828  0.967  0.890  0.774  
DNN 0.649  0.710  0.949  0.784  0.649  

DNN_A 0.626  0.678  0.944  0.739  0.626  
Encoder 0.808  0.863  0.973  0.926  0.808  

Pipe 0.597  0.683  0.948  0.798  0.597  
Pipe_A 0.556  0.708  0.949  0.974  0.556  

Total 

Concat 0.749  0.786  0.911  0.824  0.757  
DNN 0.624  0.660  0.879  0.705  0.624  

DNN_A 0.636  0.670  0.882  0.717  0.636  
Encoder 0.760  0.788  0.915  0.821  0.760  

Pipe 0.682  0.719  0.903  0.767  0.682  
Pipe_A 0.612  0.637  0.880  0.672  0.612  

Table A2. List of input properties in DrugBank dataset. 

Input Property Type 
SMILES String 

Physiological charge Int 
Number of rings Int 

Rotatable bond count Int 
H bond acceptor count Int 

H bond donor count Int 
polarizability Float 

Molar Refractivity Float 
Monoisotopic weight Float 

Molecular weight Float 
Polar surface area Float 

LogP Float 
LogS Float 

Water Solubility Float 
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Bioavailability Boolean 
Rule of five Boolean 
Veber’s rule Boolean 

MDDR-like rule Boolean 
Ghose filter Boolean 

Table A3. List of predicted properties in DrugBank dataset. 

ADMET Property TRUE FALSE 
Human intestinal absorption TRUE FALSE 

Blood–Brain Barrier TRUE FALSE 
Caco-2 permeable TRUE FALSE 

P-glycoprotein substrate Substrate Non-substrate 
P-glycoprotein inhibitor I Inhibitor Non-inhibitor 
P-glycoprotein inhibitor II Inhibitor Non-inhibitor 

Renal organic cation transporter Inhibitor Non-inhibitor 
CYP450 2C9 substrate Substrate Non-substrate 
CYP450 2D6 substrate Substrate Non-substrate 
CYP450 3A4 substrate Substrate Non-substrate 
CYP450 1A2 inhibitor Inhibitor Non-inhibitor 
CYP450 2C9 inhibitor Inhibitor Non-inhibitor 
CYP450 2D6 inhibitor Inhibitor Non-inhibitor 
CYP450 2C19 inhibitor Inhibitor Non-inhibitor 
CYP450 3A4 inhibitor Inhibitor Non-inhibitor 

CYP450 inhibitory promiscuity High CYP Inhibitory Promiscuity Low CYP Inhibitory Promiscuity 
Ames test AMES toxic Non-AMES toxic 

Carcinogenicity Carcinogens Non-carcinogens 
Biodegradation Readily biodegradable Not readily biodegradable 

hERG inhibition (predictor I) Week inhibitor Strong inhibitor 
hERG inhibition (predictor II) Inhibitor Non-inhibitor 
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