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Abstract: Recent advances in machine learning hold tremendous potential for enhancing the way we
develop new medicines. Over the years, machine learning has been adopted in nearly all facets of
drug discovery, including patient stratification, lead discovery, biomarker development, and clinical
trial design. In this review, we will discuss the latest developments linking machine learning and
CNS drug discovery. While machine learning has aided our understanding of chronic diseases
like Alzheimer’s disease and Parkinson’s disease, only modest effective therapies currently exist.
We highlight promising new efforts led by academia and emerging biotech companies to leverage
machine learning for exploring new therapies. These approaches aim to not only accelerate drug
development but to improve the detection and treatment of neurodegenerative diseases.

Keywords: machine learning; drug discovery; multiple sclerosis; amyotrophic lateral sclerosis;
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1. Introduction

The average investment in bringing a new drug to market ranges between $314 mil-
lion and $2.8 billion, spanning over 10 to 15 years [1,2]. Despite rapid innovations in
biotechnology equipment aimed at reducing the operating costs, drug development is
primarily dependent on classical methods for assessing the safety and efficacy of drug
candidates [3,4]. Such methods are associated with a number of pain points, including but
not limited to patient stratification, target identification, high-throughput screening, drug
design and optimization, biomarker discovery, and clinical trial design. Each exercise often
employs an expensive brute-force approach that would largely be overlooked if not for the
high attrition rates in drug development: oncology drugs have a 3.4% overall probability of
success of gaining approval from the United States Food and Drug Administration (FDA);
neuroscience drugs 15%; autoimmune/inflammation drugs, 15.1%; cardiovascular drugs,
25.5%; and vaccines 33.4% [5]. In this review, we will explore recent progress in machine
learning (ML) that has enabled innovative approaches along the pipeline of CNS drug
discovery. These promising methodologies seek to improve not only the cost and timelines
of drug development but also the efficacy of drugs targeting neurodegenerative diseases.

2. Currently Approved Treatments for Neurodegeneration

The most common neurodegenerative diseases include Alzheimer’s disease (AD),
Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and
Huntington’s disease (HD) [6,7]. While significant progress has been made in understand-
ing these disorders, there have been a limited number of effective treatments developed to
modify the disease progression and severity in patients. For example, Alzheimer’s disease
is the seventh leading cause of death in the United States and accounts for the greatest
number of dementia cases worldwide [8]. In the early 1980s, a US-based workgroup at the
National Institute of Neurological and Communicative Disorders and Stroke (currently
known as the National Institute of Neurological Disorders and Stroke) established an
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universally accepted criteria for the diagnosis and staging of AD which triggered a modern
age of research in the field [9]. Despite four decades of rigorous scientific effort, only
seven treatments for AD have been approved by the FDA, with only two new treatments,
Aducanumab and Lecanemab, since 2003. Five of the approved treatments, including galan-
tamine (Razadyne), rivastigmine (Exelon), donepezil (Aricept), memantine (Namenda),
and memantine/donepezil (Namzaric), are widely considered to only briefly and modestly
improve AD symptoms, ultimately failing to prevent or slow disease progression [10].
Similarly, there are only seven approved drugs for ALS, including tofersen (Qalsody),
sodium phenylbutyrate/taurursodiol (Relyvrio), edaravone (Radicava), riluzole (Rilutek,
Tiglutik, Exservan), and dextromethorphan/quinidine (Nuedexta) [11]. Like the approved
AD medications, most of these ALS therapies do not reverse or stop progression but instead
relieve symptoms or delay progression in patients [12,13].

