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Abstract: In the contemporary era, the exploration of machine learning (ML) has gained widespread at-
tention and is being leveraged to augment traditional methodologies in quantitative structure–activity
relationship (QSAR) investigations. The principal objective of this research was to assess the anti-
cancer potential of colchicine-based compounds across five distinct cell lines. This research endeavor
ultimately sought to construct ML models proficient in forecasting anticancer activity as quantified
by the IC50 value, while concurrently generating innovative colchicine-derived compounds. The
resistance index (RI) is computed to evaluate the drug resistance exhibited by LoVo/DX cells relative
to LoVo cancer cell lines. Meanwhile, the selectivity index (SI) is computed to determine the potential
of a compound to demonstrate superior efficacy against tumor cells compared to its toxicity against
normal cells, such as BALB/3T3. We introduce a novel ML system adept at recommending novel
chemical structures predicated on known anticancer activity. Our investigation entailed the assess-
ment of inhibitory capabilities across five cell lines, employing predictive models utilizing various
algorithms, including random forest, decision tree, support vector machines, k-nearest neighbors,
and multiple linear regression. The most proficient model, as determined by quality metrics, was
employed to predict the anticancer activity of novel colchicine-based compounds. This methodologi-
cal approach yielded the establishment of a library encompassing new colchicine-based compounds,
each assigned an IC50 value. Additionally, this study resulted in the development of a validated
predictive model, capable of reasonably estimating IC50 values based on molecular structure input.

Keywords: machine learning; colchicine; drug discovery; anticancer activity; QSAR; molecular
docking; in silico screening

1. Introduction

Machine learning (ML) methods are being investigated to speed up the discovery of
new bioactive chemical structures. Current methods are aiming to propose novel chemi-
cal structures with desired properties based on already known chemical structures [1–7].
ML models learn from the experimentally determined biological activities and molecular
descriptors or other mathematical descriptors of a chemical molecule [8]. The molecular
features can be easily computed with the application of the RDKit [9] and Mordred [10] li-
braries, which take advantage of the linear representation of a structure, called SMILES [11].
With the gathering of all the knowledge given above, we can propose new chemical struc-
tures and assign the potential biological activity to them, which can be useful information
for selection for experimental verification [12].
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The objects of the studies, from the chemical point of view, are colchicine-based
derivatives. These can be potentially used as anticancer treatments [13]. The biological
activity feature, in this study, is defined as IC50 (nM), which is defined as a quantitative
measure that indicates how much of a particular inhibitory substance (e.g., drug) is needed
to inhibit, in vitro, a given biological process or biological component by a half [14]. This
study aims to predict IC50 values for various cell lines, namely:

1. A549—adenocarcinomic human alveolar basal epithelial cells, lung cancer related [15];
2. BALB/3T3—detection of the carcinogenic potential of chemicals [16];
3. LoVo/DX—human colon adenocarcinoma doxorubicin-resistant cell line [17];
4. LoVo—human colon adenocarcinoma cell line, colorectal cancer related [18];
5. MCF-7—breast-cancer-related cell line [19].

The resistance index (RI) was calculated to assess the resistance of the cancer cell lines
given above. The RI index indicates how many times a resistant subline is chemoresistant
relative to its non-resistant cell line. It is calculated with the application of the following
formula: RI = IC50 for LoVo/DX cell line divided by IC50 for LoVo cell line. When the RI
value is in the range from 0 to 2, the cells are sensitive to the compound, an RI in the range
2–10 means moderate sensitivity, and an RI above 10 indicates strong resistance [20].

The selectivity index (SI) serves as a metric for evaluating the selectivity of a novel
colchicine-based compound. It is determined for each specific cell line through the uti-
lization of the following formula: SI = IC50 for the normal cell line divided by IC50 for
the corresponding cancerous cell line. An SI value greater than unity indicates that the
drug exhibits enhanced efficacy against tumor cells in comparison to its toxicity towards
normal cells. For instance, in the case of the MCF-7 cancer cell line, the SI is calculated as
follows: SI = IC50 for the BALB/3T3 normal cell line divided by IC50 for the MCF-7 cancer
cell line [21].

The first level of selection can be conducted in silico, as it requires a low-resource
approach. Then, from the selected compounds, some can be tested in vitro. The presented
cell lines can be treated with new colchicine-based derivatives and tested for the required
biological activity and safety of the new compounds in vitro. The aim is to have as low
an IC50 value as possible for the cancer cell lines and higher activities for the BALB/3T3
cell line. If the colchicine-based compound has met the requirements for both good bio-
logical activity and safety, the evaluation of the compound can go to the next stage, the
in vivo stage.

The data underpinning this study were gathered from diverse sources, and the com-
pounds under scrutiny underwent rigorous in vitro assessments. Specifically, the data
stem from the experimental efforts of medicinal chemists (Czerwonka, Krzywik et al.) as
documented in multiple sources [22–26]. These sources serve as pivotal components of
this study, likely containing comprehensive details about colchicine-based compounds.
They encompass information regarding synthesis methodologies and the compounds’
anticancer attributes, denoted by their half-maximal inhibitory concentration (IC50) val-
ues in nanomolars (nM) against different cell lines. Additionally, this study refers to the
availability of other relevant data at the PubChem database [27], augmenting the dataset
with additional insights into the compounds or their properties, thereby enhancing the
research’s comprehensiveness.

