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Abstract: Pulmonary inflammations such as chronic obstructive pulmonary disease and cystic
fibrosis are widespread and can be fatal, especially when they are characterized by abnormal mucus
accumulation. Inhaled corticosteroids are commonly used for lung inflammations despite their
considerable side effects. By utilizing particle engineering techniques, a combined dry powder inhaler
(DPI) comprising nanosized ketoprofen-embedded mannitol-coated microparticles was developed. A
nanoembedded microparticle system means a novel advance in pulmonary delivery by enhancing
local pulmonary deposition while avoiding clearance mechanisms. Ketoprofen, a poorly water-
soluble anti-inflammatory drug, was dispersed in the stabilizer solution and then homogenized
by ultraturrax. Following this, a ketoprofen-containing nanosuspension was produced by wet-
media milling. Furthermore, co-spray drying was conducted with L-leucine (dispersity enhancer)
and mannitol (coating and mucuactive agent). Particle size, morphology, dissolution, permeation,
viscosity, in vitro and in silico deposition, cytotoxicity, and anti-inflammatory effect were investigated.
The particle size of the ketoprofen-containing nanosuspension was ~230 nm. SEM images of the
spray-dried powder displayed wrinkled, coated, and nearly spherical particles with a final size of
~2 µm (nano-in-micro), which is optimal for pulmonary delivery. The mannitol-containing samples
decreased the viscosity of 10% mucin solution. The results of the mass median aerodynamic diameter
(2.4–4.5 µm), fine particle fraction (56–71%), permeation (five-fold enhancement), and dissolution
(80% release in 5 min) confirmed that the system is ideal for local inhalation. All samples showed a
significant anti-inflammatory effect and decreased IL-6 on the LPS-treated U937 cell line with low
cytotoxicity. Hence, developing an innovative combined DPI comprising ketoprofen and mannitol by
employing a nano-in-micro approach is a potential treatment for lung inflammations.

Keywords: pulmonary delivery; mannitol; ketoprofen; milling; spray-drying; particle engineering;
combination product; inflammation; nano-in-micro

1. Introduction

Inflammations are the body’s normal reaction to both infectious and non-infectious
injuries, and it triggers a wide range of intricate systems that ultimately result in tissue
repair. Infections, as well as exposure to chemicals, allergens, and irritants, are the most
frequent causes of an inflammatory response in the lungs [1]. Normal inflammation is
meant to be protective, but when it is extensive or lasts for long time, it can have nega-
tive effects that lead to bad consequences [2]. Numerous inflammatory cell subtypes are
activated during lung inflammations; each one releases mediators and proinflammatory
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cytokines (i.e., IL-6, IL-8, and TNF-α) to control the actions of other inflammatory cells,
which leads to a serious inflammatory progression [3,4]. Diseases such as chronic obstruc-
tive pulmonary disease (COPD), cystic fibrosis (CF), bronchiectasis, and bronchitis are
manifestations of chronic pulmonary inflammation [5–7]. Pulmonary inflammations are
featured by hypersecretion of mucus throughout the airways and lungs [8]. In the physio-
logical and pathological processes that occur in the airways, mucus plays a significant role.
Besides its function in mucociliary clearance by entrapping and removing bacteria and
other inhaled irritants, it also protects, hydrates, and softens mucosal surfaces [9]. However,
mucus overproduction impairs mucociliary clearance and causes obstructive airways [10].
Excessive inflammations can be fatal, and therefore, finding new treatment approaches is
an imperative need.

Inhaled products have shown their effectiveness by targeting lung diseases locally
while avoiding systemic exposure, with fewer adverse effects. Inhaled corticosteroids (ICSs)
are commonly used in lung inflammations (i.e., COPD). Nevertheless, administration of
ICSs over a long time shows serious side effects, not only locally (i.e., oral candidiasis,
dysphonia, hoarse voice, and cough) [11], but also systemically (i.e., cataracts, weakening
and bruising of the skin, and impaired bone mineral density) [12]. It was proven that lung
inflammation was suppressed by the cyclogenase-2 (COX-2) inhibitor, which may help in
the recovery of the bronchial epithelium structure [13]; therefore, inhaled non-steroidal
anti-inflammatory agents (NSAIDs) could be a beneficial alternative to ICSs. Ketoprofen
(KETO) is a well-known NSAID that acts as an inhibitor of COX-2 and cyclogenase-1
(COX-1) [14,15]. KETO is available on the market for oral, topical, and rectal administra-
tion but not for pulmonary administration (https://go.drugbank.com/drugs/DB01009,
accessed on 28 May 2023). Nevertheless, a few studies have been conducted to develop
KETO for inhalation in its salt form (ketoprofen lysinate) by a single step of co-spray drying
with leucine [16,17]. D-Mannitol (MAN) is categorized as a sugar alcohol that can work as
an osmotic agent [18]. Inhaled MAN is commercially available (BronchitolTM) in Europe as
a dry powder inhaler (DPI) and used as an adjuvant maintenance treatment with a dosage
of 400 mg twice daily for patients with CF. When MAN is inhaled, an osmotic gradient
is created that allows for the outflow of water into the airway lumen, in which the water
content is increased at the surface of the airway and mucus clearance is facilitated through
ciliary activity and coughing [19].

Particle engineering is an adaptable technique and considered an essential factor for the
development of DPIs, the most common form of pulmonary delivery, in which the surface
of drugs, carriers, or excipients can be controlled [20]. To balance the interparticle forces
between drug particles, maintain appropriate stability during processing and storage, and
improve aerodynamic properties, particle engineering can be employed in the formulation
of combined DPIs [21]. Among particle engineering techniques, a spray dryer can create
powder for inhalation with optimum characteristics. Due to its ability to modify parameters
including temperature, flow rate, liquid feedstock concentration, and mesh size, a spray
dryer has a variety of features that precisely facilitate dried powder formulations [22,23].
Liquid mixtures (solutions, suspensions, or emulsions) that contain drugs are transformed
into a dry powder using the single-step manufacturing process of spray-drying. When
drugs are water-soluble, spray-drying is preferable, since the dry powder for inhalation
can be formed directly from an aqueous medium [24]. However, for poorly water-soluble
drugs, further steps should be employed. Media milling is a “top-down” technique that can
be applied to poorly water-soluble drugs in order to reduce their particle size to the micro
or nano range, thus modifying their physico-chemical characteristics. Media milling has
been employed to develop inhaled products containing poorly water-soluble drugs [25].

Particle size is the primary concern for pulmonary delivery. While the optimum
particle size for lung deposition is less than 5 microns, nanoparticles are needed for targeting
the drug to deep lung regions with enhanced dissolution, permeation, and aerodynamic
profile [26–29]. However, inhalation of nanoparticles can either be exhaled or removed
by lung defense mechanisms (i.e., mucociliary clearance). Therefore, microsized particles
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(~2 µm) are preferable in order to ensure the required deposition. Nano-in-micro is a
promising approach that has been developed for DPIs to embed the drug with nanosize
(<0.5 µm) in microparticles (<5 µm), taking advantage of optimized lung deposition and
bypassing clearance mechanisms [30,31].

In this study, we aimed to develop a novel combined DPI comprising KETO and
MAN. To the best of our knowledge, this is the first time the combination of KETO and
MAN for pulmonary delivery haas been studied by employing a “nanoparticle-embedded
coated-microparticle” system. In order to check the compatibility of this combination,
the influence of MAN on the habit of KETO was studied. Analyses of solubility, drug
content, particle size, morphology, dissolution, permeation, structural and thermal study,
in vitro and in silico deposition, mucin viscosity, cytotoxicity, and the anti-inflammatory
effect were conducted. Hence, our “nano-embedded coated-microparticles” system can
be considered an innovative model of combination products in a single DPI for targeting
pulmonary inflammations (using KETO nanoparticles) and simultaneously improving the
mucus clearance (using the MAN layer).

