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Abstract: The discovery of novel therapeutic compounds through de novo drug design represents
a critical challenge in the field of pharmaceutical research. Traditional drug discovery approaches
are often resource intensive and time consuming, leading researchers to explore innovative methods
that harness the power of deep learning and reinforcement learning techniques. Here, we introduce
a novel drug design approach called drugAI that leverages the Encoder–Decoder Transformer
architecture in tandem with Reinforcement Learning via a Monte Carlo Tree Search (RL-MCTS)
to expedite the process of drug discovery while ensuring the production of valid small molecules
with drug-like characteristics and strong binding affinities towards their targets. We successfully
integrated the Encoder–Decoder Transformer architecture, which generates molecular structures
(drugs) from scratch with the RL-MCTS, serving as a reinforcement learning framework. The RL-
MCTS combines the exploitation and exploration capabilities of a Monte Carlo Tree Search with the
machine translation of a transformer-based Encoder–Decoder model. This dynamic approach allows
the model to iteratively refine its drug candidate generation process, ensuring that the generated
molecules adhere to essential physicochemical and biological constraints and effectively bind to their
targets. The results from drugAI showcase the effectiveness of the proposed approach across various
benchmark datasets, demonstrating a significant improvement in both the validity and drug-likeness
of the generated compounds, compared to two existing benchmark methods. Moreover, drugAI
ensures that the generated molecules exhibit strong binding affinities to their respective targets. In
summary, this research highlights the real-world applications of drugAI in drug discovery pipelines,
potentially accelerating the identification of promising drug candidates for a wide range of diseases.

Keywords: artificial intelligence; drug design; novel molecules; encoder–decoder; transformer;
quantitative estimate of drug-likeness (QED); virtual screening; validity; reinforcement learning;
molecular docking

1. Introduction

The task of finding molecules that bind to specific biological targets is challenging due
to the vast molecular space [1]. Despite recent advancements in high-throughput screening
methods, screening millions of molecules for their binding to proteins of interest remains a
costly and time-consuming process [2]. The possible promiscuity of the identified molecules
poses yet another challenge that is receiving increasing attention in drug discovery [3].
Molecules can bind to multiple off targets, leading to undesirable and sometimes even
life-threatening side effects [4]. Yet, molecules that target multiple biological targets simul-
taneously, could be needed for treating complex illnesses such as cancer and cardiovascular
disease. Such promiscuous drugs, such as aspirin, are very rare but very effective [5].
This biological complexity could be addressed by the integration of cutting-edge data
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science that incorporates AI-driven approaches and by encouraging collaboration between
academia, pharmaceutical companies, and the biotechnology industry.

Computational methods have played a pivotal role in accelerating drug discovery and
reducing associated costs [6]. By combining ligand- and structure-based virtual screening
methods, researchers can efficiently screen large chemical databases to identify potential
drug candidates in a short time [7]. Furthermore, scientists can employ molecular dynamics
simulations to predict how molecules will interact with specific biological targets [8].
These methods, although effective, have limitations as they rely on existing molecules,
whether synthetic or natural. As part of the recent wave of advancements in artificial
intelligence, generative AI models have emerged as a powerful tool in the field of drug
discovery, particularly for de novo drug design, which involves creating novel molecular
structures [9].

Generative AI models used in drug discovery can be broadly categorized into two main
groups based on their use of target information. The models in the first category are trained
on a large dataset of known molecules, allowing them to efficiently explore the chemical
space and generate molecules with properties similar to known compounds. However, this
focus on similarity to known molecules may limit their ability to produce entirely novel
chemical structures and optimize interactions with specific targets. In the second category,
models rely on the 3D structure or binding site characteristics of the target, enabling the
generation of molecules tailored for interaction with specific targets. Nevertheless, a major
drawback of such models is the limited availability of high-quality structural data for many
drug targets [10]. To leverage the advantages of both categories, a combination of these
models is often used.