The realm of machine learning (ML) spans a spectrum of methodologies, ranging
from elementary approaches like linear regression [28] to more intricate models such as
multiple linear regression (MLR) [29], decision trees (DTs) [30], random forests (RFs) [31],
k-nearest neighbors (KNNs) [32], support vector machines (SVMs) [33], XGBoost [34], and
neural networks [35,36]. The complexity of an ML model often correlates with the volume
of required data. While simpler models can suffice for smaller datasets, their scope might
be limited. Models exhibiting behaviors of overfitting and underfitting require careful
consideration; overfitting occurs when a model learns patterns too precisely from training
data but performs poorly on new data, while underfitting reflects inadequate learning to
generalize on the dataset [37].
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Additionally, molecular docking emerges as a crucial selection procedure for con-
structing new libraries of colchicine-based derivatives. The AutoDock Vina (AD Vina)
algorithm [38], used in this study, boasts accuracy akin to its predecessor, AutoDock 4
(AD4) [39]. Plewczynski et al.’s studies [40] affirm that AD4 accurately redocked 93% of
ligand–protein complexes. Despite the relatively simple scoring functions, software of this
nature proves invaluable as a supporting tool in drug design processes.

Our study can be divided into two pathways, which can be run separately. The
first route is the construction of new colchicine-based compounds with the application
of a previously prepared algorithm [4,12]. This pathway lets us create a library of new
colchicine-based structures after a few steps of selection. The second pathway is related
to the biological activity, using machine learning (ML) models’ predictions. To obtain this
target, we need to build and test several ML models and select the “best” of them for
each of the biological activity targets. Then, with the “best” models, we can assign target
features, IC50 values, for the newly created colchicine-based structures. At the end, we have
a library of in silico-tested compounds that have a predicted IC50 value, binding affinity to
the 1SA0 protein domain [41], and SYBA score [42], which indicates the potential difficulty
of synthesis. The selection of the 1SA0 protein domain is predicated on the recognition
that colchicine exhibits binding affinity to β-tubulin, consequently inducing microtubule
destabilization by rendering the colchicine-bound dimers incapable of assembly. Notably, in
eukaryotic cells, which are characterized by the expression of various isotypes of β-tubulin,
βI (one of the isoforms of β-tubulin) consistently stands out as the predominant and most
prominent target for drug binding interactions [20].

2. Results and Discussion
2.1. Training Data

The training dataset methodology proposed can be efficiently used for small datasets.
This lets us use machine learning techniques for issues that are new, and thus, for which
there is a lack of data, meaning chemical structures with assigned biological activity. This
simple workaround gives us the opportunity to create new chemical structures from a
small starting database [12]. Supplementary Files S1–S3 are related to this section.

2.2. Generative Neural Network

The generative RNN method [12] is illustrated conceptually in Figure 1. This technique
enables the creation of a diverse library of novel colchicine-based structures by leveraging
existing ones. By employing this approach, we have been able to develop a repository of
fresh colchicine-based structures, which can undergo additional processing. For instance,
selection procedures can be applied to refine and enhance these structures further.
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Figure 1. The general scheme of new colchicine-based structures library creation.

With the 120 starting structures, we trained the neural network, namely, the recurrent
neural network (RNN), with the goal of chemical space exploration. This let us teach the
RNN how to reconstruct chemical structures, and with its application, new structures were
proposed (Supplementary Files S4–S7). Figure 2 shows the decreasing loss value, indicating
that the model’s performance becomes better and better as the learning time increases
(Supplementary File S8).



Pharmaceuticals 2024, 17, 173 4 of 24

The proposed approach enabled us to create 1786 chemical structures (Supplemen-
tary Files S9–S11). Their creation was quite random, and due to that, data selection
(Sections 2.4 and 3.4) was performed. These structures are distinct from each other. This let
us keep more similar structures to the starting ones, as machine learning model predictions
are more accurate in the closer chemical space.

Selected structures are shown below (Table 1). The table indicates the capabilities of
a generative machine learning model, the recurrent neural network (RNN) [4]. Table 1
contains two starting structures with experimentally measured IC50 values for various
cell lines and their SMILES codes. The second part of Table 1 shows some of the newly
created chemical structures, their Tanimoto similarity [43] to the starting structure above,
and, following the application of trained machine learning models, their predicted IC50
values. It can be observed that a small change in structure may lead to profound changes
in biological activity (Supplementary File S41).

Table 1. The structures of selected AI-generated colchicine-based compounds. The table contains two
starting structures with the assigned anticancer activities, Tanimoto similarity, and SMILES codes.
For the newly generated structures IC50 values are predicted and not tested yet.

Starting structures 1

CH3
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CH3

O

O
H3C

O
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NH

CH3

IC50 (nM): A549: 10.8 ± 1.4, MCF-7: 10.3 ± 0.4, LoVo: 6.5 ± 1.9,
LoVo/DX: 54.9 ± 22.0, BALB/3T3: 10.2 ± 1.9

SMILES: COc2c3C1=CC=C(SC)C(=O)C=C1[C@H](CCc3cc(OC)c2OC)NCC

H3C
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NH
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IC50 (nM): A549: 9.6 ± 1.3, MCF-7: 9.7 ± 1.5, LoVo: 7.8 ± 1.0, LoVo/DX: 8.5 ± 1.1,
BALB/3T3: 7.5 ± 1.5

SMILES: CC(CC)N[C@H]2CCc3cc(OC)c(OC)c(OC)c3C1=CC=C(NC)C(=O)C=C12

Newly proposed structures 1

CH3

O

N
H

CH3

O

O
H3C

O
H3C

NH

O

NH

H3C

Tanimoto similarity: 0.844
IC50 (nM): A549: 8.3, MCF-7: 8.4, LoVo: 6.2, LoVo/DX: 94.3, BALB/3T3: 10.9