2. Results
2.1. Holding Time as Short-Term Stability of KN

By assessing particle size (PS), polydispersity index (PDI), and zeta potential (ZP) val-
ues at 25 ◦C and +4 ◦C for one month, the produced ketoprofen-containing nanosuspension
(KN) underwent a short-term physical stability investigation (Figure 1). The KN showed
a higher stability when stored in the refrigerator (Figure 1A) than at room temperature
(Figure 1B). After 4 weeks, no significant difference was observed in terms of PS and PDI
when the KN was kept refrigerated (+4 ◦C), while at room temperature (25 ◦C), a growth
of 50 nm in PS and a double growth in PDI were found. A lower ZP value was recorded
at both temperatures; however, it is still in line with other formulations that are prepared
with Poly-vinyl-alcohol (PVA) as a stabilizer. It is necessary to highlight here that the use of
sodium dodecyl sulphate (SDS) as an anionic surfactant played a crucial role in enhancing
the stability of the KN by maintaining the electrostatic stability [32]. Many studies showed
that a more stable nanosuspension can be gained when the stabilizers/surfactants are
applied in combination [33]. After passing this stability test, the nanosuspension was
qualified to enter the solidification process and be further processed into a dry powder.

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 3 of 26 
 

 

the drug to deep lung regions with enhanced dissolution, permeation, and aerodynamic 
profile [26–29]. However, inhalation of nanoparticles can either be exhaled or removed by 
lung defense mechanisms (i.e., mucociliary clearance). Therefore, microsized particles (~2 
µm) are preferable in order to ensure the required deposition. Nano-in-micro is a promis-
ing approach that has been developed for DPIs to embed the drug with nanosize (<0.5 
µm) in microparticles (<5 µm), taking advantage of optimized lung deposition and by-
passing clearance mechanisms [30,31]. 

In this study, we aimed to develop a novel combined DPI comprising KETO and 
MAN. To the best of our knowledge, this is the first time the combination of KETO and 
MAN for pulmonary delivery haas been studied by employing a “nanoparticle-embedded 
coated-microparticle” system. In order to check the compatibility of this combination, the 
influence of MAN on the habit of KETO was studied. Analyses of solubility, drug content, 
particle size, morphology, dissolution, permeation, structural and thermal study, in vitro 
and in silico deposition, mucin viscosity, cytotoxicity, and the anti-inflammatory effect 
were conducted. Hence, our “nano-embedded coated-microparticles” system can be con-
sidered an innovative model of combination products in a single DPI for targeting pulmo-
nary inflammations (using KETO nanoparticles) and simultaneously improving the mu-
cus clearance (using the MAN layer). 

2. Results 
2.1. Holding Time as Short-Term Stability of KN 

By assessing particle size (PS), polydispersity index (PDI), and zeta potential (ZP) 
values at 25 °C and +4 °C for one month, the produced ketoprofen-containing nanosus-
pension (KN) underwent a short-term physical stability investigation (Figure 1). The KN 
showed a higher stability when stored in the refrigerator (Figure 1A) than at room tem-
perature (Figure 1B). After 4 weeks, no significant difference was observed in terms of PS 
and PDI when the KN was kept refrigerated (+4 °C), while at room temperature (25 °C), a 
growth of 50 nm in PS and a double growth in PDI were found. A lower ZP value was 
recorded at both temperatures; however, it is still in line with other formulations that are 
prepared with Poly-vinyl-alcohol (PVA) as a stabilizer. It is necessary to highlight here 
that the use of sodium dodecyl sulphate (SDS) as an anionic surfactant played a crucial 
role in enhancing the stability of the KN by maintaining the electrostatic stability [32]. 
Many studies showed that a more stable nanosuspension can be gained when the stabi-
lizers/surfactants are applied in combination [33]. After passing this stability test, the 
nanosuspension was qualified to enter the solidification process and be further processed 
into a dry powder. 

 
Figure 1. Holding time as short-term stability (four weeks) of ketoprofen-containing nanosuspension
(KN), characterized by PS, PDI, and ZP at two temperatures: (A) +4 ◦C and (B) 25 ◦C.



Pharmaceuticals 2024, 17, 75 4 of 26

2.2. Yield and Drug Content of DPI

Table 1 represents the sample notations, description of samples, percentage yield, and
drug content. Samples were named according to the mass ratio of MAN and KETO as
explained in Section 4.3. The spray-dried samples showed a percentage yield of 53–59%.
Increasing the concentration of MAN had a positive influence on the yield, since it reduces
the cohesive forces between particles. The presence of cohesive particles is indicated by
low spray-drying yields [34]. Our results are comparably higher than other studies using
the spray-drying technique [35–37]. Similarly, the drug loading results recorded between
57% and 85%. However, there was no substantial effect for MAN concentration (F0.5–F2).

Table 1. Sample notations, description, yield of spray-dried powder, and drug content.

Sample Name Sample Description Yield (%) Drug Content (%)

F0 KETO1_LEU1_MAN0 52.95 ± 3.54 57.47 ± 1.44
F0.5 KETO1_LEU1_MAN0.5 54.86 ± 6.12 84.12 ± 2.91
F1 KETO1_LEU1_MAN1 57.29 ± 1.98 84.87 ± 7.13
F2 KETO1_LEU1_MAN2 58.68 ± 9.73 84.72 ± 3.65
KETO Ketoprofen_raw - -

LEU: L-leucine, MAN: mannitol. Results are expressed as mean ± SD (n = 3 independent measurements).

2.3. Particle Size, Particle Size Distribution, and Zeta Potential

The outcomes displayed in Table 2 demonstrated that the particle engineering strate-
gies that we employed were successful in reducing the PS of KETO. It was found that there
was no significant rise in the PS of KETO after the spray-drying process, which implied
proper redispersible formulations with no aggregation. Our samples showed a better ZP
result compared to prior studies, in which PVA was used as a stabilizer for pulmonary de-
livery [38]. The highest PDI was found in F0 (no MAN), which indicated a better dispersity
enhancement in the case of samples with MAN.

Table 2. Particle analysis: particle size (PS), polydisperse index (PDI), and zeta potential (ZP).

Sample PS (nm) PDI ZP (mV)

F0 204.9 ± 3.07 0.336 ± 0.003 −8.88 ± 0.27
F0.5 222.5 ± 4.11 0.127 ± 0.021 −12.3 ± 0.43
F1 240.7 ± 6.32 0.064 ± 0.008 −7.44 ± 0.18
F2 251.4 ± 2.84 0.156 ± 0.039 −11.9 ± 0.33

Results are expressed as mean ± SD (n = 3 independent measurements).

2.4. Solubility

The solubility study was carried out for KETO and our spray-dried formulations (F0,
F0.5, F1, and F2) in distilled water at room temperature with continuous stirring for 24 h.
Ketoprofen is assigned to BCS Class II, with low solubility. As shown in Table 3, KETO
recorded a solubility of 0.42 mg/mL. The maximum solubility was 17.95 mg/mL in the
sample with the highest concentration of MAN (F2). The spray-dried samples showed a
42.5-fold increase in the solubility compared to KETO. The explanation for the improvement
in solubility can be attributed to the increase in surface area caused by the nanosize of
the KETO. This can predict a better dissolution and better diffusion profiles. Thus, the
solubility results confirmed that the preparation techniques were successful and can be
considered for the formulation of poorly water-soluble compounds.
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Table 3. Solubility of spray-dried samples and KETO.