Self-supervised pretraining, which involves training models on large amounts of unla-
beled data, has become a dominant paradigm in Natural Language Processing (NLP) and
has been successfully used in the two influential NLP technologies GPT and BERT [11,12].
Researchers have adapted the principles of NLP pretraining to develop “chemical language
models” given the analogies between human language and the “language” of chemical
structures represented by SMILES (Simplified Molecular Input Line Entry System) strings.
In natural languages, grammatical rules and syntax govern the arrangement of words in
sentences, which affects the meaning and interpretation of text [13]. The chemical language
follows similar specific rules and syntax to those in natural language for representing chem-
ical structures, where the order and arrangement of symbols in SMILES strings convey
information about the chemical structure and properties of a molecule. By treating chem-
ical structures like sentences, where each symbol or combination of symbols represents
a chemical entity (atom, bond, or group), chemical language models can be pre-trained
on large datasets of SMILES strings. These models learn to generate SMILES strings by
predicting each symbol or subsequent symbols [14]. Such chemical language models have
been shown to obtain promising results on downstream tasks.

This research drew inspiration from Machine Translation (MT) using the sequence-to-
sequence model [15] and from the rapid success of applying transformation architecture [16]
in various NLP use cases. Greedy and beam search methods have traditionally been com-
mon approaches for decoding auto-regressive machine translation models in NLP [17,18].
Recently, the Monte Carlo Tree Search (MCTS)-based method has been demonstrated to
outperform the greedy and beam search methods in generic language applications [19].
The MCTS is a probabilistic and heuristic-driven search algorithm that enables multiple
constraint optimization steps. Moreover, this MCTS-based method has been successfully
applied in Large Language Models (LLM) [20].

In this work, we introduce an innovative de novo drug design engine named drugAI,
which marks the first integration of a decoder transformer model with the MCTS in the
fields of bioinformatics and cheminformatics. At the core of drugAI, we employ an encoder–
decoder transformer model coupled with a MCTS algorithm. This novel approach enabled
us to implement multiple constraint optimization steps during the protein sequence to
small molecule (SMILES string) generation. The drugAI engine, which was extensively
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trained on protein–ligand pairs, filtered from the comprehensive BindingDB [21], takes
target protein sequences as input and generates small molecules (SMILES strings) as
candidate inhibitors for these protein targets. Notably, drugAI surpasses traditional greedy
and beam search methods by enabling multi-constrained optimization of the generated
molecules. It evaluates their (1) validity; (2) pharmacological or biological properties for
orally active drugs in humans [22]; (3) quantitative estimate of drug-likeness (QED) to
gouge the compounds’ potential as drug candidates [23], and binding affinity to their
targets. The molecules generated by drugAI were consistently valid with a validity rate
of 100%. They showed 42% and 75% higher QED scores compared to those obtained
through greedy and beam search methods, respectively. Furthermore, by integrating the
binding affinity between the ligand and the target into the reinforcement learning process,
the molecules generated by drugAI demonstrated strong binding affinities towards their
respective targets. These affinities were comparable to those identified by traditional virtual
screening approaches.

2. Results
2.1. Effectiveness of DrugAI

To assess the effectiveness of our proposed approach (drugAI) in generating small
molecules with desired qualities for potential future drug candidates, we employed drugAI,
alongside two other commonly used methods, greedy and beam, to train on the same
dataset. We then conducted a comparative analysis of the results produced by these three
methods by calculating various benchmarks within the GuacaMol codebase [24] using the
Distributed-learning GuacaMol function. It is worth noting that the quantitative estimate
of drug-likeness (QED) was not included in the standard GuacaMol benchmarks and was
calculated separately using the RDKit package. DrugAI outperformed the greedy and beam
methods by generating a significantly higher proportion of valid molecules (Table 1). In fact,
all the molecules generated by drugAI were valid, whereas the greedy and beam methods
produced 0.83 and 0.62 proportions of valid molecules, respectively. The uniqueness and
novelty parameters of the generated molecules by drugAI were comparable to the greedy
method but significantly higher than the beam method (Table 1). DrugAI demonstrated
outstanding performance in terms of generating molecules with a high measure of drug-
likeness, as assessed by the quantitative estimate of drug-likeness (QED). The molecules
generated by drugAI achieved a significantly higher QED score (0.73) compared to greedy
(0.41) and beam (0.18) (Table 1). The distribution of the QED scores also exhibited substantial
differences. DrugAI did not produce QED scores below 0.3, while greedy search displayed
scores spanning the entire spectrum. In contrast, the beam search predominantly lacked
scores above 0.5 (Figure 1).