SMILES: COC1=C2C3=CC=C(NC)C(=O)C=C3[C@H1](CCC2=CC(OC)=C1OC)NCCONC
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Tanimoto similarity: 0.931
IC50 (nM): A549: 11.3, MCF-7: 7.9, LoVo: 9.6, LoVo/DX: 129.6, BALB/3T3: 21.3

SMILES: CNC(C(C)C)N[C@@H1]1C=2C(C3=C(C=C(OC)C(OC)=C3OC)CC1)=CC=C(C(=O)C=2)NC

O

CH3 O
H3C

O

CH3

S

CH3

O

NH

H3C

S
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Tanimoto similarity: 0.953
IC50 (nM): A549: 11.2, MCF-7: 12.7, LoVo: 14.5, LoVo/DX: 71.1, BALB/3T3: 10.2

SMILES: C1=2[C@H1](CCC3=CC(OC)=C(OC)C(OC)=C3C1=CC=C(SC)C(=O)C=2)NC(C)CC=CSC

NH
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F
Tanimoto similarity: 0.978

IC50 (nM): A549: 15.9, MCF-7: 8.6, LoVo: 9.6, LoVo/DX: 21.6, BALB/3T3: 23.5
SMILES: N([C@H1]1CCC2=CC(OC)=C(OC)C(OC)=C2C3=CC=C(NC)C(C=C31)=O)CCCCF



Pharmaceuticals 2024, 17, 173 5 of 24

Table 1. Cont.
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NH

Cl
Tanimoto similarity: 0.983

IC50 (nM): A549: 10.6, MCF-7: 12.2, LoVo: 14.5, LoVo/DX: 18.1, BALB/3T3: 11.5
SMILES: COC1=C2C3=CC=C(SC)C(=O)C=C3[C@H1](CCC2=CC(OC)=C1OC)NCCCCl
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NH
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CH3 O
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O
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CH3

O

O

O

OH
Tanimoto similarity: 0.931

IC50 (nM): A549: 900, MCF-7: 4259, LoVo: 345, LoVo/DX: 9490, BALB/3T3: 835
SMILES: O=C(N[C@H1]1CCC2=CC(OC)=C(OC)C(OC)=C2C3=CC=C(NC)C(=O)C=C31)CCOC(=O)O

1 Graphical representations of chemical structures were prepared with Open Babel software version 3.1.1 [44,45].
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Figure 2. Training and validation losses of the neural network minimization. Both parameters
dropping indicates that the model was learning how to generalize from the input.

2.3. Machine Learning Models for Anticancer Activity

The biological activity, given by IC50 (nM), was transformed with Equation (1)
(Section 3.3). This is shown in File S12, and the results were saved in Supplementary File S13.
The correlation of the molecular descriptors [46] with the IC50 values is shown in
Supplementary File S14.

Five different machine learning methodologies were applied (Supplementary
Files S15–S29). Namely, multiple linear regression (MLR) [29], decision tree (DT) [30],
random forest (RF) [31], k-nearest neighbors regression (KNN) [32], and support vector
machines (SVMs) [33]. Each of them was investigated through various molecular descrip-
tors as training features. The lower the number of features, the higher the correlation of the
features to the biological activity parameter, given by IC50 (nM).
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Figures 3–7 (created within Supplementary File S30) exhibit the quality measurements
for each methodology investigated across individual cell lines. The term ‘random state’ [47]
denotes the initial seed employed by a pseudo-random number generator (PRNG) within
machine learning algorithms. Its function is to ensure reproducibility by establishing a
consistent starting point each time the code is executed, thereby ensuring uniform results
during experiments or model training.

The random state value signifies variations in both the training and testing data while
maintaining their specified percentages, as detailed in Section 3.3. The distribution of
these datasets can be observed in Supplementary Files S55–S70. The utilization of different
random states during data splitting leads to alterations in the composition of the training
and testing datasets. Consequently, distinct data points are employed for the training and
testing procedures at each random state.

Two scoring parameters were explored to select the best final models for predicting
the activity of each of the cell lines. The first parameter is the correlation coefficient (R) [48],
and the second is the root mean square error (RMSE) [49]. According to a study conducted
by D. Chicco et al., the coefficient of determination R2 (where the correlation coefficient
is the square root of R2) provides more informative insights than the RMSE. R2 does not
possess the interpretative limitations of the MSE, RMSE, MAE, and MAPE. Therefore,
we suggest using R-squared as the standard metric for evaluating regression analyses
in any scientific domain [50]. Conversely, B. Lucic has demonstrated that R can present
an overly optimistic measure of agreement between predicted values and corresponding
experimental values, leading to an excessively optimistic conclusion about the model’s
predictive ability [51]. The RMSE provides insights into absolute prediction errors, which
could be more informative in practical scenarios compared to R-squared, which focuses on
explaining variance. Since our aim is to select the best machine learning model for each cell
line, both parameters were taken into consideration.

As Figures 3–7 depict, we can draw the following conclusion: The “best” methodology
for determining each of the cell lines’ biological activity is the random forest (RF) [31]
methodology. In every instance, it exhibits the highest correlation coefficient across both
the training and testing datasets, along with the lowest RMSE. This explains why the RF
methodology was chosen as the final model for each of the biological activities, as the RF
methodology learns best how to generalize on the given dataset. The “best” models are
shown in Supplementary File S31 and saved in Supplementary Files S32–S36, respectively,
for each of the cell lines.

Bias in ML algorithms skews results in favor of or against an idea, in either direction.
This is a systematic error brought on by false assumptions made throughout the ML
learning process. This can have an impact on how an ML model is built [52].

