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Abstract: In response to the increasing prevalence of diabetes mellitus and the limitations associated
with the current treatments, there is a growing need to develop novel medications for this disease.
This study is focused on creating new compounds that exhibit a strong inhibition of alpha-glucosidase,
which is a pivotal enzyme in diabetes control. A set of 33 triazole derivatives underwent an exten-
sive QSAR analysis, aiming to identify the key factors influencing their inhibitory activity against
α-glucosidase. Using the multiple linear regression (MLR) model, seven promising compounds were
designed as potential drugs. Molecular docking and dynamics simulations were employed to shed
light on the mode of interaction between the ligands and the target, and the stability of the obtained
complexes. Furthermore, the pharmacokinetic properties of the designed compounds were assessed
to predict their behavior in the human body. The binding free energy was also calculated using
MMGBSA method and revealed favorable thermodynamic properties. The results highlighted three
novel compounds with high biological activity, strong binding affinity to the target enzyme, and
suitability for oral administration. These results offer interesting prospects for the development of
effective and well-tolerated medications against diabetes mellitus.

Keywords: diabetes mellitus; molecular docking; ADMET; QSAR; dynamics simulation; triazoles

1. Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemia,
which can be caused by reduced insulin action, inadequate insulin synthesis, or both [1].
Hyperglycemia typically aggravates the disease burden of diabetes mellitus by contributing
to the development of different macrovascular complications like peripheral and autonomic
neuropathy, an increased incidence of atherosclerosis, cerebrovascular diseases, neuropathy,
nephropathy, and retinopathy [2].

The main feature of diabetes mellitus (DM) is thought to be accompanied by several
symptoms including polyuria, polyphagia, weight loss, and blurred vision.

According to the IDF Diabetes Atlas (International Diabetes Federation), 436 million
people worldwide were estimated to have diabetes in 2021; by the end of 2045, that number
might potentially increase to 700 million [3,4].

The onset of diabetes mellitus is linked to diverse lifestyle factors, including smoking,
excessive alcohol consumption, inadequate physical activity, and comorbid conditions such
as dyslipidemia and hypertension. Additionally, genetic predisposition, stress, and obesity
contribute to the risk of diabetes [5], while enzymes like alpha-glucosidase and amylase
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play a role in breaking down sugars into glucose and maltose, contributing to the increase
in blood glucose levels, ultimately resulting in hyperglycemia and posing challenges to the
proper functioning of insulin [2].

The dual inhibition of α-glucosidase and α-amylase enzymes is the most desired strat-
egy for combating the permanent effects produced by type 2 diabetes [6]. α-glucosidase is
one of the main enzymes that breaks down carbohydrates, and it is found in the brush bor-
ders of the intestine and helps break down complex oligosaccharides into simple monosac-
charides [7].

By delaying the absorption of carbohydrates in the small intestine, alpha-glucosidase
inhibitors effectively prompt the pancreas to release an appropriate amount of insulin.
Their antihyperglycemic effect is modest, as they do not directly impact insulin secretion
but rather impede the function of alpha-glucosidase in breaking down complex sugars.
However, it is crucial to recognize that alpha-glucosidase inhibitors, represented by Miglitol,
Acarbose, and Voglibose, are associated with various adverse side-effects, such as nausea,
bloating, and flatulence [8,9].

A wide range of biological activities have attracted the attention of academia and
industry to 1,2,4-triazoles and their fused heterocyclic derivatives, which are a favored
structure among nitrogen-containing heterocyclic compounds [10]. Numerous clinically
available, therapeutically significant drugs have been found to have the 1,2,4-triazole core
such as Sitagliptin, Voriconazole, and Fluconazole [11,12].

A triazole is a ring with five members that consists of three nitrogen atoms and
two Carbon atoms connected by alternating π-bonds. C2H3N3 is the chemical formula
for this heterocyclic compound. Triazoles possess structural characteristics that make
them pharmacologically active, including a moderate dipole characteristic, the capacity
to form Hydrogen Bonds, ion–dipole interactions, π–π stacking, cation–π interactions, the
hydrophobic effect, van der Waal forces, stiffness, and stability [13].

A variety of 1,2,4-triazole derivatives were synthesized in 2020 by Emmanuel Olorun-
toba Yeye et al. [14], who also evaluated the compounds’ IC50 value for experimentation.
The principal objective of this work is to discover new 1,2,4-triazole compounds that have
encouraging action against α-glucosidase. We specifically used a 2D-QSAR study on these
derivatives to build molecular models that can be used to design novel triazole derivatives
and anticipate their biological activities before their synthesis [15,16].