Table 1. Summary of the GuacaMol evaluations of the SMILES strings generated by three different
decoding algorithms. The reported values represent the averages of ten independent runs. Significant
differences are denoted by different letters, as determined by the Kruskal–Wallis test (p < 0.05). The
values based on a 95% confidence interval are presented in parentheses.

Benchmark DrugAI Greedy Beam (K = 2)

Validity 1.00 a (1) 0.83 b (0.82–0.84) 0.62 c (0.61–0.63)
Uniqueness 0.84 a (0.83–0.85) 0.87 a (0.86–0.88) 0.37 b (0.36–0.38)

Novelty 1.00 a (1) 1.00 a (1) 0.47 b (0.46–0.48)
Mean QED 0.73 a (72.95–73.05) 0.41 b (0.41) 0.18 c (0.18)
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2.2. Physicochemical Properties of the Generated Molecules

One of the available methods for assessing the drug-likeness of a compound is Lip-
inski’s Rule of Five (also known as RO5). In addition to its effectiveness against a target
protein, newly designed drugs should be suitable for oral administration. Therefore, RO5
predicts whether a chemical compound has favorable pharmacokinetic properties based on
criteria such as Molecular Weight (MW < 500), Lipophilicity (LogP < 5), Hydrogen Bond
Donors (HBD < 5), and Hydrogen Bond Acceptors (HBA < 10). Compounds meeting these
criteria have a high likelihood of being orally bioavailable. However, it is worth mentioning
that in drug discovery, no rule is absolute, as up to 10% of approved oral drugs violate
RO5 [25]. Another key feature of drugAI, in addition to its ability to generate 100% valid
molecules with high QED values, is its adherence to the RO5 criteria while generating
molecules. This adherence serves as a valuable initial filter for identifying compounds
with the potential for oral drug development. To evaluate the performance in terms of
generating molecules that conform to the RO5 criteria, we calculated these metrics and
assessed the physicochemical properties of the molecules generated by the three methods.
Figure 2 presents the data regarding the compliance of the generated molecules from all
three methods with the aforementioned rules. All the molecules generated by drugAI had
logP values less than or equal to 5, whereas nearly one third of the molecules generated by
greedy and beam searches exceeded this threshold, reaching as high as 15. Similarly, the
molecular weight of the compounds generated by drugAI did not exceed the 500 threshold,
while greedy and beam searches generated molecules with molecular weights of up to
800. Interestingly, unlike drugAI, both the greedy and beam methods produced a large
number of very small molecules. Regarding HBD and HBA, drugAI strictly adhered to
the RO5 criteria, producing molecules with values no higher than 5 for HBD and 10 for
HBA, respectively. While HBA values rarely exceeded 10 in the greedy and beam methods,
HBD values were more varied and often went beyond 5. The number of rotatable bonds
was significantly smaller in the molecules generated by drugAI compared to the other
two methods. There were no significant differences in terms of the number of rings among
the three methods. In summary, these findings illustrate how drugAI can significantly
enhance future de novo drug design efforts by generating drug-like molecules.