Sample Name Solubility * (mg/mL)

F0 13.93 ± 0.88
F0.5 17.77 ± 1.05
F1 15.04 ± 0.34
F2 17.95 ± 1.71
KETO 0.42 ± 0.13

* Results are expressed as mean ± SD (n = 3 independent measurements).

2.5. Morphology

Figure 2A illustrates SEM images of spray-dried samples (F0–F2). All particles revealed
a nearly spherical shape with a rough surface. The spherical form of particles for pulmonary
delivery is the most stable form [39]. However, the rough surface is preferable for lung
deposition, since it increases the contact angles and thus enhances the attachment on
the lung cell due to a large surface area [40,41]. Image-J software was used to measure
the PS of our final formulations. Images were taken in different magnifications, and
50–100 particles were selected for the size measurement. The particle size of the final
products proved the nano-in-micro approach. Figure 2B illustrates the spray-dried blanks
(PVA_SDS, PVA_SDS_LEU, PVA_SDS_MAN, and PVA_SDS_LEU_MAN). The SEM images
of blanks were needed to confirm the behavior of LEU and MAN in combination after
spray-drying. MAN, being more soluble, tends to crystallize and deposit on the surface of
the particles, acting as a coating material [42].
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2.6. Contact Angle, Surface Energy, and Cohesion Work

The interparticle interactions of the spray-dried samples and KETO were investigated
using the OCA apparatus (Figure 3). The surface energy is a measurement of the cohesive
forces within the particles and their interaction with the surroundings. The higher the
surface energy is, the higher the cohesive force which leads to low wettability is. The disso-
lution of solid drugs requires particle wetting, which is principally controlled by powder
surface energetics [43]. All the formulations showed lower surface energies compared with
KETO. Moreover, samples F0.5–F2 showed a decreased polarity compared to F0 because of
MAN, which acts as a wetting agent. This predicted an enhancement in both dissolution
and diffusion. The statistical analysis of the data was performed with GraphPad Prism 8.0.1.
software, using one-way ANOVA. A p value < 0.05 was considered statistically significant.
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2.7. Thermal Analysis
2.7.1. DSC

DSC thermograms of the raw ingredients (KETO, LEU, MAN, PVA, SDS), physical
mixtures (PM0–PM2), and samples (F0–F2) were obtained to assess the thermal behavior of
the nanoparticles within our formulation (Figure 4A). One endothermic peak at 95.32 ◦C
was demonstrated in raw KETO, which is equivalent to its melting point. Meanwhile, MAN
expressed its melting point by a very sharp endothermic peak at 171.33 ◦C. Those sharp
peaks are an indication of a crystalline form. SDS and PVA showed endothermic peaks
at 103.00 ◦C and 224.83 ◦C, respectively, whereas no endothermic nor exothermic peaks
were detected for LEU, and its degradation appeared at 294.41 ◦C. Two broad endothermic
peaks were found in F0.5, F1, and F2, while a single broad endothermic peak was recorded
in F0 (no MAN). This indicated that a partial crystallinity of KETO existed. The melting
points of KETO in samples F0–F2 were recorded at a lower temperature (~90 ◦C) compared
to raw KETO due to its presence in nanosize and the increase in amorphous structures.
However, it was noted that the peaks of KETO became smaller and broader by increasing
the ratio of MAN. It was confirmed that MAN has a decreasing effect on drug crystallinity
when used as an excipient [44]. Those results were correlated to the XRPD. The DSC results
showed that the outer coating layers of MAN were partially crystalline in samples F0.5, F1,
and F2, with peaks recorded at a lower temperature (152.17 ◦C, 154.50 ◦C, and 155.83 ◦C,
respectively). The presence of MAN in crystalline form enhanced the stability and improved
both in vitro dissolution and diffusion profiles in pulmonary delivery [45,46].
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2.7.2. TGA

DPI formulations must have a low water content in order to efficiently aerosolize, dis-
perse, and reach the lungs. Our samples detected a residual water content that ranged from
1.08% to 2.12%, as shown in Figure 4B. The water content of spray-dried powder is reported
in the literature to exhibit ranges of 0.24%, 4.1%, and 9.02% [47,48]. Hence, our formulation
can be deemed to have a lower water content in comparison with previous studies.

2.8. Structural Analysis

In this study, XRPD was employed to characterize the crystallinity state. Figure 4C
illustrates the diffractograms of raw materials (PVA, LEU, SDS, MAN, and KETO) and
samples (F0–F2). Raw KETO showed 2-theta (2θ) peaks at 5.79◦, 12.9◦, 14.20◦, 17.12◦,
18.30◦, and 21.83◦, which correspond to its intense crystallinity. Characteristic peaks of
raw MAN were found at 14.2◦, 10.4◦, 18.40◦, 20.30, and 22.2◦ 2θ, indicating its crystalline
state. All formulations showed characteristic peaks with low intensity, demonstrating
that they partially converted into an amorphous state during the preparation process.
To obtain more accurate data about the crystallinity phenomena in samples F0–F2, the
areas beneath the curves were calculated and compared with raw KETO. The crystallinity
percentages of KETO were 60.30%, 44.54%, 41.96%, and 28.36% for samples F0, F0.5, F1,
and F2, respectively. These results demonstrated that MAN lowered the crystallinity, which
is in line with the literature [44].

2.9. Density and Flowability

Table 4 demonstrates the density characteristics. Our formulations illustrated a low
tapped density of 0.18–0.22 g/cm3, which is considered optimal for pulmonary delivery.
The value of 0.3 g/cm3 can be regarded as a limit, because previous results showed that
above this point, it is difficult to accomplish appropriate aerodynamic results [49,50]. In
the DPI formulation, a deeper airway’s flowability and deposition may be improved by
the decreased density. Also, a higher respirable fraction can be obtained by a lower tapped
density [51]. The HR and CI results are correlated with the aerosol performance. The results
of HR and CI were in line with other carrier-free DPI formulations [52].

Table 4. Density, flowability, and in vitro aerodynamic characteristics of spray-dried samples.

Sample Name F0 F0.5 F1 F2

Bulk Density (g/cm3) 0.124 ± 0.012 0.123 ± 0.003 0.120 ± 0.031 0.139 ± 0.024
Tapped Density (g/cm3) 0.180 ± 0.002 0.192 ± 0.011 0.201 ± 0.009 0.228 ± 0.052
Carr’s Index 31.03 35.14 40.01 39.01
Hausner Ratio 1.450 1.542 1.670 1.64
MMAD (µm) 2.40 ± 0.17 2.80 ± 0.06 4.51 ± 0.41 4.90 ± 0.16
FPF (%) 56.16 ± 2.51 71.02 ± 1.19 64.32 ± 1.34 32.21 ± 3.67
EF (%) 97.06 ± 3.22 96.60 ± 1.65 94.82 ± 2.79 95.70 ± 2.89

MMAD: mass median aerodynamic diameter, FPF: fine particle fraction, EF: emitted fraction. Results are expressed
as mean ± SD (n = 3 independent measurements).
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2.10. Aerosol Performance
2.10.1. In Vitro Aerodynamic Characterization