2. Results and Discussion
2.1. QSAR Model Analysis and Validation According to the OECD Principles

Using the GA-MLR approach, this study produced a number of molecular models with
descriptors in the range of (4–6). The best model was chosen based on its statistical charac-
teristics, which indicate the robustness, strength, and consistency of the generated model.
The model selected, which includes the descriptors AATSC8s, VE3_Dzs, nHsOH, CIC1, and
RotBFrac as listed in Tables 1 and 2, satisfied all of the evaluation criteria. These included
the leave-one-out cross-validation coefficient (Q2

LOO = 0.633), the R-squared coefficient
of determination (R2= 0.767), the root-mean-squared error (RMSE = 0.082), the coefficient
adjusted for degrees of freedom (R2

adj = 0.712), and the coefficient of determination for the
test set (R2

test = 0.649).
The results of the Y-randomization test showed that none of the random trials could

match the original model, as indicated in Table 1. The lesser values for R2 and Q2 on each
iteration, and their averages (R2

YS = 0.195 and Q2
YS = −0.341) suggest that the developed

QSAR models are not based on random correlations.
The applicability domain (AD) of the model was determined to define the chemical

space of set compounds, and it aids in estimating the uncertainty in the prediction of a
particular compound based on how similar it is to the training compounds. In this regard,
William’s plot was employed, considering predictability using three standard deviations
and leverage levels below the critical leverage. Therefore, the prediction of a modeled
response using QSAR is applicable only if the compound being predicted falls within the
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AD of the mode. The evaluation’s findings demonstrated that neither the training set nor
the test set had response values that were outside of the range of responses. The leverages
of all the compounds are less than the leverage threshold value of h* = 0.667 (Figure 1), and
their standard deviations are all within the ±x range (x = 3) [14].

Table 1. The developed model using GA-MLR and its evaluated statistical parameters.

Model Equation

pIC50 = 6.403 + 0.759 AATSC8s + 0.022 VE3_Dzs − 0.112 nHsOH − 0.338 CIC1 − 1.804 RotBFrac

Set 33 Training set 27 Test set 6

Fitting criteria Internal validation criteria External validation criteria

R2 0.767 Q2
LOO 0.649 R2

ext 0.633

R2
adj 0.712 Random Models Parameters

R2-R2
adj 0.055 Average R Average R2 Average Q2 cRp2

RMSE 0.082 0.428 0.196 −0.342 0.669

Table 2. The significance of the molecular descriptors constructed the developed model.

Descriptor Symbol Name of Descriptor References

AATSC8s Averaged and centered Moreau–Broto autocorrelation
of lag 8 weighted by intrinsic state [17]

VE3_Dzs Logarithmic coefficient sum of the last eigenvector
from Barysz matrix weighted by Sanderson EN [18]

nHsOH The count of a specific atom-type Hydrogen (H)
E-State associated with hydroxy groups (OH) [19]

CIC1 1-ordered complementary information content [20]

RotBFrac Fraction of rotatable bonds, excluding terminal bonds [21]
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2.2. Design of Novel Compounds

A prior investigation by Emmanuel Oloruntoba Yeye et al. assessed the ability of a set
of 33 synthetic chemicals to inhibit α-glucosidase. According to the findings, compounds 14,
16, 20, 21, 25, 27, 28, and 33 showed action that was comparable to that of the well-known
α-glucosidase inhibitor Acarbose. The analysis of these compounds consistently revealed
the presence of halogen elements, amino groups, and/or nitro groups.

It was discovered that compounds with nitro, amino, or halogen components showed
more inhibitory potential, while triazole derivatives with hydroxy groups exhibited less
inhibitory potential.

Using the best-selected model and this information as a foundation, this study at-
tempted to create novel drugs with enhanced α-glucosidase inhibitory action. A higher
pIC50 value against α-glucosidase in comparison to the series’ most active compounds was
the aim.

We concentrated on adding chemical groups like nitro and halogen components to the
molecular structure in order to raise the values of the AATSC8s and VE3_Dzs descriptors,
and avoiding the addition of hydroxy groups, which were discovered to have adverse
effects on the intended activity. We were also able to lower the values of nHsOH, CIC1,
and RotBFrac. As indicated in Table 3, seven interesting novel compounds were created by
applying these recommended structural alterations to the triazole derivatives. Comparing
these compounds to the most active one in the series (Table 4), each one showed a higher
pIC50 percentage.

Table 3. The 2D visualization of the new designed compounds using the developed model.

N Structure N Structure

3
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2.3. Applicability Domain

The obtained leverage values (hi = xit × (Xt × X) − 1 × xi (i = 1, 2, 3... n)) for the
designed molecules were compared with the warning leverage (h*). The compound was
recommended to be inside the applicability domain of the model based on the leverage
(hi) being smaller than the warning leverage (h*). In this case, the superscript t denotes the
transpose of the matrix or vector of the designed molecules, n is the number of training set
compounds, and k is the number of model descriptors. xi is the matrix of model descriptors
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of each designed molecule, and X is the matrix of model descriptor values for n training set
compounds [14]. Using the leverage threshold h* as a guide, we computed the leverages of
every molecule proposed. Based on the values of hi, which has the range of (0.055–0.358),
the findings displayed in Table 4 indicate that all of these compounds are acceptable.

Table 4. The values of the descriptors constructing the developed model for the synthetized com-
pounds, designed compounds with their calculated pIC50, and leverages.