The biological activity, given in IC50 (nM), for the A549 cell line machine learning
investigation results are stored in Supplementary Files S15–S17 and S32. Figure 3 depicts
the “best” performance of simple machine learning models at the lowest number of features
(five features). The two best methodologies observed are DT and RF. It should be stated
that the RF model is composed of many DT models. The worst-performing approaches are
the other ML methods employed (MLR, KNN, SVM).

The R values (higher values indicate better performance) of the DT and RF ML models
on the training datasets are similar, but RF demonstrates superior performance on the
test set of data. While other ML models perform adequately on the training data, they
significantly underperform on the testing data, as evident from their R values, indicating
underfitting [37] to the test data. The RMSE values, depicted in Figure 3, suggest that
DT and RF are the most effective methods for predicting the A549 IC50 (nM) parameter.
These ML models exhibit the lowest RMSE values compared to MLR, KNN, and SVM.
Both the R values and RMSE consistently support the use of a random state of 15 in the RF
model as the optimal choice. Details of the data splitting for this model can be found in
Supplementary File S56.
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The molecular descriptors utilized for predicting A549 IC50 (nM) values include
the following: AMID_O (average molecular ID on O atoms), EState_VSA5 (EState VSA
Descriptor 5 with a range of 1.17 to less than 1.54), MDEO-12 (molecular distance edge
between primary O and secondary O), SaasC (sum of aasC), and VSA_EState5 (VSA EState
Descriptor 5 (5.74 ≤ x < 6.00)) [53]. The rationale behind their selection is detailed in
Supplementary Files S15–S17, S31 and S55.

MLR train R MLR test R DT train R DT test R RF train R RF test R KNN train R KNN test R SVM train R SVM test R
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Figure 3. Machine learning models’ performance on A549 cell line.

The biological activity, given in IC50 (nM), for the BALB/3T3 cell line machine learning
investigation results are stored in Supplementary Files S18–S20 and S33. Figure 4 depicts the
“best” performance of simple machine learning models at the lowest number of features
(six features). The two best methodologies are observed to be DT and RF. The worst-
performing approaches are the MLR, KNN, and SVM machine learning approaches.
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The R values for the DT and RF ML models on the training datasets show a comparable
performance, with RF slightly outperforming DT on the test set. Other ML models perform
reasonably well on the data, but are worse than RF model. The KNN is reflecting the signs
of underfitting [37] to the testing data.

The RMSE values presented in Figure 4 highlight that the most effective models for
predicting the BALB/3T3 IC50 (nM) parameter are DT and RF. These ML models show the
lowest RMSE values compared to other methods such as MLR, KNN, and SVM. Both the
R values and RMSE consistently endorse the RF model with a random state of 15 as the
optimal choice. Detailed information regarding the data splitting for this model is available
in Supplementary File S61.

The molecular descriptors used to predict the BALB/3T3 IC50 (nM) values are as fol-
lows: AMID_O (averaged molecular ID on O atoms), EState_VSA5 (EState VSA Descriptor 5
(1.17 ≤ x < 1.54)), GATS2c (Geary coefficient of lag 2 weighted by Gasteiger charge), MDEO-12
(molecular distance edge between primary O and secondary O), NdssC (number of dssC), and
VSA_EState5 (VSA EState Descriptor 5 (5.74 ≤ x < 6.00)) [53]. The rationale behind their selection
is detailed in Supplementary Files S18–S20, S31 and S55.
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Figure 4. Machine learning models’ performance on BALB/3T3 cell line.
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The biological activity, given in IC50 (nM), for the LoVo/DX cell line machine learning
investigation results are stored in Supplementary Files S21–S23 and S34. Figure 5 depicts
the “best” performance of simple machine learning models at the lowest number of features
(five features). The two best methodologies are observed to be DT and RF. The DT method-
ology training correlation coefficient equals 1.00, but this methodology was not chosen as
the final one due to the overfitting [37] to the training data. The final method is RF with
random state 42, which performs quite well on training and testing data.

The R values of the DT and RF ML models on the training datasets exhibit a similar
performance, with RF displaying slightly superior performance on average when evaluated
on the test dataset. Notably, the DT models reveal signs of overfitting [37], as indicated by
R values of 1.00, leading to comparatively larger errors based on RMSE compared to the RF
ML model. Interestingly, the RMSE for the DT training dataset with a random state of 28 is
notably low, primarily due to overfitting [37] to the training data.

MLR train R MLR test R DT train R DT test R RF train R RF test R KNN train R KNN test R SVM train R SVM test R
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Figure 5. Machine learning models’ performance on LoVo/DX cell line.
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While the other ML models perform reasonably well on the training data, they demon-
strate notably inferior performance on the testing data, evident from their R values, signify-
ing potential underfitting [37] to the test data. The RMSE values depicted in Figure 5 suggest
that DT and RF are the most effective methods for predicting the LoVo/DX IC50 (nM) pa-
rameter. These ML models exhibit the lowest RMSE values compared to other models like
MLR, KNN, and SVM.

Both the R values and RMSE consistently support the RF model with a random state
of 42 as the optimal choice. Detailed information regarding the data splitting for this model
can be located in Supplementary File S67.

The molecular descriptors used to predict LoVo/DX IC50 (nM) values are the following:
GATS2c (Geary coefficient of lag 2 weighted by Gasteiger charge), MATS2c (Moran coefficient
of lag 2 weighted by Gasteiger charge), NdssC (number of dssC), RNCG (relative negative
charge), and TopoPSA(NO) (topological polar surface area (use only nitrogen and oxygen)) [53].
The rationale behind their selection is detailed in Supplementary Files S21–S23, S31 and S55).