The Andersen Cascade Impactor (ACI) stages are created in a manner so that they can
mimic the pattern of pulmonary deposition. The aerodynamic characteristics that were
analyzed by the ACI at a 60 L/min flow rate exposed that our samples are suitable for lung
deposition. Table 4 shows the results for the mass median aerodynamic diameter (MMAD),
fine particle fraction (FPF), and emitted fraction (EF). The MMAD for the spray-dried
samples was between 2.4 µm and 4.9 µm, which is optimal for lung deposition. However,
it was noticeable that the higher the MAN ratio was, the higher the MMAD was. On
the other hand, MAN enhanced the FPF from 56.16% to 71.02% and 64.32% in F0.5 and
F1, respectively. These FPF recordings are higher than other products that are available
on the market [53], which can be considered promising for deeper lung deposition. All
samples had an acceptable EF result between 95% and 97%, putting them in line with the
aerodynamic particle size distribution (APSD) testing requirement, in which the value
must be between 85% and 115% [35]. Figure 5A illustrates the deposition distribution
(%) in the ACI stages. While F0 and F2 are highly deposited in the USP induction port
(17% and 27%, respectively), F0.5 and F1 depositions are mainly in stages 3 (20% and 15%,
respectively) and 4 (13% and 18%, respectively), which represent the deep region in the
lungs. This confirmed that the addition of MAN in concentrations either half or equal to
KETO enhances the lung deposition.
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2.10.2. In Silico Characterization

For pulmonary delivery, the in silico model results mostly concurred with in vivo
studies [54]. In our study, the in silico model was applied for a better understanding of
the aerosol’s performance of our samples in the airways. Based on the results shown in
Figure 5B, all samples led to a higher lung deposition when the breath holding (BH) time
was increased to 10 s. For example, lung deposition at 5 s was 24.6%, 27.5%, 27.6%, and



Pharmaceuticals 2024, 17, 75 10 of 26

16.2%, while at 10 s, it was 28.7%, 31.8%, 31.2%, and 18.6% for samples F0, F0.5, F1, and F2,
respectively. Also, all samples showed a lower exhaled amount at 10 s compared to 5 s.

The results obtained here were in accordance with the patterns identified by the
in vitro measurements. However, the in silico models can show lower lung deposition
values compared to the in vitro methods (i.e., ACI) [55]. The high extra-thoracic (ET), upper
airways, and deposition results here were due to the shorter inhalation time used (2.04 s),
which is half the inhalation time that was used in ACI. It was proven that the amount of
drug particles deposited in the deep lung shows a two-fold increase when the inhalation
time is increased [56,57]. Hence, the highest lung deposition fractions were found in F0.5
and F1, which is correlated with in vitro results. These results are somewhat optimistic,
since the in silico model better simulates the actual lung deposition in real time, and this
supports our aim of targeting pulmonary inflammations.

2.11. In Vitro Release Study

The in vitro dissolution test was conducted for 2 h in a simulated lung media (pH 7.4)
to mimic lung conditions. As mentioned previously, KETO is a poorly water-soluble
drug, and its release profile is shown in Figure 6. It is known in pulmonary delivery
that the delivered medication dose must be quickly dissolved and released upon lung
deposition to reduce the risk of a clearance mechanism (i.e., macrophage uptake) [38,58]. It
is demonstrated that ~80% of the drug released from our formulations within the first 5 min,
while only 11% released from the raw KETO. The enhancement in release profile is due
to the nanosized KETO particle and the existence of MAN. While all spray-dried samples
showed an enhanced release profile, the fastest dissolution was recorded by F1, where 100%
of the drug released within the first 10 min. Since MAN is highly wettable, it can speed up
the disintegration and help the drug release [59]. However, the addition of MAN in a higher
concentration might restrict a more complete liberation of the drug. Also, in F0.5, the MAN
concentration was not sufficient to signifyingly enhance the dissolution of KETO. Therefore,
the selection of a suitable concentration should be evaluated for other formulations.
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2.12. In Vitro Diffusion Study

Since the lungs enable drug delivery in a very low dose (1/10 of oral dose), this
dose needs to be diffused in the lung cells to give the required local action [60]. The
permeation of our formulations and raw KETO was assessed from a simulated lung fluid to
the epithelium through a cellulose membrane (soaked in isopropyl myristate) to simulate
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the real conditions of the lungs. Table 5 demonstrates the results of the permeated amount
(µg/cm2) of raw KETO and spray-dried samples. All samples showed a better diffusion
compared to the raw KETO; this is mainly due to the nanosized drug particle. The highest
permeated amount (~122 µg/cm2) after 60 min was detected in F1, which is equal to a five-
fold enhancement compared to raw KETO (24.8 µg/cm2). Due to the increased surface area
and the hyperosmotic effect created by the nanoembedded coated microparticle system,
a significant amount of KETO could diffuse to epithelium from samples. These findings
were associated with the in vitro dissolution test. Consequently, this combined system may
be beneficial for the local management of pulmonary inflammation.

Table 5. In vitro permeation results of raw KETO and spray-dried samples in simulated lung media,
pH = 7.4. Flux (J), permeability coefficient (Kp), and relative permeability at 60 min (RP60).

Sample J * (µg/cm2/h) RP60 Kp (cm/h)

KETO 24.79 ± 5.29 1.000 -
F0 98.24 ± 11.34 3.96 0.896
F0.5 74.18 ± 18.63 2.99 0.470
F1 121.97 ± 23.12 4.92 0.877
F2 30.04 ± 16.58 1.21 0.336

* Results are expressed as average ± SD (n = 3).

2.13. The Effect on Mucin Viscosity

Abnormalities of mucus viscosity play a critical role in the pathogenesis of several
respiratory diseases [61]. Therefore, we studied the effect of our formulations on the viscos-
ity of mucin (the major component of mucus). As a preliminary study, the mucin solution
was prepared in three different concentrations: 2%, 5%, and 10%. Those concentrations
were chosen based on previously reported studies. The total mucin concentration of 2%
was reported by [62,63], while 10% was reported by [64], and 5% was chosen as a middle
point. In our study, the 2% mucin-containing solution was so diluted that its viscosity
was unable to be detected, while 5% and 10% showed a viscosity of 0.019 and 0.035 Pa·s,
respectively. The viscosity of mucus was reported in cystic fibrosis and COPD patients
as 0.03–0.38 Pa·s and 0.04–1.8 Pa·s, respectively [65,66]. Therefore, a 10% concentration
of mucin was chosen for investigating the effect of our samples. F1 showed the lowest
viscosity, while none of the samples (F0, F0.5, and F2) decreased the viscosity significantly
(Table 6). Lowering the mucin viscosity can be associated with an increase in hydration
(due to MAN), and reducing the viscosity of mucin can contribute to improved mucus
clearance. Further investigations should be carried out to evaluate the correlation between
MAN concentrations in our samples and the viscosity of sputum collected from COPD and
CF patients.

Table 6. Viscosity results of 10% mucin solution before and after adding the spray-dried samples.

Sample Viscosity (Pa·s)

Mucin 10% 0.035 ± 5.44
F0 0.033 ± 1.98

F0.5 0.031 ± 2.12
F1 0.025 ± 1.37
F2 0.030 ± 4.19

Results are expressed as average ± SD (n = 3).