2.3. Demonstrating the Flexibility of DrugAI and Comparing It to Traditional Virtual
Screening Approaches

Our findings conclusively demonstrated that drugAI outperforms two benchmark
methods in terms of generating 100% valid molecules with high QED scores that are
suitable for oral application. To further improve the model and showcase its adaptability
and flexibility, we incorporated binding affinity (measured in kcal/mol) as an additional
reward function in drugAI’s reinforcement learning. The binding affinity, which describes
the binding strength between a drug molecule and its target, plays a significant role in
early drug development. Thus, adding this fourth reward function would further enhance
the quality of the molecules produced as potential drugs by ensuring that the generated
molecules strongly bind to the target protein.
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We previously discovered natural products that bind to the SARS-CoV-2 Main Protease
(Mpro) and inhibit its protease activity using a combined Ligand-based and Structure-based
Virtual Screening (LBVS + SBVS) approach [26]. As a proof of concept, we used drugAI
to generate small molecules targeting the same SARS-CoV-2 Mpro target protein. For
consistency, both LBVS + SBVS and drugAI were configured to scan and utilize the same
cavity coordinates and the same docking search area sizes [26]. As shown in Table 2, the
average binding affinity for the top 10 generated molecules by drugAI is −9.4 (kcal/mol),
which is comparable to the −9.37 (kcal/mol) obtained in [26]. The molecules generated by
drugAI belonged to different chemical classes such as Benzenes, Isoindoles, Flavonoids,
and Quinoles (Table S1). In conclusion, drugAI generated valid molecules with drug-like
characteristics that are optimized to bind efficiently to their target in just two hours, with
results comparable to widely used virtual screening methods, which take weeks to perform
molecular docking on a large number of ligands.

Table 2. Molecules generated by drugAI against SARS-CoV-2 Mpro target protein.

Generated Molecule (SMILES) Validity Adherence to
RO5

Binding Affinity
(kcal/mol) QED Score

O=C1c2cc(N3CCNCC3)ccc2C(OC2CCc3ccccc32)c2ccccc21 1 1 −9.87 0.69

O=C1c2cc(N3CCN(c4cnc5ncccc5c4)CC3)ccc2CCCc2ccccc21 1 1 −9.59 0.46

O=C1c2cc(N3CCNCC3)cc(-c3cccc(/C=C/C(=O)Nc4ccccc4)c3)c2C(=O)N1 1 1 −9.56 0.41

O=C1c2cc(N3CCNC(c4ncc(C(F)(F)F)cc4Cl)CC3)ccc2COC1O 1 1 −9.45 0.74

O=C1c2cc(N3CCNCC3)ccc2OC(COc2cccc([N+](=O)[O-])c2)Cc2ccccc21 1 1 −9.39 0.46

O=C1c2cc(N3CCNCC3)nc-c3ccc(C(=O)c4cc(F)cc(F)c4)cc3c2CCC1=O 1 1 −9.39 0.56

O=C1c2cc(N3CCNC4C3CC5CC(C4)OC5)ccc2C(=O)c2ccc(Cl)cc2N1 1 1 −9.30 0.61

O=C1c2cc(N3CCNCC3)nc(-c3cccc(C(F)(F)F)c3)c2CCc2ccccc21 1 1 −9.24 0.64

O=C1c2cc(N3CCNCC3)ccc2C(OC2Cc3ccccc3C2)=C2C(=O)CCC(O)C(F)(F)C21 1 1 −9.22 0.68

O=C1c2cc(N3CCNCC3)ccc2OC/C1=C(\O)c1cccc(-c2ccncc2)c1 1 1 −9.21 0.50

Average 1 1 −9.42 0.58

3. Discussion

Generative machine learning models are designed to learn patterns and structures
within existing data and create new, previously unseen data [27]. These models have
gained popularity in drug discovery in recent years and are expected to revolutionize the
future of pharmaceutical engineering [28]. The Encoder–Decoder Transformer architecture,
which takes an input sequence and generates an output sequence, has been widely used
in natural language processing (NLP) [16]. Recently, this Encoder–Decoder Transformer
architecture has been adapted in the field of drug discovery, where it takes molecular
structures or protein sequences as input and generates novel molecules or sequences. At
the decoding step, which involves the process of generating new sequences or molecules
by adding amino acids or atoms one at a time, a decision-making strategy is needed to
make the best choice at each step based on selecting the token with the highest probability
as the next token in the output sequence [29]. The two most popular decoding algorithms
in sequence-to-sequence models are the greedy search and the beam search. Both are
heuristic search algorithms that seek to find the most likely output sequence. While greedy
search simply selects the token with the highest probability as the next token in the output
sequence, beam search considers multiple candidates at each time step and retains a diverse
set of candidates throughout the decoding process [17,18].