The biological activity, given in IC50 (nM), for the LoVo cell line machine learning
investigation results are stored in Supplementary Files S24–S26 and S35. Figure 6 depicts
the “best” performance of simple machine learning models at the lowest number of features
(two features). The two best methodologies are observed to be DT and RF. As the per-
formance of the DT and RF methodologies is similar, by our choice, the RF methodology
was used to build a final predictive model, as it can cover a wider space of predictive
possibilities compared to the simple DT model. The worst-performing approaches are the
MLR, KNN, and SVM machine learning approaches.

The R values, indicating model performance, show comparable results between the
DT and RF ML models on the training datasets, with RF demonstrating a slightly better
average performance on the test dataset. Interestingly, while other ML models perform
reasonably well on the training data, they notably underperform on the testing data, as
indicated by lower R values, hinting at potential underfitting [37] to the test dataset.

In terms of predicting the LoVo IC50 (nM) parameter, the RMSE values displayed in
Figure 6 highlight that DT and RF emerge as the most effective methods. These ML models
display the lowest RMSE values compared to alternative models such as MLR, KNN, and
SVM, signifying their superior predictive accuracy.

The advantage of RMSE is also apparent in Figure 6, where the correlation coefficient
alone proves insufficient as a quality parameter. The RMSE indicates that the models are
comparable in terms of quality, aligning with its assessment, unlike the sole reliance on the
correlation coefficient (R).

Consistently, both the R values and RMSE support the RF model with a random state
of 28 as the optimal choice. For more detailed information regarding the data division used
for this model, please refer to Supplementary File S63.

The molecular descriptors utilized for predicting the LoVo IC50 (nM) values include
the following: EState_VSA5 (EState VSA Descriptor 5 (1.17 ≤ x < 1.54), and MDEO-12
(molecular distance edge between primary O and secondary O) [53]. The rationale behind
their selection is detailed in Supplementary Files S24–S26, S31 and S55).
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Figure 6. Machine learning models’ performance on LoVo cell line.

The biological activity, given in IC50 (nM), for the MCF-7 cell line machine learning
investigation results are stored in Supplementary Files S27–S29 and S36. Figure 7 depicts
the “best” performance of simple machine learning models at the lowest number of features
(four features).

While the R values for the DT and RF ML models on the training datasets are fairly
similar, RF demonstrates superior performance on the average test set. Notably, the perfor-
mance of other ML models appears robust on the training data but markedly deteriorates
on the testing data (KNN), revealing significant underfitting [37] issues, as indicated by
lower R values.

Analyzing the RMSE values depicted in Figure 7, it becomes evident that DT and
RF stand out as the optimal methods for predicting the LoVo IC50 (nM) parameter. These
ML models exhibit the lowest RMSE values compared to alternative models such as MLR,
KNN, and SVM, highlighting their superior predictive accuracy.

The benefit of the RMSE is observable in Figure 7, highlighting the inadequacy of solely
using the correlation coefficient as a quality measure. The RMSE indicates comparability
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among the models in terms of quality, supporting its evaluation, unlike relying solely on
the correlation coefficient (R).

Consistently, both the R values and RMSE endorse the RF model with a random state
of 15 as the most effective choice. For a detailed breakdown of the data splitting used for
this model, please refer to Supplementary File S68.

The molecular descriptors used to predict MCF-7 IC50 (nM) values are the follow-
ing: AMID_O (averaged molecular ID on O atoms), EState_VSA5 (EState VSA Descriptor 5
(1.17 ≤ x < 1.54), MDEO-12 (molecular distance edge between primary O and secondary O),
and EState_VSA6 (EState VSA Descriptor 6 (1.54 ≤ x < 1.81)) [53]. The rationale behind their
selection is detailed in Supplementary Files S27–S29, S31 and S55).

MLR train R MLR test R DT train R DT test R RF train R RF test R KNN train R KNN test R SVM train R SVM test R
Methodology

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Co
rr

el
at

io
n 

co
ef

fic
ie

nt

Quality of each methodology - MCF-7 max number of features: 4
Random state 15
Random state 28
Random state 42

MLR train MLR test DT train DT test RF train RF test KNN train KNN test SVM train SVM test
Methodology

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RM
SE

Quality of each methodology - MCF-7_RMSE max number of features: 4
Random state 15
Random state 28
Random state 42

Figure 7. Machine learning models’ performance on MCF-7 cell line.

The final model quality measurements are presented in Table 2. The table presents
the machine learning methodology selected for the final predictive model construction,
the number of features used to build the model, the correlation of molecular descriptors
to the target data, the overall R score [48] (calculated by asking the model to predict the
target value on the whole dataset), the mean squared error (MSE) [54], the mean absolute



Pharmaceuticals 2024, 17, 173 13 of 24

error (MAE) [55] and, lastly, the root mean square error (RMSE) [49], all calculated on the
whole dataset.

Table 2. Predictive model approaches investigated for the prediction of given cell lines’ biological
activities (Supplementary File S31).

Target Methodology Random
State

Number
of Features

Correlation
Threshold

Overall
R Score MSE MAE RMSE

A549 RF 15 5 0.51 0.944 0.099 0.205 0.314
BALB/3T3 RF 15 6 0.51 0.950 0.075 0.183 0.274
LoVo/DX RF 42 5 0.63 0.950 0.089 0.217 0.299

LoVo RF 28 2 0.54 0.865 0.206 0.320 0.453
MCF-7 RF 15 4 0.51 0.883 0.200 0.258 0.447

2.4. Data Selection

The first step of selection was conducted using Tanimoto similarity [43,56,57]
(Section 3.4). This step let us cut out 430 structures that were too different in the meaning
of chemical similarity calculated based on molecular fingerprints [56]. A total of 1356 new
structures remained after the first step (Supplementary Files S37–S39).