2.14. Cytotoxicity Study

An MTT viability study was carried out on two types of cell lines (A549 and U937). The
A549 cell line is an extensively used cell model for inhaled products which represents the
human alveolar epithelium. These cells have an epithelial type II phenotype, one of the two
predominant cell types in the alveolar area [67]. Promonocytic human histiocytic lymphoma
cell line U937, depending on the initiators, might develop into either macrophages or
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monocyte or dendritic cells (antigen-presenting cells) [68]. Figure 7 shows the percentage
of live cells in KETO and samples F0–F2 on both cell lines (A) U937 and (B) A549. The
cytotoxicity was assessed in concentrations varying from 0.1 to 500 µg/mL. In terms of the
A549 cells, all samples showed low cytotoxicity at a 50 and 5 µg/mL concentration, which
was demonstrated by the % cell viability values being between 85 and 115%. Meanwhile,
at 500 µg/mL, samples F0, F0.5, F1, and F2 had a % cell viability of 20%, 63%, 88%, and
60%, respectively. It was noticed that MAN enhanced the cell viability, and the lowest
cytotoxicity was recorded in sample F1. On the other hand, all samples (including the
raw KETO) showed high toxicity at a 500 µg/mL concentration with the U937 cell line;
however, the cell viability was doubly enhanced in samples F1 and F2. At a concentration of
50 µg/mL, samples recorded a % cell viability between 63 and 83%, while at a concentration
of 5 µg/mL, a high % cell viability was found (85–125%) with U937. These results aligned
with previously published studies [69]. Nevertheless, our formulations exhibited very low
cytotoxicity towards both cell lines, with live cell percentages between 85 and 125% at
5 µg/mL, which is the concentration used for the anti-inflammatory effect (Section 2.15).
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Figure 7. MTT viability study. Percentage of cell viability at different concentrations on (A) U937 and
(B) A549 cells. Results are expressed as mean ± SD (n = 4 independent measurements).

2.15. Anti-Inflammatory Effect

We determined IL-6 relative expressions on LPS-stimulated and -treated A549 and
U937 cells to compare the anti-inflammatory effects of our samples. Here, LPS, a key
activator of the proinflammatory response [70], was used to induce IL-6, a cytokine pro-
duced in acute and chronic pulmonary inflammations [71]. Both A549 and U937 cells can
express IL-6 upon stimuli, such as LPS or cytokines [72,73]. In addition, U937 cell lines are
widely used to model inflammation upon response to various compounds, as they contain
higher amounts of inducible COX-2 enzyme compared to epithelial cells and show high
reactivity to LPS [74,75]. Figure 8 illustrates the IL-6 relative expression of our samples on
an LPS-treated U937 cell line (Figure 8A) and LPS-treated A549 (Figure 8B). All samples
showed a significant anti-inflammatory effect and decreased IL-6 on the LPS-treated U937
cell line. Moreover, it was noted that the MAN in samples F0.5, F1, and F2 had no significant
difference in anti-inflammatory effect compared to F0, indicating a promising combination.
Here, we revealed that after LPS stimulation, A549 cells expressed significantly lower IL-6
compared to U937 cells (relative expression of 3.4 vs. 15.5, p < 0.01). Therefore, none of our
treatments on LPS-stimulated A549 cells were able to decrease the IL-6 expression at the
transcriptional level, which was in line with previously published results [69].
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3. Discussion

The pulmonary route of administration for local delivery to target lung diseases offers
many advantages over traditional routes. However, many pulmonary diseases need to be
targeted with more than one pharmaceutical agent, making this a burden for patients who
are required to inhale multiple drugs. In order to improve patient compliance, minimize the
number of different dosing regimens, and gain better disease control, products comprising
a combination of medications to be administered by a single inhaler have been created [76].
However, combining multiple drugs in one particulate system faces different challenges
(i.e., high doses), and many attempts are being made to overcome these [77].

In this work, our goal was to create a novel combination consisting of mannitol and
ketoprofen in a “nanoparticle-embedded coated-microparticle” system, in which mannitol
served as the surface coating layer and ketoprofen nanoparticles were integrated into
leucine. We successfully utilized distinctive particle engineering techniques to develop a
combined DPI for targeting pulmonary inflammations that are linked with mucus over-
production. Ketoprofen, a poorly water-soluble NSAID, was first nanosized with PVA
and SDS by ultraturrax and the wet-milling method, then co-spray dried with leucine and
mannitol. Different ratios of mannitol were studied to evaluate its effect on the habits of
ketoprofen nanoparticles and to confirm the compatibility of this combination.

Both in vitro and in silico deposition studies were carried out to make sure that the
aerosol performance of ketoprofen was not altered after being combined with mannitol.
Thanks to the nano-in-micro system, excellent in vitro aerodynamic performance was
recorded, with ~71% FPF and ~2.5 µm MMAD. The in vitro aerosol performance results
are considered promising and in line with other studies [78]. The highest lung deposition
fractions in the in silico study were found in F0.5 and F1, which are correlated with
in vitro results.

A significant enhancement in solubility in the developed formulations compared to
raw ketoprofen was obtained. However, we believe that the solubility improvement was
due to the nanosize of the ketoprofen, since no significant difference was found in F0
compared to mannitol-containing samples (F0.5–F2). The solubility results exhibited a
better dissolution profile. Accordingly, a fast dissolution rate was achieved, in which 80% of
the drug was released in 10 min due to the nanosize of the ketoprofen. In order to lower the
chance of clearance mechanisms, it is well established in pulmonary administration that the
administered drug needs to be rapidly dissolved and released upon lung deposition [38,58].
Moreover, all samples showed a significant anti-inflammatory effect and decreased IL-6 on
the LPS-treated U937 cell line, with low toxicity indicating their safety. This reveals that
mannitol did not amend the anti-inflammatory activity of ketoprofen.
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The mannitol-containing samples decreased the viscosity of 10% mucin solution, while
F1 showed the lowest viscosity. Because of the mannitol, the decreasing mucin viscosity
can be attributed to increased hydration, and it can also lead to better mucus clearance. The
relationship between the amounts of mannitol in our samples and the viscosity of sputum
taken from individuals with COPD and CF should be further investigated. Also, a high
permeation percentage (five-fold enhancement) was achieved in sample F1. Interestingly,
the presence of mannitol in a high concentration (F2) showed a negative influence in terms
of deposition, diffusion, and viscosity. This indicated that mannitol in high concentrations
might be loaded less efficiently into the system, and thus, it should be carefully optimized.
Consequently, we recommend this combination in a maximum mass ratio of 1:1 (F1).

Hence, our study showed that inhaled mannitol-coated ketoprofen as a nano-in-micro
system can be a promising candidate for targeting pulmonary inflammations. This study
is considered a fundamental base for further in vivo investigations. In addition, it can be
performed for effectively combining various drugs to be delivered by inhalation.

4. Materials and Methods
4.1. Materials

KETO (TCI chemicals, Shanghai, China) was used as a drug model. Poly-vinyl-alcohol
PVA (ISP Customer Service GmBH, Cologne, Germany) was used as a stabilizer. SDS
(VWR chemicals, Leuven, Belgium) was employed as a surfactant. In spray-drying process,
MAN (Molar Chemicals Ltd., Budapest, Hungary) was applied as a coating material, while
LEU (AppliChem GmbH, Darmstadt, Germany) was exploited as a dispersity enhancer.
Distilled water used in this study was obtained from Milli-Q, Millipore, Merck KGaA,
Darmstadt, Germany.

4.2. Preparation of Ketoprofen-Containing Nanosuspension (KN)

Ketoprofen-containing nanosuspension was prepared by wet-media milling process
combined with a prior homogenization step. Wet-media milling is an attractive particle en-
gineering approach which enables a simple scale-up in terms of industrial nanosuspension
manufacturing [79]. The nanosuspension preparation process is illustrated in Figure 9A.
Based on a preliminary study (Table S1), 1% PVA (w/v) combined with 0.1% SDS (w/v)
was selected for the dispersant medium. PVA is a polymer used as a stabilizing agent in
media milling. It reduces the cohesive forces between the milled particles and can enhance
the lung deposition upon respiration [80,81]. SDS is a popular anionic surfactant used in
the creation of core–shell nanoparticles, and it maintains the electrostatic stability during
the milling process [33,82,83], so it was combined with the PVA in milling process.