However, the challenge with these types of decoding algorithms in drug design is
to ensure that the newly generated molecules adhere to certain constraints or properties
that could make them successful drugs. Reinforcement learning (RL) has been successfully
applied in fields such as speech recognition and formal languages to address this challenge
by introducing value functions into the decoding mechanisms [30]. These value functions
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reward desired behaviors and penalize undesired ones [31]. In our approach, we employed
the Monte Carlo Tree Search (MCTS) method to overcome some of the limitations of deep
generative models that use greedy and beam searches. By utilizing value functions to
assess validity, binding to target, and adherence to Lipinski’s Rule of Five (RO5), our
generative model produced molecules that were both 100% valid and had significantly
higher quantitative estimates of drug-likeness (QED) scores. Ensuring the generation of
SMILES strings that are 100% chemically valid is crucial because it guarantees that all
molecules to be investigated in the future can be chemically synthesized.

The QED, introduced almost a decade ago [23], is one of the most commonly used
quantitative assessments of drug efficacy. Studies have shown that the average QED
within the top cluster of human drug targets is 0.693. When focusing exclusively on the
highest-ranked cluster of oral drug targets, the average QED increases to 0.766 [23]. This
demonstrates that drugAI, with a mean QED of 0.73, is capable of generating molecules
with properties suitable for potential oral drug candidates. In line with these findings,
the analysis of the individual criteria within the RO5 showed that drugAI was able to
accurately adhere to those criteria, which was not the case with other search methods. This,
in itself, explains the superior QED scores of drugAI. In the future, additional benchmarks
could be employed to further evaluate the molecules generated by drugAI.

Yet, another crucial advantage of drugAI is its ability to generate 100% novel molecules
with very high QED scores. When computational programs aim to generate molecules with
high drug-likeness, they tend to avoid exploring unconventional or entirely new chemical
structures and often prioritize well-known molecular structures and properties that are
associated with existing drugs. This often leads to difficulties in generating truly novel
molecules because the algorithms tend to have a biased output toward known chemical
patterns in the training set. The results from drugAI were remarkable in terms of balancing
the generation of molecules with known drug-likeness properties (high QED value) and
the exploration of novel chemical space as it generated 100% novel molecules, which shows
that the model did not generate any molecules present in the training set. Thus, drugAI
efficiently addressed the common challenge of “overfitting” in de novo drug design as
it generated 100% novel SMILES strings, a result comparable to the greedy search. Deep
learning models can sometimes memorize existing chemical structures rather than generate
new ones, which often results in overfitting. In our case, drugAI was able to learn and
generalize the chemical space to generate novel molecules.

Moreover, the model avoided generating the same molecule multiple times, as shown
by the 84% uniqueness.

Many molecular docking techniques are available that can predict how molecules will
bind to biomolecular targets and the affinity of this binding [32]. These virtual screening
techniques have proven effective in finding new hits from extensive collections of chem-
ical compounds, and in predicting their modes and affinities of binding [33]. Presently,
molecular docking is a leading approach in the discovery of new compounds that act
against target proteins. The flexibility of the MCTS-based reinforcement learning enabled
us to incorporate this important matrix in the model. Accordingly, drugAI was able to
generate molecules that showed strong binding affinity against the target comparable to
those identified through virtual screening of large chemical databases. This showcases the
capability of drugAI in the proficient and successful creation of potential drugs for various
diseases in the future.

4. Materials and Methods
4.1. Data

The model was trained using experimentally determined protein–ligand binding
affinities obtained from the BindingDB database. The complete database comprises over
2.4 million data records, offering a valuable source of information. To curate a focused
dataset for training, we implemented selection criteria to extract the most relevant records.
The following criteria were applied to filter the raw dataset:
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1. The field “Target Source Organism According to Curator or DataSource” equals
“Homo sapiens”;

2. The record has an IC50 value less than 100 nm; if the IC50 is missing, then Kd is less
than 100 nm; if both are missing, then EC50 is less than 100 nm;

3. The record has SMILES representation.

This resulted in a dataset comprising 319,030 entries, consisting of 1298 unique amino
acid sequences and 198,490 distinct ligand SMILES strings. To ensure uniformity and
consistency, all SMILES strings used in this study were canonicalized using RDKit. The
dataset was then randomly divided into two subsets: a training set, which comprised 70%
of the data, and a test set, which made up the remaining 30%. The training subset consisted
of 223,321 pairs of protein sequences and ligands, representing 1038 unique proteins. The
test subset, on the other hand, contained 95,709 pairs of protein sequences and ligands,
representing 260 unique proteins.