Name N◦ AATSC8s VE3_Dzs nHsOH CIC1 RotBFrac pIC50 hi

Synthetized Compounds

1 * −0.006 −3.819 1 1.439 0.133 5.582

h* = 0.667

2 * −0.010 −6.599 2 1.316 0.125 5.264
3 0.037 −7.797 2 1.316 0.125 5.264
4 −0.010 −8.587 2 1.316 0.125 5.270
5 −0.075 −5.287 3 1.328 0.118 5.241
6 0.064 −7.498 0 1.578 0.222 5.369

7 * 0.043 −6.004 0 1.578 0.222 5.367
8 * 0.184 −4.740 0 1.830 0.250 5.263
9 0.131 −5.434 0 1.633 0.263 5.271

10 0.122 −7.007 0 1.633 0.263 5.262
11 −0.174 −3.355 0 1.621 0.125 5.369

12 * −0.169 −1.724 0 1.968 0.167 5.196
13 −0.128 −2.264 0 1.507 0.133 5.368
14 −0.128 −2.531 0 1.346 0.125 5.604
15 −0.127 −7.233 0 1.376 0.177 5.270
16 0.044 −4.375 0 1.376 0.177 5.607
17 −0.074 −2.618 1 2.214 0.182 5.198

18 * 0.032 −7.781 1 1.193 0.176 5.276
19 0.256 −4.965 1 1.396 0.211 5.485
20 0.220 −5.270 0 1.349 0.211 5.599
21 −0.004 −2.950 1 1.103 0.125 5.625
22 −0.021 −6.069 1 0.937 0.167 5.599
23 −0.103 −3.622 0 1.161 0.176 5.461
24 0.012 −5.284 0 1.161 0.176 5.633
25 −0.010 −6.839 0 1.161 0.176 5.644
26 −0.127 −9.690 0 1.055 0.167 5.359
27 −0.030 −6.929 1 1.011 0.167 5.636
28 −0.080 −4.901 0 1.069 0.133 5.613
29 0.001 −3.755 0 2.216 0.217 5.264
30 −0.037 −3.692 0 2.094 0.240 5.184
31 0.000 −4.566 0 2.641 0.083 5.267
32 0.026 −4.196 0 2.720 0.074 5.201
33 −0.019 −7.010 0 1.664 0.111 5.680

Designed compounds

P3 −0.106 −3.082 0 1.143 0.050 5.780 0.084
P4 −0.005 −3.524 0 1.103 0.118 5.738 0.023
P6 −0.084 −3.328 0 0.891 0.125 5.741 0.059
P7 0.083 −4.032 0 1.036 0.150 5.758 0.055

P10 0.077 −5.263 0 0.800 0.125 5.852 0.082
P14 0.113 −8.222 0 1.224 0.100 5.717 0.358
P19 0.109 −3.410 0 1.318 0.125 5.741 0.081

*: test compounds, P: proposed compounds.

2.4. Molecular Docking

The molecular docking of all investigated compounds was conducted within the
active site of the target receptor. The findings are illustrated in Figures 2 and 3 and Table 5
and demonstrate favorable binding affinities for all complexes, attributed to the diverse
interactions established between the ligands and key residues situated in the binding
site. Acarbose, recognized as an alpha-glucosidase inhibitor, was included in the docking
simulations to elucidate the interactions formed within the receptor. The Acarbose-2f6d
complex revealed notable interactions, including five Conventional Hydrogen Bonds with
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Arg69, Glu211, Glu210, Leu208, and Asp70 residues, as well as two Carbon–Hydrogen
Bonds with Trp209 and Ala138, and a Pi–Sigma interaction with Tyr351. Distances for
these interactions ranged between 1.84 Å and 3.79 Å. Moreover, Water Hydrogen bonds
were detected, underscoring the involvement of Water molecules in the formation of this
intricate complex.
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Table 5. The created interactions of obtained complexes with binding scores, participated residues,
molecular interactions, and distances expressed in Å.

N Score Kcal/Mol Residue Interaction Type Distance (Å)

P3 −6.4

Trp139 Pi–Pi Stacked 4.87
Trp139 Pi–Pi Stacked 4.19
Trp139 Pi–Alkyl 5.13
Tyr351 Pi–Alkyl 5.29

HOH1163 Water Hydrogen Bond 3.57
HOH1189 Water Hydrogen Bond 2.92
HOH1672 Water Hydrogen Bond 3.38
HOH1504 Water Hydrogen Bond 3.09
HOH1672 Water Hydrogen Bond 3.45
HOH1723 Water Hydrogen Bond 3.23

P4 −7

Trp209 Carbon–Hydrogen Bond 3.39
Glu210 Carbon–Hydrogen Bond 3.39
Glu210 Pi–Anion 3.85
Trp139 Pi–Pi Stacked 3.85
Trp139 Pi–Pi Stacked 4.36

HOH1433 Water Hydrogen Bond 4.17

P6 −7.2

Glu210 Conventional Hydrogen Bond 2.62
Glu210 Conventional Hydrogen Bond 2.66
Trp139 Carbon–Hydrogen Bond 3.36
Trp209 Carbon–Hydrogen Bond 3.38
Glu210 Carbon–Hydrogen Bond 3.59
Glu210 Pi–Anion 3.77
Trp139 Pi–Pi Stacked 4.59
Trp139 Pi–Pi Stacked 3.97
Tyr351 Pi–Pi Stacked 4.29
Ala138 Alkyl 4.1

HOH1163 Water Hydrogen Bond 4

P7 −7.3

Trp209 Carbon–Hydrogen Bond 3.61
Glu210 Pi–Anion 3.69
Trp139 Pi–Pi Stacked 4.43
Trp139 Pi–Pi Stacked 3.74
Tyr351 Pi–Pi Stacked 4.54
Trp139 Pi–Pi Stacked 4.56