3. Link between Heterogeneity and Novel Disease Targets in Neurological Disorders
3.1. Genetic Heterogeneity

While the complexity of neurological disorders may partly explain the lack of success
in drug development in this field, there is a growing amount of evidence supporting
heterogeneity among patients with AD [14–18], ALS [19–21], and PD [22–24]. For sporadic
forms of common neurological disorders, clinical diagnosis has been broadly applied,
where patients present varying clinical features, including but not limited to disease onset
and progression, symptomology, and clinical outcome. However, standardized criteria for
neuropsychological assessment have proven often insufficient for differential diagnosis,
and the lack of robust biomarkers has complicated diagnostic and prognostic work-up for
neurological cases [25]. Genetic studies have provided clarity on the causative mutations
in familial forms of Alzheimer’s disease, where characterized variants in the amyloid
precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) genes have been
shown to be nearly but not fully penetrant [26], whereas familial Parkinson’s mutations in
genes like leucine-rich repeat kinase 2 (LRRK2), glucocerebrosidase (GBA), Parkin (PRKN),
and alpha-synuclein (SCNA) have been useful for determining PD risk, diagnosis, and
disease progression [27]. Despite extensive knowledge of the genetic factors among risk
carriers, the clinical heterogeneity among these cases is not completely understood [28].

3.2. Publicly Available Repositories for Deciphering the Heterogeneity within Neurodegeneration

An initial step toward deciphering the heterogeneity of neurodegenerative diseases
may require stratifying patients into distinct cohorts based on biological data. Over the
past decade, several comparative studies have expanded access to rich neurodegenerative
datasets derived from medical imaging and biospecimen samples, including brain magnetic
resonance imaging (MRI), positron emission tomography, postmortem brain and peripheral
nerve tissue, cerebrospinal fluid, plasma, and electroencephalographs. Such publicly
available repositories include the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [29],
the Alzheimer’s Disease Data Initiative (ADDI) [30], the Religious Orders Study and Rush
Memory and Aging Project (ROS MAP) [31], the Accelerating Medicines Partnership
Program for Alzheimer’s Disease project (AMP-AD) [32], the Parkinson’s Progression
Markers Initiative (PPMI) [33], the Answer ALS project [34], and the Target ALS project [35],
as well as others (Table 1). Arguably, these resources represent neurodegenerative-based
counterparts to oncology-based data initiatives such as The Cancer Genome Atlas Program
(commonly known as TCGA), which provides access to 2.5 petabytes of multi-omics data
across 33 cancer types [36].
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Table 1. Publicly available repositories with neurodegenerative disease data.

Data Repository Disease Area Data Types Reference

Alzheimer’s Disease
Neuroimaging Initiative AD

Brain magnetic resonance
imaging, positron emission
tomography, multi-omics,
clinical, fluid biomarkers

[29]

Alzheimer’s Disease
Data Initiative AD Multi-omics,

clinical trial readouts [30]

Religious Orders Study and
Rush Memory and

Aging Project
AD

Multi-omics, brain magnetic
resonance imaging,

neuropathology, clinical,
fluid biomarkers

[31]

Accelerating Medicines
Partnership Program for

Alzheimer’s Disease

AD, PD,
other NDDs

Multi-omics, brain magnetic
resonance imaging
electrophysiology

[32]

Parkinson’s Progression
Markers Initiative PD Multi-omics, brain magnetic

resonance imaging, clinical [33]

Answer ALS Project ALS Multi-omics, clinical [34]

Target ALS Project ALS Multi-omics, clinical [35]
Alzheimer’s, AD; amyotrophic lateral sclerosis, ALS; Parkinson’s, PD; neurodegeneration, NDD.