4.2. High-Level Architecture of DrugAI

The high-level architecture of the Encoder–Decoder Transformer, coupled with a
Monte Carlo Tree Search (MCTS) for molecule generation, represents a state-of-the-art
framework specifically designed for the discovery of highly effective lead molecule candi-
dates targeted at specific receptor proteins in drug discovery, as illustrated in Figure 3.
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This architecture combines two fundamental components to accelerate the process of
identifying promising drug candidates:

• Encoder–Decoder Transformer
At its core, this architecture employs a transformer model, which comprises an encoder
and a decoder. The encoder takes input data in the form of protein sequences and
transforms them into latent representations. Subsequently, the decoder utilizes these
representations to systematically generate molecular sequences. The transformer
model used in this study was trained with six layers of transformer blocks, each having
a size of 512, a learning rate of 0.0001, and eight attention heads. The training process
employed the Adam Optimizer with a batch size of five and a total of 25 epochs.

• Monte Carlo Tree Search (MCTS)
The MCTS is a heuristic search algorithm used in conjunction with the transformer
model. It facilitates the exploration of the vast and complex chemical space by consid-
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ering different molecular modifications iteratively. The MCTS simulates the potential
outcomes of these modifications, allowing for efficient decision making.

Altogether, this architecture integrates the transformer’s generative capabilities with
the MCTS’s exploitation and exploration techniques in order to optimize the discovery of
promising drug candidates that can meet multiple optimization goals. This architecture is
designed to make sure the generated molecules are valid, show high bioactivity against
target receptors, and can be administered orally.

4.3. Encoder–Decoder Transformer

At the core of our drugAI engine is the transformer model, as shown in Figure 3. We
selected this deep-learning model for the following reasons:

a. Transformers excel at modeling sequential data. We see molecule generation as a machine
translation task that needs to follow a sequence-to-sequence model (seq-to-seq).

b. Transformers are parallelizable, and this makes it efficient to parallelize the training
and inference steps against Graphics Processing Units (GPUs) and Tensor Processing
Units (TPUs).

c. Transformers can capture distant or long-range contexts and dependencies in the data
between distant positions in the input or output sequences. Thus, longer connections
can be learned, which makes it ideal for learning and capturing amino acid sequences
whose residues can be hundreds or even thousands in length.

d. Transformers make no assumptions about the temporal/spatial relationships across
the data.

For machine translation tasks that need to be modeled as seq-to-seq, the suitable
transformer architecture is the encoder–decoder model. The encoder consists of encoding
layers that process the amino acids iteratively one layer after another, while the decoder
consists of decoding layers that iteratively process the encoder’s output as well as the
decoder output’s SMILES strings in an auto-regressive manner.

The purpose of having an encoder layer is to generate a context representation of
the protein (protein context), where each amino acid residue is represented by a “protein
vector”. It combines information from other amino acid residues via the self-attention
mechanism. On the other hand, the decoder is responsible for generating the corresponding
atoms that make up the small molecule in the SMILES notation. Each of the decoder layers
consists of two sub-layers: (1) cross attention to incorporate the outputs of the encoder
(also known as protein context); and (2) self-attention, which implements a teacher-forcing
mechanism, feeding the decoder model with the previously predicted atoms to predict the
probability distributions of the next atom from the vocabulary of SMILES notations. Both
the cross-attention and self-attention layers also include an additional feed-forward layer
and layer normalization for further processing of the outputs.

The building blocks of the transformer are self-attention, where each attention unit
learns three weight matrices: the query weights WQ, the key weights WK, and the value
weights WV .

For each residue i, the input protein representation xi is multiplied with each of the
three weight matrices to produce a query vector qi = xiWQ, a key vector ki = xiWK, and a
value vector vi = xiWV .