HOH1282 Water Hydrogen Bond 3.81
HOH1672 Water Hydrogen Bond 2.88
HOH1723 Water Hydrogen Bond 3.29
HOH1232 Water Hydrogen Bond 3.17
HOH1280 Water Hydrogen Bond 3.67

P10 −7.1

Arg69 Conventional Hydrogen Bond 2.52
Trp209 Conventional Hydrogen Bond 2.17
Glu211 Conventional Hydrogen Bond 2.68
Glu211 Conventional Hydrogen Bond 2.38
Glu210 Carbon–Hydrogen Bond 3.26
Tyr351 Pi–Pi Stacked 4.04

HOH1464 Water Hydrogen Bond 2.93
HOH1672 Water Hydrogen Bond 3.48
HOH1723 Water Hydrogen Bond 3.18
HOH1189 Water Hydrogen Bond 3.24
HOH1282 Water Hydrogen Bond 3.39

P14 −7.3

Arg345 Conventional Hydrogen Bond 2.71
Glu210 Conventional Hydrogen Bond 2.93
Trp209 Carbon–Hydrogen Bond 3.08
Arg345 Pi–Cation 3.42
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Table 5. Cont.

N Score Kcal/Mol Residue Interaction Type Distance (Å)

Tyr351 Pi–Sigma 3.79
Trp139 Pi–Pi Stacked 5.27
Trp139 Pi–Pi Stacked 4.73
Trp139 Pi–Pi Stacked 3.97
Trp139 Pi–Pi Stacked 4.45

P19 −7.2

Arg69 Pi–Cation 3.66
Tyr351 Pi–Pi Stacked 3.89

HOH1723 Water Hydrogen Bond 2.67
HOH1464 Water Hydrogen Bond 1.83

Acarbose −12.3

Arg69 Conventional Hydrogen Bond 2.25
Glu211 Conventional Hydrogen Bond 2.21
Glu210 Conventional Hydrogen Bond 2.14
Leu208 Conventional Hydrogen Bond 1.9
Asp70 Conventional Hydrogen Bond 1.84
Trp209 Carbon–Hydrogen Bond 3.52
Ala138 Carbon–Hydrogen Bond 3.79
Tyr351 Pi–Sigma 3.54

HOH1449 Water Hydrogen Bond 2.72
HOH1504 Water Hydrogen Bond 2.91
HOH1778 Water Hydrogen Bond 3.03
HOH1797 Water Hydrogen Bond 1.8
HOH1663 Water Hydrogen Bond 2.73
HOH1663 Water Hydrogen Bond 1.99
HOH1232 Water Hydrogen Bond 2
HOH1282 Water Hydrogen Bond 2.32
HOH1095 Water Hydrogen Bond 3.01
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These interactions observed, including Conventional Hydrogen Bonds, Carbon–Hydrogen
Bonds, and Pi–Sigma interaction with key residues and additional interactions with Water
molecules, are indicative of a complex and intricate binding pattern within the active site
of the receptor. Such interactions are crucial and may play a pivotal role in inhibiting the
activity of the alpha-glucosidase enzyme. The binding affinity and specificity of the ligands
towards the receptor, as evidenced by these interactions, suggest a potential mechanism for
effective inhibition, contributing to the therapeutic impact of the studied compounds on
alpha-glucosidase activity.

Compound P3 engaged in intricate interactions within the receptor’s active site, in-
cluding two Pi–Pi Stacked and two Pi–Alkyl interactions with Trp139 and Tyr351 residues.
Additionally, Water Hydrogen Bonds were observed with HOH1163, HOH1189, HOH1672,
HOH1504, HOH1672, and HOH1723 at distances ranging between 2.92 and 5.29 Å.

For Compound P4, a complex was formed through a Carbon–Hydrogen Bond, Pi–
Anion, and Pi–Pi Stacked interactions with Trp209, Glu210, and Trp139 residues. Water
Hydrogen Bonds with HOH1433 were also detected.

The complex formed by Compound P6 involved a spectrum of interactions, including
a Conventional Hydrogen Bond, Carbon–Hydrogen Bond, Pi–Anion, Pi–Pi Stacked, and
Alkyl interactions with Trp139, Trp209, Glu210, Tyr351, and Ala138. A Water Hydrogen
Bond with HOH1163 was also identified. Further, Compound P7 created a complex
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through a Carbon–Hydrogen Bond, Pi–Anion, and Pi–Pi Stacked interactions with Trp209,
Glu210, Tyr351, Trp139, and Water Hydrogen Bonds with HOH1282, HOH1672, HOH1723,
HOH1232, and HOH1280.

In the case of Compound P10, a complex was formed through a Conventional Hydro-
gen Bond, Carbon–Hydrogen Bond, and Pi–Pi Stacked interactions with Arg69, Trp209,
Glu211, Glu210, and Tyr351. Water Hydrogen Bonds were observed with HOH1464,
HOH1672, HOH1723, HOH1189, and HOH1282.

Compound P14 exhibited a diverse array of interactions, including a Conventional
Hydrogen Bond, Carbon–Hydrogen Bond, Pi–Cation, Pi–Sigma, and Pi–Pi Stacked interac-
tions with Arg345, Glu210, Trp209, Tyr351, and Trp139 residues, while the complex formed
by Compound 19 involved Pi–Cation and Pi–Pi Stacked interactions with Arg69 and Tyr351,
along with Water Hydrogen Bonds with HOH1723 and HOH1464.