First, 2 g of PVA and 0.2 g of SDS were dissolved in 200 mL of distilled water. Then,
2 g of KETO was suspended in 18 g of the stabilizer solution, and then homogenized at
17,000 rpm for 10 min using Ultraturrax (T-25, IKA-Werke, Breisgau, Germany). This step
was employed for primarily suspending KETO in the dispersant medium [84]. After that,
the coarse suspension (10% KETO content (w/w)) was milled with 20.00 g of zirconium
dioxide (ZrO2) beads (0.3 mm), which was used as a milling media in a planetary ball mill
(Retsch Planetary Next Ball Mill PM 100 MA, Retsch GmbH, Haan, Germany). The milling
process was conducted at 400 rpm for 60 min in 50 mL milling chamber [85]. After milling,
the nanosuspension was washed with the remaining stabilizer solution and filtered using
150 µm mesh size sieve to eliminate the bead particles. In the end, a KETO-containing
nanosuspension (KN) with 1% (w/v) drug content was prepared.
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Figure 9. Preparation methods using particle engineering techniques: (A) preparation of the
pre-dispersion (ketoprofen-containing nanosuspension), (B) preparation of nanosized ketoprofen-
embedded mannitol-coated microparticles as combined dry powder for inhalation. KETO: ketoprofen,
MAN: mannitol, LEU: leucine.

Holding Time as Short-Term Stability of KN

To evaluate the stability of KN before co-spray drying process, a short-term stability
test was carried out. KN was kept at room temperature (25 ◦C) and stored in refrigerator
(+4 ◦C), and then it was evaluated in terms of PS, PDI, and ZP at definite time points using
Malvern Zeta sizer Nano ZS (Malvern instrument, Malvern, UK).

4.3. Preparation of a Combined Dry Powder Inhaler (DPI)

Samples of dry powder for inhalation were prepared by a co-spray drying process
(Mini Spray Dryer, Büchi B-191, Switzerland) with the parameters shown in Figure 9B. The
parameters were optimized based on a preliminary study (Table S2). LEU was added in
this step with a fixed mass ratio in all samples of 1:1 (LEU:KETO). LEU is a well-known
excipient used in DPI formulation, since it decreases the interparticle forces and enhances
the flowability, atomization, and dispersity [86]. LEU was used in our formulation as a
surface-modifying agent by forming a rough encapsulating layer to improve the deposition
in the lungs [87]. Moreover, many studies have confirmed that LEU increases the yield
and stability of drugs and reduces the hygroscopicity of DPI [88–90]. LEU encapsulated
KET particles by forming nano-in-micro composite. Mannitol is a low-hygroscopic sugar
alcohol, which can be used in DPI formulation as a bulking agent, cryoprotectant, or coating
agent, and its safety for pulmonary delivery was proven [88,91,92]. Furthermore, MAN
is used as a mucolytic agent (add-on therapy for cystic fibrosis) [93]. In this study, MAN
was using as a coating layer in which nanoembedded coated microparticles system was
produced. MAN was added in different concentrations to evaluate its effect on the habit
of KETO and to optimize the best concentration. Four samples with mass ratios of 0.5:1,
1:1, 2:1 (MAN:KETO), and with no mannitol were prepared and further investigated. The
resultant spray-dried samples were named according to their MAN concentration: F0, F0.5,
F1, and F2.

Yield and Drug Content of DPI

The mass ratio of dry powder collected after spray-drying to the initial solid com-
positions before drying was calculated to determine the percentage yield of each sample.
For drug content calculation, a precisely scaled amount of the spray-dried samples was
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dissolved in 10 mL of distilled 50% methanol and stirred at 400 rpm by a magnetic stirrer
(AREC. X heating magnetic stirrer, Velp Scientifica Srl, Italy) at room temperature for 24 h.
Then, samples were filtered by filtration disks (0.45 µm pore size, Millex-HV syringe-driven
filter unit, Millipore Corporation, Bedford, MA, USA) and quantified spectrophotometri-
cally at λ 258 nm by UV (ATI-Unicam UV/VIS Spectrophotometer, Cambridge, UK). The
percentage of ketoprofen content was determined as a ratio of calculated to theoretical
drug content.

4.4. Characterization and Evaluation
4.4.1. Particle Size, Particle Size Distribution, and Zeta Potential Characterization

Malvern Zeta sizer Nano ZS (Malvern instrument, UK) was used to characterize the
particle size (PS), polydispersity index (PDI), and zeta potential (ZP) of the KN and DPI
samples. KN was diluted 1:3 before analysis, and DPI samples were redispersed in distilled
water. The refractive index was set to 1.592. Disposable cuvette cells (DTS1070) were used.
All samples were measured at 25 ◦C in three parallel runs, and the average was evaluated.

4.4.2. Solubility

The solubility study was conducted by adding excess amounts of KETO and dry
powder samples in 5 mL of distilled water. Samples were stirred at 400 rpm for 24 h at room
temperature using a magnetic stirrer (AREC. X heating magnetic stirrer, Velp Scientifica Srl,
Italy), and then filtered by filtration disks (0.45 µm, Millex-HV syringe-driven filter unit,
Millipore Corporation, Bedford, MA, USA). KETO concentration in samples was analyzed
by UV/VIS spectrophotometer (ATI-Unicam UV/VIS Spectrophotometer, Cambridge, UK)
at λ 258 nm. All samples were measured in triplicate.

4.4.3. Morphology

Morphology of the spray-dried powder samples (F0–F2) was detected using scanning
electron microscopy (SEM) (Hitachi S4700, Hitachi Scientific Ltd., Tokyo, Japan) at 10 kV.
A sputter coater (Bio-Rad SC 502, VG Microtech, Uckfield, UK) was used to coat the
samples with gold-palladium with 2.0 kV electric potential, at 10 mA amperage and for
10 min. Air pressure was adjusted to 1.3–13.0 mPa. According to SEM results, diameter
size of the final product particles was investigated using image analyzer software (ImageJ)
(https://imagej.net/ij/index.html, accessed on 15 March 2023). Moreover, to define the
habit of materials used in this system without KETO, blanks (PVA_SDS, PVA_SDS_LEU,
PVA_SDS_MAN, and PVA_SDS_LEU_MAN) were spray-dried with the same parameters
mentioned earlier and then analyzed by SEM.

4.4.4. Contact Angle, Surface Energy, and Cohesion Work

Interparticle interactions of the dry powder samples and KETO were measured in
terms of contact angle (CA), surface energy (Υ), polarity (Pol), and cohesion work (Wc).
One-ton hydraulic press (Specac Inc. in Waltham, MA, USA) was used to press about 0.10 g
of the dry powder samples into pastilles. Out of each sample, six pastilles were produced.
Polar (10 µL of distilled water) and non-polar (2.0 µL of diiodomethane) solvents were
employed to drip onto the surface of pastilles using a vertical electronic syringe. Each
sample was subjected to three parallel measurements. Using a Dataphysics OCA 20 device
(Dataphysics Instrument GmbH, Filderstadt, Germany), contact angle was detected from
the two applied liquids in a range of 1 to 30 s. The surface energy (Υ), which is composed
of a polar part (Υp) and a dispersive part (Υd), was determined using SCA20 software
(version 5.0.41 build 5041, Data Physics Instruments, GmbH, Filderstadt, Germany) [43].
Polarity (Pol) was calculated by Equation (1), while cohesion work (Wc) was calculated by
Equation (2).

Pol = (Υp)/(Υ) × 100 (1)

Wc = (Υ) × 2 (2)

https://imagej.net/ij/index.html


Pharmaceuticals 2024, 17, 75 17 of 26

4.4.5. Thermal Analysis
DSC

Differential scanning colorimetry (DSC) assessment was carried out by a Mettler
Toledo DSC 821e thermal analysis system with the help of STARe thermal analysis program
version 9.3 (Mettler Inc., Schwerzenbach, Switzerland). A mass of 2–3 mg of each sample
and raw materials was scaled into DSC aluminum pans, which were hermetically sealed,
and lid pierced. An empty pan was used as a reference. The measurement was conducted
between the temperature range of 25 ◦C and 300 ◦C. The flow rate of the carrier gas (Argon)
was 10 L/h, while the heating rate was 10 ◦C/min.