The second step of selection was the employment of the SYBA classifier [42]
(Section 3.4). This provided an estimation of the potential difficulty of synthesis. Figure 8
shows the chemical space of the considered species with blue-marked starting structures
and red-marked new structures. As can be seen in Figure 9, after the application of the
SYBA classifier, only structures more similar to the starting ones remain. This step sieved
out 1021 structures, leaving 335 structures (Supplementary Files S40 and S41).

In the final step of the selection process (Section 3.4), we employed a rigorous selection
criterion for the absolute configuration of the compounds, as the starting structures have an
‘S’ absolute configuration on the seventh carbon atom [22–26,58]. Figure 10 provides a visual
representation of the distribution of absolute configurations in the initial set of structures.
Notably, all of these structures exhibited the ‘S’ absolute configuration. Subsequently,
Figure 11 illustrates the distribution of absolute configurations in the newly generated
colchicine-based structures. The application of this selective criterion resulted in the
elimination of 50 structures from the initial dataset, reducing the total number of structures
under examination to 285, as shown in Supplementary File S42. This stringent selection
process ensured that only structures conforming to the desired ‘S’ absolute configuration
on the seventh carbon atom were included in our study.
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Figure 8. The chemical space for all the newly generated structures (1356) and initial ones (120) based
on molecular fingerprints (Supplementary File S43).
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Figure 9. The chemical space for the SYBA-selected newly generated structures (335) and initial
ones (120) based on molecular fingerprints (Supplementary File S43).
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Figure 10. The absolute configuration of starting chemical structures’ distribution.
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Figure 11. The absolute configuration of newly generated chemical structures’ distribution.
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The PubChem search (Supplementary Files S44–S47) provided information that
four structures out of the AI-created colchicine-based structures were found in the Pub-
Chem database of known compounds. Their (PubChem Compound Identifications) CIDs
were 6351355, 162648725, 164628185, and 162672356, respectively. This indicates that the
vast majority of the AI-proposed structures are new, and from them, we can pick the best
candidates based on machine learning models and molecular docking. It also shows the
generative capabilities of the machine learning models proposed.

2.5. Molecular Docking

Molecular docking studies conducted indicate that the AI-proposed structures have
similar affinity to the 1SA0 (PDB ID) protein domain. Figure 12 depicts the distribution
of the affinity of selected (285) structures to the protein domain. The first red line shows
the raw colchicine affinity (−8.2 kcal/mol) and the second natively present structure in the
raw PDB file (−8.6 kcal/mol). The combination of biological activity prediction based on
ML models combined with molecular docking can enhance the selection of structures for
experimental verification and potentially speed up new bioactive system discoveries. Of the
structures, 131 have an affinity greater than −8.2 kcal/mol, and 78 have an affinity lower
than −8.6 kcal/mol. The number of structures with an affinity equal to −8.6 kcal/mol is 14,
and 15 structures have an affinity equal to −8.2 kcal/mol.
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Figure 12. The binding energies of 285 structures that were selected from the previous step
(Sections 2.4 and 3.4). Red lines indicates calculated binding energy of ligand with the protein target.

Figures 13–16 show the interactions that can be formed between colchicine-based
structures and the binding site of 1SA0. The green solid lines indicate hydrophobic contact,
and the black dashed lines indicate possible hydrogen bond formation. All of them are
stabilizing ligands in the pocket of the binding site of the protein. Indeed, molecular docking
is a good tool to enhance the possibilities of biological activity mechanism explanation [59].
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Figure 13. Redocked native structure with binding energy of −8.6 kcal/mol. The picture depitcs
possible interactions between the natively present structure in 1SA0 protein’s active site and the
active site itself.

Figure 14. New structure number 113 with binding energy −7.4 kcal/mol. The picture depicts
possible interactions between AI-created structure number 113 and the active site of the 1SA0
protein domain.

Figure 15. New structure number 73 with binding energy −10.2 kcal/mol. The picture depicts
possible interactions between AI-created structure number 73 and the active site of the 1SA0 pro-
tein domain.
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Figure 16. New structure number 162 with binding energy −8.6 kcal/mol. The picture depicts
possible interactions between AI-created structure number 162 and the active site of the 1SA0
protein domain.

Additional 3D interaction visualizations between ligands from Figures 13–16 can be
found in the Supplementary Material, called additional supplementary figures. Figure S1
illustrates the native 1SA0 ligand situated within the protein’s binding site. Figure S2
displays AI-generated ligand number 73 occupying the binding site of the 1SA0 protein.
Likewise, Figure S3 exhibits AI-generated ligand 113 also within the identical binding site of
the same protein. In a similar vein, Figure S4 portrays AI-created ligand 162 occupying this
binding site. Figures S5 and S6 depict all the previously mentioned ligands simultaneously
occupying the binding site within the 1SA0 protein domain. The visualizations were
performed using the Chimera tool, version 1.16 [60].

Molecular dynamic simulations (MDSs) play a crucial role in advancing molecular
biology and facilitating the discovery of new drugs. However, this study did not encompass
this aspect, leaving ample space for undeniable enhancements to the presented method.