Attention weights are calculated using the query and key vectors: the attention weight
aij from amino acid i to amino acid j is the dot product between qi and k j. The attention
weights are divided by

√
dk to stabilize gradients during training, and pass through a

softmax layer, which normalizes the weights.
In summary, self-attention can be represented by the formula

Attention (Q, K, V) = so f tmax
QKT
√

dk
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A set of (WQ, WK, WV) matrices is called an attention head and each layer in a trans-
former model can have multiple attention heads. While each attention head attends to the
amino acids that are relevant to each residue, multiple attention heads allow the model to
do this for different definitions of relevance.

4.4. SMILES Decoding Strategies
4.4.1. Greedy Search

The greedy algorithm is one of the most common decoding algorithms, especially
in Natural Language Processing. For drug design purposes, it simply generates one
SMILE token at a time, iteratively. At each step, the model predicts the next token in
the sequence based on the context of previously generated tokens. Note that in greedy
decoding, the model selects the token with the highest probability as the next token to
generate. This means that at each step, the model does not consider the global context or
explore alternative token choices but simply chooses the most likely token according to
its learned probabilities. This process continues until a predefined end-of-sequence token
(e.g., <eos> for “end of SMILES”) is generated or a maximum sequence length is reached.
While greedy decoding is straightforward and computationally efficient, it may not always
produce the best possible sequence, as it tends to favor local optimal choices at each step.

4.4.2. Beam Search

Beam search is another commonly used decoding algorithm. This decoder generates a
set of candidate SMILES tokens for the next step in the sequence based on the current state
(also known as teacher forcing). Each candidate is assigned a score based on its likelihood
that is typically calculated using a combination of the model’s output probabilities and
a length normalization factor. The candidates with the highest scores are retained, while
the rest are discarded. The retained candidates become the new set of states for the next
step. These states are expanded further by generating new candidates for the subsequent
step until a predefined end-of-sequence token is generated or a maximum sequence length
is reached.

4.4.3. Monte Carlo Tree Search

The Monte Carlo Tree Search (MCTS) is a heuristic search algorithm that is often used
in decision-making processes, particularly in the domain of artificial intelligence and game-
playing software. It is commonly employed in software designed to play board games
and other strategy games that require complex and branching decision trees to explore
all possible moves and outcomes exhaustively. As the name suggests, it uses random
sampling for deterministic problems that are difficult to solve using other traditional
approaches due to the vast search space. The popularity of the algorithm increased after
Google’s DeepMind adopted it to build a program called AlphaGo [34] that became the
first computer Go program to beat a professional human Go player.

The MCTS offers a promising solution for navigating the expansive and intricate
landscape of chemical space in the context of molecule generation, as shown in Figure 4.
This algorithmic framework, originally developed for game-playing AI, has found a novel
application in the field of Natural Language Processing [19]. The MCTS leverages the
principles of exploration and exploitation to efficiently sample and evaluate molecular
candidates. By iteratively building a tree of possible chemical sequences and selecting
the most promising branches evaluated via a reward function, the MCTS enables the
exploration of diverse regions within the vast chemical space while maintaining a focus on
regions likely to yield valuable molecules. This innovative approach holds the potential to
revolutionize drug discovery, materials science, and other domains by aiding researchers
in the rapid and intelligent exploration of uncharted territories within the complex realm
of molecular design.
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To apply this powerful approach in drug design, we modified the original MCTS
algorithm as described below and provide a summary in Figure 5:

1. Selection
The MCTS traverses the SMILES tree structure from the root node using a strat-
egy called the Upper Confidence Bound (UCB) to optimally select the subsequent
nodes with the highest estimated value of UCB. Values derived by UCB balance the
exploration-exploitation trade-off, and during the tree traversal, a node is selected
based on some parameters that return the maximum value. The formula of UCB is
described as follows:

UCB =
ri
ni

+ c

√
lnNi

ni

ri is total cumulative rewards.
ni is the number of simulations for the node considered after i-th move.
Ni is the total number of simulations after i-th move.
c is the exploration parameter (default value set to 2).
In summary, the first term of the equation will help determine when the MCTS should
prioritize making the most of what it knows (exploitation) and the second term of the
equation will determine when it should focus on trying out new options (exploration).
This ensures that the algorithm is balanced between ensuring that it explores new
possibilities and also exploiting known good choices.