TGA

A thermal analysis system (TGA) was used to determine the residual water content
in our samples based on loss of drying concept [91]. Mettler–Toledo TGA/DSC1 (Mettler–
Toledo GmbH, Greifensee, Switzerland) instrument connected with a quadrupole mass
spectrometer (MS, Pfeiffer Vacuum GmbH, Asslar, Germany, model ThermostarTM GSD
320) was used in this measurement. STARe thermal analysis program V9.3 (Mettler Inc.,
Schwerzenbach, Switzerland) was used to evaluate the data. About 2–3 mg of samples
was measured between 25 and 300 ◦C with a heating rate of 10 ◦C/min. Contact be-
tween the MS and the TG was maintained at 120 ◦C and performed with a silica capillary.
The investigation was carried out in an atmosphere of argon with a constant gas flow
(10 mL/min).

4.4.6. Structural Analysis

Spray-dried samples and raw materials were characterized using a BRUKER D8
Advance X-ray powder diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) with a
radiation source of Cu K λ1 (λ = 1.5406 Å) and a VÅNTEC-1 detector. Dry powder samples
were scanned with Cu target and Ni filter at a voltage of 40 kV and a current of 40 mA,
throughout 3◦ to 40◦ 2θ angular phase, at 0.1 s step time and 0.01◦ step size. Crystallinity
index (%Xc) was used to calculate the crystallinity degree of our samples compared to the
raw materials (Equation (3)), where A is the area under the curve and pure KETO was
considered a 100% crystalline.

%Xc = Acrystalline/(Acrystalline + Aamorphous) × 100% (3)

4.4.7. Density and Flowability

Dry powder samples were characterized by tapped and bulk densities. An Engels-
mann Stampfvolumeter (Ludwigshafen, Germany) instrument was used for this assessment.
Samples were accurately scaled and filled in a graduated cylinder (10 cm3) to measure the
bulk density (ρb), which it was calculated by dividing the powder mass over the untapped
volume (m/v0). The tapped (ρt) density was measured after 1250 times tapping and calcu-
lated by dividing the mass over the tapped volume (m/vf) [94,95]. Furthermore, Carr’s
index (CI) and Hausner ratio (HR) were used to study the flowability characteristics of our
samples (Equations (4) and (5)). All samples were measured in triplicate.

CI = (ρt − ρb)/ρt × 100 (4)

HR = ρt/ρb (5)

4.4.8. Characterization of Aerosol Performance
In Vitro Aerodynamic Characterization

Andersen Cascade Impactor (ACI) (Copley Scientific Ltd., Nottingham, UK) was
used to study the aerosolization characteristics of the dry powder samples [96,97]. The
inhalation flow rate was set to 60 L/min, which was generated by a vacuum pump (High-
capacity Pump Model HCP5, Critical Flow Controller Model TPK, Copley Scientific Ltd.,
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Nottingham, UK), and a mass flow meter (Flow Meter Model DFM 2000, Copley Scientific
Ltd., Nottingham, UK) was used to confirm the actual flow rate during the inhalation. Dry
powder samples containing 5 mg of KETO, which is one-tenth of its oral dose, were filled in
two size 3 Ezeeflo™ hydroxypropyl methylcellulose capsules (ACG-Associated Capsules
Pvt. Ltd., Mumbai, India) [60]. Capsules were loaded into a Breezhaler single-dose device
and actuated before inhalation, while the inhalation time was 4 s. All the stage plates
were soaked in a mixture of Span 85 and cyclohexane (1:99 v/v%) to mimic the adhesive
properties in the lung tissues, and then, they were left to dry. After applying the inhalation,
all parts of the ACI were washed using a solution of methanol and water (1:1 v/v%) in
order to collect and dissolve the deposited mass of KETO. The concentration of KETO
deposited in each stage was measured using UV/VIS spectrophotometry (ATI-UNICAM
UV/VIS Spectrophotometer, Cambridge, UK) at λ = 258 nm. Inhalytix™ (Copley Scientific
Ltd., Nottingham, UK) software (Available online: https://www.copleyscientific.com/
inhaler-testing/apsd-data-analysis-software/inhalytix/, accessed on 15 January 2023) was
used to evaluate the in vitro aerodynamic properties of our samples. Different values were
considered to evaluate the aerodynamic profile of our samples. MMAD was used to express
the real size of the particles during inhalation, FPF expressed the percentage of the mass of
drug particles with a size less than 5 µm and the amount of drug leaving the device and
reaching the impactor, and EF, which is a percentage of the amount of drug leaving the
device and reaching the impactor divided by the initial amount of loaded KETO.

In Silico Characterization

The most recent version of the Stochastic Lung Model (SLM) was applied for de-
termining the amount of drug deposited in various anatomical regions of the airways,
which are represented as regional deposition fractions [98]. Numerical modeling is a com-
pliant, non-invasive, and reproducible method that is advantageous compared to other
systematic scintigraphic studies which need a large population and have many barriers
(i.e., technical and ethical barriers) [99]. Recently, numerical models turned out to be an
effective tool for quantifying the distributions of various medications in the total, local,
and regional respiratory tract depositions. In this study, a validated airway deposition
model was used to calculate numerically the deposition fractions in the lungs and upper
airways (extra-thoracic region). Deposition fraction can be defined as the proportion of
drug mass deposited in a specific area of the airways to drug mass loaded in the capsule.
The lung deposition fraction is the sum of bronchial and acinar deposition fractions. The
exhaled fraction was calculated by subtracting the total of the fractions deposited in the
lungs and upper airways and the fraction that remained in the device from the ratio of the
metered fraction (100%). A Monte Carlo approach for choosing particle routes and realistic
observed geometric parameters allows the computer model to reproduce the underlying
morphological stochasticity of the airways. Typically, 105 particles are monitored from
inhalation until expiration, where they deposit in different lung regions or are exhaled.
Particle characteristics and inhalation parameters are the main inputs of this model. The
results of in vitro aerodynamic assessment that we gained from ACI were utilized for this
study. Inhalation parameters used for this model were as follows: peak inhalation flow:
69.5 L/min, inhaled volume: 1.7 L, and inhalation time: 2.04 s. Those parameters were
matched to patients with chronic obstructive pulmonary disease [100]. Moreover, in order
to assess the impact of breath hold (BH) duration time on the deposition manner, 5 s and
10 s BH times were employed. In our prior work, the numerical deposition model was
verified specifically for the circumstance of aerosolized medicines [101].

4.4.9. In Vitro Release Study

A modified paddle method (Hanson SR8 Plus, Teledyne Hanson Research, Chatsworth,
CA, USA) from European Pharmacopeia was applied to study the release of KETO [102].
A 100 mL vessels’ volume instead of 1000 mL was used with smaller paddle size. A
simulated lung fluid (SLF), which was composed of NaCl, NaHCO3, CaCl2, NaH2PO4,

https://www.copleyscientific.com/inhaler-testing/apsd-data-analysis-software/inhalytix/
https://www.copleyscientific.com/inhaler-testing/apsd-data-analysis-software/inhalytix/
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H2SO4, and glycine (pH = 7.4), was prepared [103]. Vessels were filled with 50 mL of
SLF, and temperature was set to 37 ◦C. These parameters were designed based on the
human airways’ circumstances [104,105]. The raw drug and samples equivalent to 5 mg of
KETO (based on drug content analysis) were dispersed in the medium. We decided the
pulmonary dose of KETO as 10% of its oral dose [60]. The rotation of paddles was adjusted
to 50 rpm, and the duration of the study was 120 min. A total of 2 mL of each sample
was withdrawn and replenished after 5, 10, 15, 30, 60, and 120 min. Samples were filtered
(filtration disks with 0.45 µm pore size, Millex-HV syringe-driven filter unit, Millipore
Corporation, Bedford, MA, USA), and then quantified spectrophotometrically at λ 258 nm
(UV/VIS ATI-UNICAM UV/VIS Spectrophotometer, Cambridge, UK). Measurements were
carried out in triplicate.