3. Materials and Methods

The files which are mentioned in the manuscript are attached in the Supplementary
Materials, and their names are stored in the “Files” attachment. The overall workflow
is presented in Figure 17. The files pertaining to the conducted study have been consol-
idated on GitHub’s platform and are accessible through this link: https://github.com/
XDamianX-coder/Colchicine_ML (accessed on 18 January 2023). All files can also be
viewed within the compiled Supplementary Materials, namely, Supplementary code.pdf
containing all the code and Jupyter notebooks, and Supplementary Data.xlsx, where the
Excel (Version 2312) results are stored. The file numbering has been maintained to ensure
the project’s readability.

https://github.com/XDamianX-coder/Colchicine_ML
https://github.com/XDamianX-coder/Colchicine_ML
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Figure 17. The overall workflow of presented studies.

3.1. Training Data

The training data for both the generative neural network creation and creating the ma-
chine learning models for anticancer activity prediction were collected from previously pub-
lished material [22–26]. From this material, we collected 120 structures, SMILES codes [11],
with experimentally assigned IC50 activities towards various cell lines, such as A549,
BALB/3T3, LoVo/DX, LoVo, and MCF-7. All the data can be viewed in Supplementary File S1.

Based on this collection, we proposed new chemical structures and their estimated activity
for each of the evaluated cell lines. It also should be stated that the IC50 parameter unit in this
case is given in units of nM for both the starting and newly created structures.

We have created various SMILES [11] representations of each of the colchicine deriva-
tives. This was performed in Supplementary Files S2 and S3 was created as the training
dataset, with 118,070 SMILES representations.

3.2. Generative Neural Network

The vectorization procedure is necessary for feeding the neural network with the
chemical structures’ data, as chemical structures are not an easily accessible representation
for computers, but vectors are. Vectorization is the process of converting a computer-
unreadable representation of data through mathematical processing into computer-readable
objects known as mathematical vectors [61]. The format of the chemical representation
that was vectorized was the so-called molecular sequence [4], which was derived from the
SELFIES [62] depiction of a molecule. This was conducted within Supplementary File S4.

The generative neural network was built with the application of the previously pro-
posed architecture [4,12] with little modification. As we did not have thousands of struc-
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tures, we encoded and vectorized the same molecule many times using different SMILES
code. This was achieved with the support of the RDKit library [9]. In that way, we were able
to create a sufficient number of data points (118,070) for neural network training (106,263)
and validation (11,807). This was performed inside Supplementary File S4. The model
is stored in Supplementary Files S5–S7. The neural network performance is recorded in
Supplementary File S8.

With the application of the neural network, we proposed a number of new structures
(Supplementary File S9), which are close in the meaning of the chemical space, as our
recurrent neural network (RNN) [1–3,12] learns how to reconstruct vectorized chemical
structures. The quality of the model and the loss function were measured using categorical
cross-entropy [63]. The structures proposed by the machine learning model are stored in
Supplementary Files S10 and S11.

3.3. Machine Learning Models for Anticancer Activity

Based on the collected data (120 data points), we proposed very simple models for
revealing the biological activity of unknown compounds. The following methodologies
were investigated: multiple linear regression (MLR) [29], decision tree (DT) [30], random
forest (RF) [31], k-nearest neighbors regression (KNN) [32], and support vector machines
(SVMs) [33].

Firstly, the target features, biological activities, were transformed with the follow-
ing equation:

pIC50 = −1 × log(
IC50

109 ) (1)

This was performed to reduce the skewness of the data points (see Supplementary File S12).
The transformed data are stored in Supplementary File S13.

Then, the correlation of molecular descriptors [46], calculated with RDKit [9] and
Mordred [10], to each of the biological activities was provided in the nM unit of IC50. This
was conducted in Supplementary File S14. It gives us information about the number of
features that can be used at certain thresholds of correlation between molecular descriptors
and biological activity.

The machine learning methodologies were investigated with three different random
seed values, namely, 15, 28, and 42, which were randomly chosen. Each of the models
evaluated was tested with different correlation thresholds of biological activity, IC50 values
towards certain cell lines:

1. A549 (Supplementary Files S15–S17);
2. BALB/3T3 (Supplementary Files S18–S20);
3. LoVo/DX (Supplementary Files S21–S23);
4. LoVo (Supplementary Files S24–S26);
5. MCF-7 (Supplementary Files S27–S29).

and molecular descriptors. The higher the correlation value, the fewer molecular descrip-
tors were available for model construction. We aimed to construct the simplest models
possible for each of the target cell lines.

At the end, the “best” models were chosen based on quality measurements, such as
correlation threshold, mean squared error (MSE) [54], mean absolute error (MAE) [55],
and root mean square error (RMSE) [49] (Supplementary Files S30 and S30a). Then, the
final models were built (Supplementary File S31) and saved for each cell line separately
(Supplementary Files S32–S36). The model was used to predict the biological activities of
the newly generated structures, and the outputs were recorded (Supplementary File S41).
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3.4. Data Selection

As the neural network can create a variety of structures, subsequent data selection
must be performed. This was performed in the following way:

1. Preservation of structures that are highly similar to the colchicine core. The Tanimoto
similarity [43,56,57] threshold value was set to the lowest similarity found among the
starting structures to the colchicine core, namely, 0.257 (Supplementary Files S37–S39).

2. The SYBA selection process, as documented in the study by Vorsilak et al. [42], this
stage serves the purpose of eliminating structures that could pose challenges during
the synthesis process. The SYBA algorithm yields a numerical SYBA score, wherein
higher values indicate greater feasibility for molecular synthesis. The algorithm
computes SYBA scores for the initial set of structures, and the lowest recorded score,
set at 19.48 (documented in Supplementary File S40), is subsequently employed as
the threshold for evaluating newly generated structures. The results of this analysis
are stored in Supplementary File S41.