3.3. Computational Approaches to Stratifying Patients in Oncology

There are illustrative examples of employing transcriptomics and ML to subtype cancer
patients based on biologically relevant associations, offering a starting point for applying
similar approaches to classifying patients with neurodegenerative disorders. For example,
a large body of literature has shed light on the genomic and epigenomic deregulation
in cancer biology and its relationship to clinical heterogeneity. Breast cancer is widely
known to be a highly heterogeneous disease, with differences observed across genomic,
epigenomic, transcriptomic, and proteomic data [37]. Several bioinformatic approaches
have been employed to unravel the patient stratification across different cancer patients
like BRCA1/2 (breast cancer 1/2) mutation carriers. Notably, transcriptome analyses have
revealed gene expression differences comparing BRCA1 and BRCA2 subjects as well as
between breast and ovarian cancer patients [38]. Similarly, lung cancer studies have found
considerable variation among histological samples associated with clinicopathological
features [39], and gene expression analysis confirmed unique transcriptional profiles among
lung adenocarcinoma and squamous cell carcinoma subtypes [40]. Further, classical ML
methods, such as unsupervised learning, have demonstrated significant improvement in
subclassifying tumors using gene expression data [40,41]. In particular, clinically relevant
subtypes were characterized among luminal breast cancer samples by utilizing consensus
clustering, an unsupervised ML technique that offers improvements in stability over the
classical clustering methods [42–44].

3.4. Applications of ML to Stratifying Patients with Neurodegeneration

Beyond consensus clustering, more advanced ML algorithms have achieved com-
prehensive patient subtyping via the integration of diverse data types. Such examples
encompass, but are not restricted to, Similarity Network Fusion (SNF), Pattern Fusion Anal-
ysis (PFA), NEMO (Neighborhood-Based Multi-Omics Clustering), non-negative matrix
factorization (NMF), Subtype-GAN, and Perturbation Clustering for Data Integration and
Disease Subtyping (PINS). While NEMO, SNF, and PINS are primarily based on similar-
ity networks, PFA and NMF are grounded in the principles of dimensionality reduction.
Recently, NMF was employed to stratify a large cohort of ALS patients based on samples
generated from the Target ALS project [45]. Clustering analysis revealed three unique
ALS subgroups, which were defined by transcriptional differences in biologically relevant
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mechanisms, including oxidative stress, reactive gliosis, and RNA dysregulation. ALS
subtype patients associated with RNA dysregulation were linked to elevated levels of TAR
DNA-binding protein 43 (TDP-43), a regulator of RNA processing known for its pathogenic
role in ALS. Consistent with this notion, ALS subtype patients with RNA dysregulation
exhibited initial limb symptoms, with prior research associating limb onset with TDP-
43 pathology [46]. With an increasing body of evidence suggesting the involvement of
RNA dysregulation in ALS [21], patient stratification presents an effective approach to
discovering novel targets best suited for precision therapy.

4. Computational Approaches to Lead Discovery
4.1. Overview of ML in Lead Discovery

Lead discovery is an important stage in the drug discovery process. During this
phase, chemical compounds, aimed against a specific target of interest, are identified
and optimized to exert an ideal biological effect [47]. The latest research supports the
potential of ML to improve the efficiency of pharmacological development. Concretely,
drug hunters have applied ML to various bottlenecks of lead discovery, including hit-to-lead
and lead optimization, and have developed approaches to the computational prediction of
protein structures, virtual screening via structure-based/ligand-based methods, and the
physicochemical optimization of lead drug candidates [47,48]. While generally agnostic to
the disease area, the ML tools and methods described below have shown immense value in
the field of CNS drug discovery.