Among the compounds subjected to docking, ligands P6, P10, and P14 were antic-
ipated to establish interactions similar to Acarbose, including Conventional Hydrogen
bonds, Carbon–Hydrogen bonds, and Pi–Sigma interactions. These interactions were pro-
jected to involve the same residues, such as Arg69, Trp209, Glu210, Glu211, and Tyr351. This
anticipation suggests a potential similarity in the binding mechanism between these ligands
and the reference drug, indicating a likelihood of shared effects within the studied receptor.
This observation implies that these ligands may operate through a comparable mechanism
to Acarbose, demonstrating a potential therapeutic impact on the target receptor.

2.5. ADMET Properties Prediction

The pharmacokinetic properties of the studied compounds were predicted using the
pkCSM online tools. The results of the analysis are listed in Table 6. It was found that all
investigated compounds adhere to the Lipinski rules.

All of the substances are expected to have high absorption from the gastrointestinal
(GI) tract into the bloodstream, indicating their potency for absorption, based on the
information provided in Table 6. Additionally, the compounds showed excellent Water
solubility, which is advantageous for absorption. All compounds except for Compounds
P10 and P19 exhibited strong Caco-2 permeability.

Since none of the substances were expected to be P-glycoprotein inhibitors, it is un-
likely that they will obstruct the efflux transporters that allow medications to be pumped
out of cells. Compounds P7 and P14, on the other hand, were predicted to be P-glycoprotein
substrates, which means P-glycoprotein could be able to detect and transport them. Fur-
thermore, it was noted that all compounds had a high level of skin permeability, signifying
its capacity to penetrate the epidermal barrier and enter the body. Here, a LogKp value of
less than −2.5 is considered high-skin-permeability.

All compounds were predicted to have a low volume of distribution at steady state
(VDss) values, except Compounds P3 and P7. In this context, a low VDss value is defined
as a LogVDss value less than −0.15, indicating that in a steady state, the chemicals have a
relatively small volume of distribution throughout the body. Compound P14 was predicted
to have a modest potential to cross the blood–brain barrier, as demonstrated by a LogBB
(logarithm of the blood–brain barrier partition coefficient) higher than 0.3. The remaining
compounds were estimated to have a modest potential to cross. Compound 3 was found to
have the potency to penetrate the central nervous system (CNS), while Compounds P6, P7,
and P10 were considered unable to penetrate the CNS.

There was a low chance that any of the substances would interact with any of these
specific cytochrome P450 enzymes because it was anticipated that they would all be
inhibitors of CYP1A2 and neither substrates nor inhibitors of CYP2D6, CYP2C19, CYP2C9,
or CYP3A4. Nevertheless, it was considered that Compounds P6 and P14 were CYP3A4
substrates, indicating that the CYP3A4 enzyme could metabolize them.

Except for Compound P7, which was thought to be an OCT2 substrate and may be
carried via the kidney’s OCT2 transporter, other compounds were predicted to be non-renal
OCT2 substrates. The range of the medications’ total clearance values (Log(ml/min/kg))
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indicates potential dose rates required to achieve steady-state concentrations, from 0.063
to 0.586.

Since the compounds were projected to be neither hERG I nor hERG II inhibitors,
it is unlikely that they will have a major impact on the hERG channel, which is crucial
for heart function. Additionally, it was anticipated that they would not produce skin
sensitization, which means that when they come into contact with skin, they will likely not
trigger allergic responses.

According to the AMES test, chemicals P6, P10, and P14 were expected to not introduce
AMES toxicity, indicating that it is unlikely that they will result in bacterial cell mutations.

Table 6. The predicted ADMET properties of analyzed compounds by using pkCSM online tools.

Compounds P3 P4 P6 P7 P10 P14 P19

MOL_WEIGHT 257.322 276.097 222.639 242.242 206.184 259.7 201.233
LOGP 1.4225 1.79448 0.7909 1.0452 0.2766 2.6851 1.1326

ROTATABLE_BONDS 1 2 2 3 2 2 2
ACCEPTORS 6 5 6 6 6 4 5

DONORS 1 0 1 1 1 1 1
SURFACE_AREA 108.812 100.171 90.409 102.135 84.271 108.105 87.251
Water solubility −3.072 −3.119 −2.684 −2.956 −2.446 −3.667 −1.893

Caco2 permeability 1.292 1.011 1.294 1.322 0.74 1.336 0.728
Intestinal absorption (human) 98.134 97.517 84.358 77.072 85.844 93.42 72.544

Skin Permeability −2.618 −2.554 −2.84 −2.735 −2.769 −2.72 −2.897
P-glycoprotein substrate No No No Yes No Yes No
P-glycoprotein I inhibitor No No No No No No No
P-glycoprotein II inhibitor No No No No No No No

VDss (human) −0.294 −0.351 −0.714 0.051 −0.767 −0.195 −0.367
Fraction unbound (human) 0.339 0.293 0.448 0.378 0.448 0.215 0.311