2. Expansion
During the traversal of a SMILES tree as part of the selection process in the Monte
Carlo Tree Search (MCTS), the child node that yields the highest value from the equa-
tion will be chosen for further exploration. If this selected node is also a leaf node and
not a terminal node, the MCTS will proceed with the expansion process. This involves
creating all possible children of this leaf node based on the SMILES vocabulary.

3. Simulation
The posterior distribution is derived by using the distribution supplied by the decoder
as an informative prior (in contrast to using uniform distribution as a prior where a
large proportion of the posterior samples are in the invalid form).

4. Back propagation
When the terminal node is reached, the complete SMILES string can be finalized by
concatenating all the traversed and simulated nodes from the root until the terminal
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and the reward is calculated by running the reward function based on the newly con-
structed SMILES string. Thus, the MCTS needs to update the traversed nodes with this
new reward by performing a back-propagation process where it back-propagates from
the selected leaf node as a result of step 2 all the way back up to the root node. During
this process, the number of simulations stored in each node is also incremented.
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In our emphasis on developing an effective reward function tailored for the drug
design use case, we considered various options that could be employed as the reward
function. Below, we describe the choices we used for the reward function.

1. Valid SMILES
This binary variable is a straightforward check that assesses the validity of the newly
generated SMILES string resulting from the simulation. The check is carried out by
executing a basic function provided by RDKit, a toolkit commonly used in cheminfor-
matics and drug discovery [35].

2. Lipinski’s Rule of Five (Ro5)
Another binary variable that checks to see if the newly constructed SMILES string
passes all the 5 conditions set forth in the Ro5 [22].

3. Quantitive Estimation of Drug-likeness (QED)
A floating-point variable that reflects the underlying distribution of molecular proper-
ties. This metric is intuitive, transparent, and straightforward to implement in many
practical settings and allows compounds to be ranked by their relative merit. Medic-
inal chemists often consider a compound to exhibit characteristics and properties
typically desired in drug candidates if the correlation coefficient of the QED value
falls within the range of 0.5 to 0.6 [23].

4. Binding Affinity (kcal/mol)
A floating-point variable that refers to the strength by which two molecules interact
or bind. The smaller its value, the greater the affinity between two molecules. This
binding affinity score is generated by AutoDock Vina [36], a commonly used open-
source program for doing molecular docking.

5. Conclusions and Future Perspectives

In conclusion, drugAI outperformed models using greedy and beam searches re-
garding the validity, QED, and adherence of the generated molecules to RO5. We further
improved the drug design capabilities by adding a binding affinity reward function in
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drugAI’s reinforcement learning. This proof of concept, combining the Encoder–Decoder
Transformer architecture with the flexibility of the MCTS-based reinforcement learning,
has the potential to significantly improve the quality of generated drugs by incorporating
even more reward functions.

Future research could enhance the reinforcement learning of drugAI by supplementing
the model with additional functions, such as the following:

1. pChEMBL values, including pKi, pKd, pIC50, or pEC50 [37];
2. ADMET-related properties, such as acute oral toxicity, Ames mutagenicity, and Caco-2

permeability;
3. Adherence to Oprea’s rules of drug-likeness [38];
4. Avoidance of functional groups with toxic, reactive, or otherwise undesirable moieties

defined by the REOS (Rapid Elimination of Swill) rules [39].

Such a multi-objective optimization reinforcement learning approach could poten-
tially yield valuable molecules. This approach would enable the model to simultaneously
optimize multiple properties or functions rather than focusing on a single objective. By
optimizing across multiple criteria, it may be possible to create molecules that are not
only effective as potential drugs but also meet various safety and efficacy requirements.
However, the success of this approach will depend on the specific objectives and constraints
defined, as well as the quality of data used to train the model.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph17020161/s1, Table S1: Annotation of the molecules generated
by drugAI.
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