4.2. Binding Site and Protein Structure Prediction

Computer-aided lead discovery starts with employing the available structural in-
formation on a disease target. Proteins are commonly studied as three-dimensional (or
tertiary) structures, traditionally obtained using various prevalent methods such as X-ray
crystallography, NMR spectroscopy, and cryo-electron microscopy [49]. The structural in-
formation is then pre-processed and analyzed to identify potential ligand-binding sites [50].
There are a number of existing algorithms available for binding pocket prediction (Table 2),
including but not limited to Schrödinger’s SiteMap [51], Fpocket [52], DoGSiteScorer [53],
and Q-SiteFinder [54]. The foundation of these tools varies widely, encompassing diverse
technologies aimed at achieving accurate prediction. For example, SiteMap employs a
grid-based method to evaluate the free energy profiles and geometry of the putative ligand
motifs present on a protein target, whereas Fpocket is largely restricted to resolving binding
cavities based on geometry alone. While these techniques are frequently used throughout
CNS drug discovery [55–57], Fpocket and SiteMap utilize computational geometry and
physics-based principles as opposed to ML. In contrast, recent advances have applied
convolutional neural networks (CNNs) to resolving the putative functional pockets within
neurodegenerative proteins. A CNN is a neural network that detects patterns in the input
data, such as amino acids in proteins or atomic symbols in compounds. DeepSite is a deep
CNN trained on over 7000 protein structures curated from a publicly available annotated
database called sc-PDB [58], which comprises binding sites characterized from protein struc-
tures found in the Protein Data Bank [59]. Recently, DeepSite analysis revealed allosteric
binding motifs in a neuronal protein known as Synapsin III (Syn III) and highlighted the
structural interaction between Syn III and methylphenidate, a monoamine reuptake in-
hibitor used for treating attention deficit hyperactivity disorder [60]. Syn III is a member of
the synapsin protein family, a group of evolutionarily conserved phospho-proteins crucial
for regulating synaptic transmitter release and facilitating neuronal communication, and
has been recently been associated with the aggregated α-synuclein found in PD and demen-
tia with Lewy bodies (DLB) [61]. While relatively new compared to traditional prediction
algorithms, deep CNNs have the potential to improve or complement geometry-based
and physics-based predictions of the ligan-binding sites characterized in experimentally
validated protein structures.
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Table 2. Selected computational tools available for predicting structure–activity relationships during
CNS drug development.

Drug Discovery
Application

Algorithm
Examples

CNS Target
Examples

Protein binding site prediction SiteMap, Fpocket, DoGSiteScorer,
Q-SiteFinder, DeepSite Synapsin III

Protein structure prediction RoseTTAFold, I-TASSER,
AlphaFold, QUARK

PINK1, PSEN1, APP,
APOE, TREM2

Ligand-based virtual screening SwissSimilarity α-synuclein

Structure-based virtual
screening

DeepDTA, GraphDTA, DeepGS,
3-Tunnel DNN, AtomNet Mfn2, GluA2

Due to the practical challenges associated with crystallography and NMR spec-
troscopy [62], there has been a growing trend in the accurate de novo prediction of
protein structures using bioinformatics and ML (Table 2), including RoseTTAFold [63],
I-TASSER [64], AlphaFold [65], and QUARK [66]. Similar to SiteMap, conventional pre-
dictions of protein structures rely on the principles governing protein energy functions—
mathematical models that measure the energy linked to the shape or arrangement of a
protein given a particular amino acid sequence. While energy-based modeling is computa-
tionally expensive, CPUs (Central Processing Units) and GPUs (Graphics Processing Units)
have greatly improved over the years, which has yielded better predictions. In addition,
parallelization and distributed computing have significantly increased the capacity to
run simulations and computations at a large scale [67]. For example, NVIDIA’s CUDA
(Compute Unified Device Architecture) has allowed developers to maximize the potential
from GPUs for deep learning, including developing more effective force fields used in
energy-based modeling [68].