BBB permeability −0.043 0.149 −0.764 −0.587 −0.796 0.373 −0.323
CNS permeability −1.977 −2.814 −3.047 −3.456 −3.118 −2.06 −2.414
CYP2D6 substrate No No No No No No No
CYP3A4 substrate Yes No No No No Yes No
CYP1A2 inhibitor Yes Yes Yes Yes Yes Yes Yes
CYP2C19 inhibitor No No No No No No No
CYP2C9 inhibitor No No No No No No No
CYP2D6 inhibitor No No No No No No No
CYP3A4 inhibitor No No No No No No No

Total Clearance 0.109 0.063 0.16 0.586 0.557 0.503 0.239
Renal OCT2 substrate No No No Yes No No No

AMES toxicity Yes Yes No Yes No No Yes
Max. tolerated dose (human) −0.749 0.397 0.632 0.593 0.613 −0.25 0.378

hERG I inhibitor No No No No No No No
hERG II inhibitor No No No No No No No

Oral Rat Acute Toxicity (LD50) 2.254 2.313 2.379 1.804 2.22 2.51 2.383
Oral Rat Chronic Toxicity (LOAEL) 1.705 1.747 1.604 1.128 0.664 1.669 1.82

Hepatotoxicity Yes No No Yes Yes Yes No
Skin Sensitization No No No No No No No

T. Pyriformis toxicity 0.564 1.176 0.284 0.285 0.241 1.002 0.647
Minnow toxicity 2.586 1.524 2.684 2.529 3.021 1.28 2.364

2.6. Molecular Dynamics Simulation

Ligands P6, P10, and P14 were selected for molecular dynamics simulation based on
their favorable pharmacological properties, good binding scores, and interactions with key
residues of the analyzed enzyme.

2.6.1. Root-Mean-Squared Deviation

A 100 ns simulation was conducted on the protein–ligand complexes (2f6d with P6,
P10, and P14) and the uncomplexed protein to observe any deviations or structural changes
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induced when the protein was bound to the selected ligands. The Root-Mean-Square
Deviation (RMSD) values for the proteins were computed and are visualized in Figure 4.
The outcomes revealed a consistent state with an RMSD consistently below 3 Å over the
entire simulation period. This signifies that the complexes attained a stable conformation,
indicating stability despite their interactions with the examined ligands. The persistent and
low RMSD values suggest that the complexes maintained structural integrity throughout
the simulation.
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Figure 5 illustrates the RMSD values of the proposed ligands during their interaction
with the target. The findings suggest stability throughout the simulation for P6 and P14,
with average RMSD values of 5.52 Å and 2.82 Å, respectively. In contrast, P10 initially
maintained a consistent state for the first thirty nanoseconds before exhibiting fluctuations
exceeding 15 Å, and then a decrease in RMSD value was eventually noted towards the end
of the simulation. The average RMSD of P10 was 8.16 Å.
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2.6.2. Root-Mean-Squared Fluctuation

The investigation included a Root-Mean-Squared Fluctuation (RMSF) analysis for
all simulated complexes, and a separate simulation was conducted for the uncomplexed
protein to compare residue fluctuations during the simulation period. The primary ob-
jective of this analysis was to evaluate the stability of protein residues in the presence
of the investigated ligands. The RMSF values for protein residues remained below 3 Å
for all simulated complexes (Figure 6), indicating the absence of significant fluctuations.
This implies that a state of stability was achieved for the protein residues despite their
interactions with the studied ligands.
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2.6.3. Protein–Ligand Contact

The ligand–protein interactions were thoroughly investigated, uncovering a diverse
range of molecular bonds and bridges contributing to their binding affinity, as illustrated
in Table 7. Specifically, P6 formed Hydrogen bonds with Tyr63, indicating a directed
interaction. Hydrophobic interactions played a crucial role, with P6 engaging hydrophobic
residues Trp209, Tyr351, Trp362, and Trp473, enhancing complex stability. Ionic bonds
with Trp67, Asp70, and Glu210 added an electrostatic dimension to the interaction. Water
molecules acted as bridges, mediating specific interactions with Tyr63, Arg69, Asp70,
Trp209, and Glu210. The persistence of interactions, particularly with Asp63, Asp70,
Trp209, Glu210, Tyr351, and Trp362 residues, underscored their crucial role in maintaining
complex stability.

For P10-2f6d and P14-2f6d, the ligand–protein interactions revealed a nuanced network
of molecular bonds contributing to their binding affinity. P10 engaged in diverse and
specific interactions, forming Hydrogen bonds with Trp67, Gly140, Trp209, Glu210, Glu211,
and Arg345. Water bridges with Arg69-, Asp207-, Leu208-, Trp209-, Glu210-, Glu211-, and
Arg345-mediated specific contacts. Hydrophobic bonds with Lys127, Trp139, Phe206, and
Tyr351 enhanced complex stability, while ionic bonds with Glu210 and Tyr351 introduced
an electrostatic dimension. P14 formed ionic bonds with Tyr63 and Glu210, indicating
specific electrostatic interactions. Hydrophobic bonds with Tyr63, Trp209, Tyr351, and
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Trp62 contributed to complex stability. Water bridges involving Ala54, Arg69, Asp70,
Leu208, Glu210, and Trp473 facilitated specific contacts. Hydrogen bonds with Tyr63
and Trp209 enriched the interaction profile, providing comprehensive insights into the
molecular basis of their binding mechanisms. Persistent interactions were consistently
observed throughout the simulation, establishing connections between P14 and residues
Tyr63, Asp70, Trp209, Glu210, and Tyr351, suggesting the role of these interactions in
maintaining the stability of the formed complex P14-2f6d.