3. Stereochemistry [9] selection was performed as the third step; it assumes compounds have
the ‘S’ absolute configuration on the seventh carbon [58]. The ‘R’ absolute configuration
structures do not tend to be biologically active [22–26], thus they are removed from
further consideration. The results of this step are stored in Supplementary File S42.

4. The process of RI and SI selection is conducted subsequent to the prediction of IC50
values, as described in Section 3.3. This pivotal step enables the identification and
retention of AI-generated colchicine-based structures that satisfy the prerequisites
concerning drug resistance (RI) and specificity towards cancer cell lines (SI). The
resultant indices are stored within Supplementary File S54.

Based on t-distributed stochastic neighbor embedding (t-SNE) analysis [64], a dimen-
sionality reduction algorithm, the chemical space of the created structures was compared
to the initial structures. This approach let us separate data that could not be divided by a
straight line, hence the name “nonlinear dimension reduction“. It gave us the opportunity
to comprehend high-dimensional information and transfer it into a low-dimensional space.
It reduced the size of each molecule’s molecular fingerprint and presented further similari-
ties between the new structures and the starting structures (Supplementary File S43).

The generated structures were searched for in the PubChem database with the application
of the PubChemPy pythonic library [65]. This gave information about whether the structure
generated could be found in the PubChem database (Supplementary Files S44–S47).

3.5. Molecular Docking

The molecular docking studies were conducted via the AutoDock Vina [38] solution.
The target protein domain was 1SA0 [41] (PDB [66] ID). The natively present structure and
the colchicine itself were docked to the same protein domain, so the result of the calcula-
tion conducted could be used as a reference. The investigated active site of the protein
domain was the same for each of the structures. The search parameters are given here:
center [x, y, z] = [119.743, 92.779, 10.765], size [x, y, z] = [44, 44, 60].

The OpenBabel tool [44,45] was used to create *.pdbqt files, which are necessary for
AutoDock Vina, from 3D structures that were previously created with the application of
RDKit [9] functionalities. In this manner, it can be performed automatically for many
ligands, rather than manually. The protein domain was prepared with the AutoDock Tools
1.5.7 [67].

The following procedure was conducted for the molecular docking:

1. Raw 1SA0.pdb structure was downloaded from the PDB;
2. Native ligand present inside the pocket was saved separately;
3. 3D structure of raw colchicine was prepared (Supplementary File S48);
4. All the selected new colchicine-based structures were transformed into 3D objects and

prepared for molecular docking procedures (Supplementary Files S49 and S50);
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5. Molecular docking was conducted (Supplementary File S51), and the results are saved
in Supplementary File S52. The visualization of the results is in Supplementary File S53.
The final results are stored in Supplementary File S54.

The 2D graphs of the interactions between selected colchicine-based structures have
been depicted with the ProteinsPlus web application [68–76], which lets users create 2D
maps of protein–ligand interactions efficiently.

4. Conclusions

The proposed approach opens the opportunity to create a library of new colchicine-
based compounds with assigned biological activity for each of the investigated cell lines:
A549, BALB/3T3, LoVo/DX, LoVo, and MCF-7. The library created can be in vitro investi-
gated for testing our predictive model capabilities. The methodology presented shows that
we can create a large library of structures and conduct multi-step selection. We can use dif-
ferent discriminators, such as similarity of compounds, difficulty of synthesis classification,
or chirality of compounds created.

These findings suggest a significant potential for the deliberate selection of chemical
structures that align with specific criteria. The RI and SI indices, through their compu-
tational calculations, can serve as supplementary criteria for the meticulous curation of
AI-generated colchicine-based compounds, facilitating their subsequent synthesis and
experimental validation.

Our methodology shown here can be used in other quantitative structure–activity
relationship (QSAR) studies. In this study, we evaluated various ML approaches: the RF,
DT, MLR, KNN, and SVM ML models. Therefore, we could select the best solution for
predicting the half-maximal inhibitory concentration value (IC50), for five cell lines of the
compounds proposed. The created RF models performed quite well with training and
testing data, although the distribution was not pure Gaussian. Surprisingly, it was found
that some capabilities for the recognition of IC50 patterns were gathered by the RF models
for each of the cell lines analyzed.

This model was designed so that it works with colchicine-based compounds, so it has
not been used with other structures. The machine learning (ML) models have much higher
certainty in the results for more similar structures. If one wanted to predict IC50 values for
totally different compounds, these would be less certain. This means that we can be more
sure of the models’ predictions if the structure we are considering is closer, in chemical
space, to the training data. This is the limitation of the model.
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com/xxx/s1.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
ML Machine learning
RNN Recurrent neural network
SMILES Simplified molecular-input line-entry system
SELFIES Self-referencing embedded strings
MLR Multiple linear regression
DT Decision tree
RF Random forest
KNN K-nearest neighbors
SVM Support vector machines
R Correlation coefficient
MSE Mean squared error
MAE Mean absolute error
RMSE Root mean square error
PDB Protein Data Bank
RI Resistance index
SI Selectivity index
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Bearing 1,2,3-Triazole: Design, Synthesis, and Biological Activity Evaluation. ACS Omega 2021, 6, 26583–26600. [CrossRef]

26. Krzywik, J.; Maj, E.; Nasulewicz-Goldeman, A.; Mozga, W.; Wietrzyk, J.; Huczyński, A. Synthesis and antiproliferative screening
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