AlphaFold and RoseTTAFold have become two widely adopted tools for modern
protein structure prediction. Both deep learning tools can be used for ab initio folding,
which is a method for predicting protein structures based solely on amino acid sequences.
Conversely, template-based methods leverage existing experimental structure data to make
de novo predictions. While RoseTTAFold combines both template-based modeling and
ab initio folding, AlphaFold largely depends on ab initio folding, with lesser importance
of the templates. Both AlphaFold and RoseTTAFold have been used to study the protein
targets associated with neurodegeneration. PINK1 (PTEN-induced putative kinase 1) is a
serine/threonine kinase known for its role in mitophagy and its impact on AD, ALS, HD,
and PD [69]. Structure and mutagenesis studies have revealed disease-linked mutations
within the functional kinase domain of PINK1, including at the 288th amino acid position—
a serine residue (Ser288) crucial to autophosphorylation [70]. In contrast, there are several
PINK1 mutations located in regions not included in the published structures of PINK1 [70].
AlphaFold analysis revealed the complete structure of human PINK1, including the pres-
ence of an alpha helix in the N-terminal region. Confirmed using mass spectrometry, the
domain was subsequently shown to be necessary for Ser228 autophosphorylation and
PINK1 activation, exhibiting a potential therapeutic mechanism in PINK1 patients [70].
Comparisons between AlphaFold and RoseTTAFold have also been conducted in structural
prediction studies. Genome-wide association studies have revealed disease-associated
mutations in PSEN1, APP, APOE (Apolipoprotein E), and TREM2 (Triggering Receptor
Expressed on Myeloid Cells 2) [71], well-studied proteins that are the focus of therapeutic
intervention for AD [72–75]. Protein structure predictions were carried out for all four
proteins using both AlphaFold and RoseTTAFold to assess the accuracy of each modeling
method against experimentally validated structures. The benchmark performance was
evaluated using two metrics for structural similarity: Root Mean Square Deviation (RMSD)
and Template Modeling score (TM-score). RMSD is frequently more effective in capturing
the overall general structural similarity, even in instances where no experimental struc-
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ture reference is available (or ab initio predictions) [76]. The TM-score is arguably more
robust than RMSD as it considers the entire structural alignment, enabling it to detect finer
structural variations, although this metric is more applicable to template-based predic-
tions [76]. The TM-scores and RMSD estimates revealed a high degree of similarity between
AlphaFold and RoseTTAFold when predicting the protein structures of PSEN1, APP, APOE,
and TREM2 [77]. The modeling predictions also resolved gaps in PSEN1 that were not
captured using X-ray crystallography or cryo-electron microscopy [77]. Generally, X-ray
crystallography is not very sensitive to the mobility of proteins, whereas template-based
predictions may be a powerful tool for elucidating the intrinsically flexible segments of
partially captured proteins.

4.3. Hit Identification via Virtual Screening

During the hit identification stage of drug discovery, a proven method for identifying
chemical hits to targets includes purifying the disease target proteins, establishing robust
biochemical assays, conducting high-throughput screening (HTS) of chemical libraries,
and separating out active hits [78]. Although automation and miniaturization have con-
tributed to reducing costs, the well-established practice remains relatively expensive and
inefficient, particularly for novel and higher-risk targets, as the costs are tied to the size
of the chemical library and its scope [79]. To mitigate risks, there has been a greater focus
on utilizing ML for binding prediction between targets and ligands. In broad terms, there
are two approaches to virtual HTS: ligand-based screening and structure-based screen-
ing. Structure-based screening can be further divided into complex-based and pair-based
models [80]. While ligand-based screening typically relies on similarity measures, the
majority of structure-based models integrate some application of ML. For structure-based
screening, quantitative structure–activity relationships (SARs) can be predicted with or
without employing a tertiary structure, which, until recently, was largely confined to ex-
perimentally resolved structures, but now, with advancements like the AlphaFold and
RoseTTAFold algorithms, has seen expanded possibilities. Instead of tertiary structures,
pair-based screening involves training models using primary representations of proteins in
the form of SMILES as input, coupled with biochemical activity data, which benefit from
being more deployable compared to complex-based screening [81]. Specifically, training
billions of compounds using deep CNNs based on SMILES representation is significantly
less computationally expensive relative to physics-based 3D docking methods.