Table 7. Protein–ligand contact (histogram and timeline) of all simulated complexes after 100 ns
(Pink: ionic bond; bleu: water bridge; violet: hydrophobic bond, and Green: Hydrogen bond).

Complex PL-Contacts Histogram PL-Contacts Timeline
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2.6.4. Binding Free Energy

The binding free energy calculations for the three simulated complexes, P6-2f6d,
P10-2f6d, and P14-2f6d, revealed favorable thermodynamic stability. The negative values
of ∆G (−32.59 kcal/mol, −35.8 kcal/mol, and −41.17 kcal/mol, respectively) indicate
spontaneous and energetically favorable interactions between the ligands and the protein.
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These results suggest strong binding affinities, with P14-2f6d exhibiting the highest negative
∆G, highlighting its potentially robust and stable interaction with the target protein.

3. Material and Methods

A database containing 33 substituted 1,2,4-triazoles was retrieved from a previous
study [14]. These compounds exhibited moderate-to-high activity against α-glucosidase, as
listed in Table 8, where their IC50 values were transformed into pIC50 values (-logIC50) for
QSAR modeling. The structures of the studied compounds were generated and optimized
under the MMFF94 force field by using Chem3D V.19.0.0.22 [22].

Table 8. The 2D structure of 33 triazole derivatives with their biological activity against alpha-
glucosidase pIC50.
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3.1. Molecular Descriptor Computation and Pruning

The PaDEL tool was utilized to calculate the molecular descriptors of the substances [23].
PaDEL offers over 800 molecular characteristics for every molecule; hence, it was required
to filter these descriptors to only contain pertinent data. For this, the objective feature
selection module from QSARINS software [24] was employed. Descriptors with high
co-linearity (|r| > 0.90) and virtually constant (>95%) values were excluded to avoid
multi-collinear and spurious variables in the GA-MLR models. A dataset including 433
molecular descriptors encompassing mono-dimensional (1D-) and bi-dimensional (2D-)
descriptor spaces was retained after the descriptor reduction step [25,26].
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3.2. QSAR Model Construction and Validation

The QSARINS software was utilized to build the QSAR models. This program is
well known for producing statistically strong GA-MLR-based QSAR models. QSARINS’s
random splitting option was used to divide the dataset into training and test sets at random
for this purpose [27]. Twenty percent of the compounds were in the test set and eighty
percent were in the training set [28]. The models were generated using a representative
subset of the dataset and assessed on a different collection of substances thanks to this
tried-and-true methodology [29].

By including the maximum number of molecular descriptors impacting or altering
biological potential/activity, this method aimed to enhance the performance of the mod-
els [30]. The calculated molecular descriptors are used as independent variables to predict
or explain the activity of a molecule by employing Formula (1):

Y = a0 + a1X1 + a2X2 (1)

In accordance with the OECD guidelines [31,32], the obtained models underwent com-
prehensive external and internal statistical validations, Y-randomization, and applicability
domain analysis. A variety of model evaluation metrics and statistical parameters were
taken into account to assess the models’ performance and choose the best model. These
included the coefficient adjusted for degrees of freedom (R2

adj), coefficient of determina-
tion for the test set (R2

test), root-mean-squared error (RMSE), and R-squared coefficient of
determination (R2). As the fitness function, the leave-one-out cross-validation coefficient,
or Q2

LOO, was also given. Typically, measurements with values higher than 0.6 signify a
more stable and consistent model [33–35].

Leverage analysis—expressed as William’s plot—is used in chemometrics and QSAR
analysis to assess a model’s applicability domain (AD) by determining the standardized
residuals (r) and the leverage threshold values (h* = (3 × (k + 1))/n), where n denotes the
number of trainings and k the number of descriptors. The range that the model is thought
to be dependable for forecasting new values is represented by the AD [36,37].

3.3. Molecular Docking

The molecular docking method is widely used to predict the best poses of the examined
ligands when docked in the active pocket of the target, as well as the binding affinity values
and the created molecular interactions between the residues located in the receptor and the
studied ligands [38].

The receptor utilized in this investigation was sourced from the Protein Data Bank,
identified by the PDB ID of 2f6d [39], corresponding to the complex structure involving a
glucoamylase from Saccharomycopsis fibuligera and Acarbose.

The selection of this particular structure was influenced by its intricate nature, re-
sembling that of Acarbose. Acarbose is renowned for its effectiveness in inhibiting the
alpha-glucosidase enzyme. Furthermore, the high resolution of this structure, standing at
1.60 Å (below 2 Å), adds to its suitability. The receptor comprises 492 amino acids in the
‘Chain A’, referred to as glucoamylase (Figure 7A). It also contains additional heteroatoms
such as alpha-acarbose, phosphate, and sodium ions, which were excluded before the
commencement of the molecular docking phase [39].

In preparation for the docking simulations, the receptor underwent necessary ad-
justments, including minimizing the energy of the protein structure using Swiss PDB
Viewer [40], the addition of polar Hydrogens, and computation of Gasteiger charges using
AutoDock vina software [41–43]. In this case, given the presence of Water molecules within
the binding site of the protein, they were preserved to explore potential interactions with
the docked ligands. The ligands underwent an energy minimization process employing the
MMFF94 force field through Avogadro software [44]. This step was undertaken to refine
and optimize the structural conformation of the ligands.
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The choice of the grid box for docking was strategic, determined by the initial po-
sition of the co-crystalized ligand (Acarbose), which is acknowledged as an inhibitor of
alpha-glucosidase activity [45], serving as the reference drug for comparative analysis
of interactions. The coordinates of the binding site were meticulously set at x = 12.68 Å,
y = 10.80 Å, z = −6.35 Å, with a size of 20 Å3 and a space center of 0.375 Å (Figure 7B).

The molecular docking process was iterated five times to ensure robustness and
reliability. The conformations of the ligands were selected based on their frequency of
appearance across these multiple runs. Notably, all chosen conformations exhibited con-
sistent presence in every run, affirming their reliability and reinforcing the confidence in
their representativeness. Figure 8 provides a visualization of the frequency for the obtained
conformations in each run.
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Figure 8. Frequency of appearance for each docking conformation in five independent runs.

The co-crystalized ligand (Acarbose) was initially docked into the binding site of the
receptor to validate the docking protocol [8]. Subsequently, AutoDock tools [46] facilitated
the molecular docking of all designed compounds, enabling an in-depth exploration of
potential interactions and the determination of binding affinities within the active site of the
receptor. The docking simulation was conducted through a total of 9 runs, and the complex
resulting from the run with the lowest binding affinity, corresponding to an RMSD of 0,
was selected and subjected to analysis [47]. The calculated Root-Mean-Squared Deviation
(RMSD) value of 0.217 Å (below 2 Å) indicates a minimal deviation between the initial
ligand and the docked ligand (Figure 9). This result affirms the precision of the docking
protocol in faithfully reproducing the binding pose of the reference ligand within the active
site of the receptor [48].
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3.4. ADMET Analysis

The designed compounds with a high value of pIC50 against alpha-glucosidase ac-
tivity were subjected to an ADMET analysis for the purpose of gaining insight into the
pharmacological properties which includes several properties such as the absorption, distri-
bution, metabolism, excretion, and toxicity [49,50]. The pkCSM website is widely used for
predicting these properties and evaluating the behavior of compounds in the human body.

Lipinski’s rules were used to eliminate the compounds that do not respect the threshold
values of these principles, including a molecular weight of less than 500 g/Mol, no more
than 5 donor bonds, no more than 10 acceptor bonds, and a partition coefficient (LogP)
no more than 5 [51]. Additionally, several properties were evaluated to determine the
behavior of the analyzed compounds in the human body [51] such as Caco-2 permeability,
Intestinal absorption (human), and the volume of distribution at steady state (VDss).
These evaluations offer interesting details into the potential behavior and suitability of the
compounds for further development.

3.5. Molecular Dynamics (MD) Simulation

To gain insight into the structural changes that befell the protein and ligand through
key parameters like the (RMSD) Root-Mean-Squared Deviation and (RMSF) Root-Mean-
Squared Fluctuation, the hit compounds with the best binding score, highest biological
activity, and good pharmacological properties were put through a molecular dynamics’
simulation. The generated molecular interactions between them were then assessed to deter-
mine the cause of stability or changes observed in the protein and ligand structures [52,53].

The generated complexes were prepared, minimized, and optimized under the OPLS3e
force field [54] using the protein preparation wizard which is available in Maestro soft-
ware [55]. More recently, we used the Water model (TIP3P) to build an orthorhombic
simulation [56]. Following the addition of Na+ and Cl− counterions to neutralize the
charge of the solvated systems, the physiological salt concentration was adjusted to 0.15
M. After that, the system was heated gradually to the target temperature (which is under
300 K and one bar of pressure) using the Nose–Hoover thermal algorithm and the Martina–
Tobias-Klein method [57]. A recording interval, an isothermal–isobaric ensemble (NPT),
and an MD simulation duration of 100 ns were all employed. In this work, MD simulations
were performed using the Desmond package [58], which is part of the Schrödinger 2020-3
academic program.

The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) technique,
a crucial component of the Maestro software package, was used to calculate the binding
free energy for the simulated complexes. The binding free energies in molecular dynamics
simulations were estimated using MM/GBSA. It is especially helpful for comprehending
the thermodynamics of ligand binding in molecular dynamics simulations and offers a thor-
ough and effective method of analyzing the energetics of protein–ligand interactions [59].

4. Conclusions

This study employed a comprehensive QSAR analysis of 33 triazole derivatives to
identify the key factors influencing their inhibitory activity against alpha-glucosidase. This
analysis aimed to identify novel potential compounds that could serve as novel medications
for diabetes mellitus. Based on the best selected MLR model, seven promising compounds
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were designed as potential drugs, and subjected to the molecular docking and dynamics
simulations to gain insights into the stability and the mode of interaction between the
designed compounds and the target enzyme. The pharmacokinetic properties of the
compounds were assessed to predict their behavior in the human body through various
parameters such as absorption, distribution, metabolism, and excretion of the compounds.
The results highlighted three novel compounds (P6, P10, and P14) with high biological
activity, strong binding affinity to the target enzyme, favorable thermodynamic properties,
and suitability for oral administration.
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