Recently, virtual ligand-based HTS was utilized to discover inhibitors targeting the
α-synuclein protein [56]. α-synuclein is a pathological hallmark of PD and DLB, and its
aggregation is associated with the degeneration of the dopaminergic neurons residing in the
substantia nigra pars compacta, a brain region involved in motor planning [56]. To identify
α-synuclein binders, a virtual HTS was performed using SwissSimilarity (Table 2), a web-
accessible tool for identifying putative hits using a diverse collection of promising and
validated small molecule libraries including but not limited to 3071 approved drugs and
2989 drug candidates from the ChEMBL 29 database, over 320,000 commercially available
molecules from the SPECS library, over 9 million molecules from the ZINC20 database,
and over 30 million molecules from the Enamine “REAL” catalog [82]. To prime the search,
SwissSimilarity analysis was conducted using two known α-synuclein binders, namely
SynuClean-D and ZPD-2. Both α-synuclein hits represent tool compounds validated in
cell-based experiments but lack drug-like properties [83]. Ligand-based screening using
the SPECS library revealed analogs of SynuClean-D and ZPD-2, which were selected by
leveraging multiple molecular fingerprinting methods. Each of these approaches facilitate
similarity analysis by offering a distinct representation of the molecular structures, such as
electrostatic properties, predefined chemical substructures, and the distribution of atomic
charge [84]. The SwissSimilarity analysis identified 363 putative analogs of SynuClean-
D and ZPD-2, which were further filtered for ideal drug-like properties, the absence of
PAINS (pan-assay interference compounds), and commercial availability. A final set of
34 structures was selected for experimental validation, including a structurally similar
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analog denoted as MeSC-04. Cell-based assays showed that MeSC-04 is a potent inhibitor
of α-synuclein amyloid formation. Fpocket and SiteMap were employed to identify the
binding pockets of α-synuclein, and molecular docking was performed to evaluate the
binding interaction between MeSC-04 and the identified motifs. The molecular docking
studies demonstrated binding interactions consistent with the previously reported findings
involving SynuClean-D and α-synuclein, supporting the utility of ligand-based screening
for chemical hits [56].

Pair-based screening is focused on predicting the quantitative SAR in protein–protein
or protein–ligand interactions independent of knowing the native structure of the proteins
or the ligands [80]. Ligands are inputted as SMILES, molecular fingerprints, or molecular
graphs, whereas proteins are represented using full or partial sequences of amino acids.
Pair-based screening can be performed using random forests, support vector machines,
multilayer perceptrons, and neural networks [80]. Advanced architectures commonly uti-
lize different types of neural networks, specifically recurrent neural networks, deep CNNs,
and graph CNNs. Several CNN-based applications, such as DeepDTA and GraphDTA, are
open-source and available for performing pair-based screening of ligand libraries (Table 2).
For example, DeepDTA was recently utilized to identify hits for Mitofusin-2 (Mfn2), a
GTPase associated with mitochondrial dysfunction that is implicated in the underlying
pathology of AD [85]. Mfn2 is one of two paralogs of the mitofusin protein family, which
are primarily responsible for the fusion of mitochondrial outer membranes [86]. DeepDTA
was trained on a protein–ligand binding affinity database that consists of 1063 approved
drugs called the Davis dataset, and its performance was compared to other models (Table 2),
including GraphDTA (a graph CNN), DeepGS (a deep CNN), and a novel architecture
called a three-tunnel deep neural network (a deep CNN denoted as 3-Tunnel DNN). To
improve the training on the protein–drug binding affinity, a 3-Tunnel DNN distinguishes
itself from other deep CNN models by explicitly integrating information from both positive
samples (indicating protein–drug interactions) and negative samples (representing the
absence of interactions), as well as incorporating protein sequences. When assessing the
training performance, all tested models demonstrated comparable benchmarks, evaluated
using metrics such as mean square error and the consistency index. Analysis of the 3-Tunnel
DNN model screening revealed several approved drugs that exhibit potential to be repur-
posed for the inhibition of Mfn2 activity. Notably, Lamotrigine, Bosentan, Fluphenazine,
Nabumetone, and Carbamazepine, featured in the leading drug hit list, are all medications
previously investigated for their potential in AD treatment [85].

Complex-based screening aims to predict quantitative SARs in protein–protein or
protein–ligand interactions by utilizing structural information on both the proteins and
ligands [80]. Similar to pair-based models, complex-based methods consist of classical and
modern ML approaches, commonly incorporating complex neural networks and encoding
proteins as 3D grids [80,87]. For example, recent applications have employed deep CNNs
for the structure-based screening of ligands against neurodegenerative protein targets,
such as AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors. AMPA
receptors are widely expressed in the CNS, and their dysfunction likely mediates the
glutamate excitotoxicity underlying neuronal death and disease progression in MS [88].
A recent study utilized a deep-CNN-guided approach to identifying hits that may bind
to an allosteric pocket located on one of the four subunits of AMPA receptors, known as
glutamate receptor 2 (GluA2) [89], notable for its role in the regulation of Ca2+ permeation
and voltage rectification [90]. Complex-based screening was conducted utilizing Atom-
wise’s proprietary CNN (AtomNet) for predict the binding affinity of small molecules to
GluA2 (Table 2) [90]. The effects of 50 putative GluA2 hits were validated using a cell-
based assay to assess the glutamate-mediated excitotoxicity. In vitro models confirmed that
glutamate-mediated excitotoxicity was inhibited by several hits, including highly potent
compounds denoted as YH668, ZCAN155, and ZCAN262 [90]. Pharmacokinetic studies
revealed that ZCAN262 also had good oral bioavailability and brain exposure. Animal
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studies demonstrated that ZCAN262 treatment is sufficient to rescue myelination and axon
integrity in EAE mice, an MS mouse model [90].

4.4. Lead Optimization Using ML

After hit identification, drug discovery teams have often embarked on intensive
campaigns of medicinal chemistry to characterize drug candidates for Investigational New
Drug (IND)-enabling studies. Such efforts of drug discovery can be broken down into
the following stages: hit-to-lead, lead identification, and lead optimization. All phases of
development involve rapid analog generation to improve their physicochemical properties
and advance potential leads toward having drug-like characteristics. Collectively, the
objective is to satisfy a set of predefined requirements known as a Target Product Profile
(TPP) [91,92]. While context-dependent, the TPP broadly consists of thresholds for safety
and efficacy. Concretely, the focus is on optimizing the parameters for ADME (absorption,
distribution, metabolism, and excretion) to improve the overall bioavailability and target
engagement while also attempting to reduce any safety/toxicity liabilities. Examples of
ADME properties include aqueous solubility, membrane permeability, microsomal stability,
and blood–brain barrier (BBB) penetrance, whereas early safety and toxicity asssessment
evaluates the inhibition of hERG (the human Ether-à-go-go gene) and CYP (cytochrome
P450) activity [92].

To accelerate the discovery of CNS drug candidates, ML approaches have been de-
veloped to predict the optimization of ADME and toxicity. For example, DeePred-BBB is
a deep CNN for predicting BBB permeability [93]. DeePred-BBB was trained on a broad
set of 3605 compounds screened for BBB permeability and was benchmarked using the
area under the curve (AUC). Compared to other published BBB permeability prediction
models, DeePred-BBB performed relatively well with an AUC of 0.992. In contrast, the
best reported AUC from another model is 0.98, which also employed a deep learning ap-
proach but was trained on a relatively smaller BBB dataset (462 compounds) [93]. Beyond
DeePred-BBB, there are other emerging ML solutions for lead optimization, including
those that incorporate generative artificial intelligence (AI) tools like large language models
(LLMs), i.e., Bidirectional Encoder Representations from Transformers (BERT). For example,
Mol-BERT was trained on datasets to predict not only BBB permeability but also clinical
toxicity [94]. Applications like DeePred-BBB and Mol-BERT represent a promising new era
of ML-guided drug design.

5. Industry Case Studies

Over the years, several biotech companies have emerged with a focus on using cutting-
edge ML approaches for CNS drug discovery (Figure 1). From target identification to
clinical trial design, these biotech companies have leveraged ML to accelerate therapeutic
discovery, rapidly establishing drug pipeline programs and state-of-the-art platform tech-
nologies. For example, several companies, such as Verge Genomics [95], Alleo Labs [96],
Insitro [97], Evotec [98], InveniAI [99], and Recursion [100], have pioneered the develop-
ment of ML platforms for CNS target identification. Meanwhile, Schrödinger, an industry
leader in complex-based screening, recently partnered with Otsuka Pharmaceutical and
Bristol Myers Squibb to perform hit identification and lead optimization for potential
CNS therapies [101]. Similar to WaveBreak Therapeutics [102] and BenevolentAI [103,104],
Vincere Biosciences is applying GPU-powered ML to lead discovery using its own propri-
etary software for screening and optimizing small molecules [105]. Currently, Vincere is
actively pursuing inhibitors for USP30, a deubiquitinating (DUB) enzyme implicated in PD.
Alleo Labs, a biotech developing ML-guided precision medicine, is employing LLMs for
small-molecule optimization of lead inhibitors for novel AD and PD targets, including DUB
enzymes [106]. AbbVie and BigHat Biosciences recently formed a collaboration to leverage
BigHat’s ML design platform for treatments in neuroscience [107]. BigHat’s platform em-
ploys the principles underlying generative AI to characterize and optimize antibodies [108].
Verge Genomics has utilized its end-to-end ML technology to identify novel ALS targets
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and develop small-molecule therapeutics, namely VRG50635, an inhibitor of kinase PIK-
fyve (also known as Phosphoinositide Kinase, FYVE-Type Zinc-Finger-Containing). Verge
successfully evaluated VRG50635 for its safety and tolerability in phase 1 clinical trials [109].
Beyond therapeutics, several biotech companies, such as NeuBio [110], Perceiv AI [111],
Rune Labs [112], and LinusBio [113], are focusing on identifying robust biomarkers, as well
as optimizing clinical trial design. Concretely, NeuBio is seeking to develop a blood test that
can accurately diagnose disease in the earliest stages of development of neurodegeneration,
by analyzing publicly available transcriptomic datasets from case–control studies of prodro-
mal and early-stage disease using an evolutionary ML platform. NeuBio has assembled a
panel of 141 RNA-based biomarkers that can be used for accurate diagnosis of AD, PD, and
ALS. To inform patient selection and stratification when designing clinical trials for AD,
Perceiv AI has developed a predictive ML platform that integrates different data types, such
as fluid, genetic, and imaging biomarkers. In addition to advancing the field of artificial
intelligence, NVIDIA has played a pivotal role in supporting ML-based biotech startups,
such as Alleo Labs, Vincere, and Perceiv AI, through the NVIDIA Inception Program [114].
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Figure 1. Selected companies using machine learning in CNS drug discovery. Illustrated is a summary
of the biotech companies leveraging machine learning (ML) across different domains, including
target identification, hit identification, lead optimization, biomarker design, and clinical trial design.
Partner pharmaceutical and industry companies are also shown.

6. Conclusions

In this review, we summarized the advanced ML tools and approaches employed at
various stages of CNS drug discovery. Given that patient stratification may be required to
investigate new targets and treatments for neurodegeneration, we noted the utility of lever-
aging modern clustering algorithms to subtype patients using biological data, including
the resources available via existing online repositories. We also examined several examples
of employing more sophisticated neural networks to identify and design treatments during
lead discovery. Lastly, we illustrated ongoing efforts to utilize ML for improving the clinical
study design in neurodegenerative diseases. As these tools evolve, ML shows significant
potential in reshaping the field of CNS drug discovery.
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