4.4.10. In Vitro Diffusion Study

A modified horizontal diffusion cell was used to assess the in vitro permeability of
KETO and dry powder samples from the lung fluid to the epithelial cells of the lung.
The cells used in this study were 3D-printed unique structures developed by the research
group [106]. To model the lung fluid, 9 mL of SLF (pH = 7.4) was used as a donor phase,
while 9 mL of phosphate-buffered solution (pH = 7.4) was used as an acceptor phase
to model the epithelial cell. A cellulose membrane (RC 55 WhatmanTM GE Healthcare
Life Sciences, Buckinghamshire, UK) with 0.5 µm pore size and 0.75 µm thickness was
soaked in isopropyl myristate for 30 min and then placed between the two phases. To
ensure the homogeneous distribution of the samples and model the lung circumstances, a
continuous stirring and a maintained temperature were run throughout the experiment.
The temperature was set to 37 ◦C with the help of a water-circulator thermostat. The
magnetic stirrer (CS-Smartlab Devices Ltd., Kozarmisleny, Hungary) was adjusted at
150 rpm, while the total diffusion surface area was 0.785 cm2. Dry powder samples
equivalent to 5 mg of KETO and 5 mg of raw KETO were dispersed in the donor phase,
and the diffused amount was real-time quantified with a probe immersed in the acceptor
phase (FDP-7UV200-VAR, Avantes, Apeldoorn, The Netherlands) at 258 nm by a UV/VIS
spectrophotometer (Avaspec-ULS2048-USB2, Avantes, Apeldoorn, The Netherlands). The
duration of the measurement was 60 min. Measurements were conducted in triplicates.
The flux (J) was calculated from the KETO amount diffused through the membrane (m)
divided by the surface area of the membrane (A) and the total duration of the experiment
(t) (µg/cm2/h), as seen in Equation (6). Moreover, the relative permeation at 60 min (RP60)
was calculated as a ratio of diffused amount from our samples compared to the control
(raw KETO).

J = m/(A × t) (6)

4.4.11. Effect on Mucin Viscosity

Mucin is the major component in the mucus of respiratory system [107]. Assessing
mucin viscosity is essential for the diagnosis, management, and treatment of various
respiratory conditions. Therefore, mucin was prepared in different concentrations, and
then, spray-dried samples were added to evaluate their effect on the mucin viscosity. Mucin
from porcine stomach type II (Sigma-Aldrich, Merck. Ltd., Saint Louis, MO, USA) was
used. IKA viscometer instrument (IKA, Rotavisk, IKA-Werke GmbH & Co. KG, Staufen,
Germany) was employed to check the viscosity of mucin with and without the addition
of our samples. A thermostatic circulator (IKA-HRC II control + PT 100.30 Temperature
sensor) was connected to the equipment to ensure a constant temperature during the
measurement. Samples containing 5 mg of KETO were added to the mucin solution and
stirred for 30 min. Spindle number 11 (SP-11) was used, while parameters of 120 rpm
and 30 s were set. The experiment was conducted at 37 ◦C in three parallel runs, and the
average (±SD) was evaluated.



Pharmaceuticals 2024, 17, 75 20 of 26

4.4.12. Cytotoxicity

To determine the effect of our samples, KETO, and the excipients on cell viability, the
MTT staining method, described earlier by Mosmann (1983) [108], was performed on two
types of cell line. A549 human airway epithelial cells and U937 promonocyte cells (ATCC,
Manassas, VA, USA) were transferred to a 96-well plate at a density of 4 × 104 cells/well
in 100 µL of minimal essential medium (MEM) with Earle’s salts or RPMI supplemented
with 10% heat-inactivated fetal bovine serum (FBS), 2 mmol/L-glutamine, 1× non-essential
amino acids, 4 mM HEPES, and 25 µL/mL gentamycin. Prior to the study, the adherent cells
were cultured for 24 h at 37 ◦C, with 5% CO2 in the above described medium. The next day,
the medium was removed, and then the cells were treated with increasing concentrations of
our samples, which were two-fold diluted in MEM or RPMI. The starting concentration of
the samples and KETO was 500 µg/mL, and the concentration range was between 500 and
0.97 µg/mL. Culture media alone served as negative control and untreated cells were used
as positive control. To all conditions, internal triplicates were included. The culture plates
were incubated at 37 ◦C for 24 h. After the incubation period, 20 µL of MTT (thiazolyl blue
tetrazolium bromide, Sigma) solution (from a stock solution of 5 mg/mL) was added to
each well, and plates were incubated again for 4 h at 37 ◦C. At the end of the incubation
period, 100 µL of SDS (Sigma) solution (10% in 0.01 M HCI) was added to each well. After
a further 24 h overnight incubation period at 37 ◦C with 5% CO2, the cell viability was
determined by measuring the optical density (OD) at 570/650 nm with EZ READ 400 ELISA
reader (Biochrom, Cambridge, UK). Inhibition of cell growth was expressed in IC50, which
was calculated based on Equation (7) and plotted against the logarithm of concentrations.
Cell viability was expressed in % control cells and measured according to Equation (8).
GraphPad Prism 8.0.1. software (GraphPad Software Inc., San Diego, CA, USA) was used
for statistical analysis and visualization.

100 − ((ODsample − ODmedium control)/(ODcell control − ODmedium control)) × 100 (7)

%Control = (Absorbance of sample)/(Absorbance of control) × 100 (8)

4.4.13. Anti-Inflammatory Effect

A549 cells were propagated in Eagle MEM (Sigma, St. Louis, MO, USA) media,
and U937 cells were grown in RPMI (Thermo Scientific, Waltham, MA, USA) media,
supplemented with 25 µg/mL gentamycin, 10% foetal calf serum, 0.5% w/v glucose,
0.3 mg/mL l-glutamine, and 4 nm HEPES. The cells were transferred to 6-well plates at a
density of 1 × 106 cells/well. Each sample was used in triplicates. The cells were treated
with 5 µg/mL LPS (Thermo Scientific, Waltham, MA, USA) and with one of the following:
KETO (5 µg/mL) or F0, F0,5, F1, or F2 (equivalent to 5 µg/mL of KETO). LPS-treated cells
served as positive control, while negative control cells were left untreated. All plates were
incubated for 48 h at 37 ◦C, 5% CO2 before use.

mRNA Extraction and cDNA Synthesis

Total RNA was extracted from treated and control cells after a 48 h incubation period
using TRI reagent (Sigma-Aldrich, Saint Louis, MO, USA) according to the manufacturer’s
protocol. Total RNA concentrations and purity were measured using a NanoDrop spec-
trophotometer (Thermo Scientific, Waltham, MA, USA). First-strand cDNA was synthesized
using Maxima First Strand cDNA Synthesis Kit (Thermo Fisher Scientific Inc., Waltham,
MA, USA) and 20 pM random hexamer primer according to the manufacturer’s protocol
(Thermo Fisher Scientific Inc., Waltham, MA, USA).

qPCR Validation of IL-6

qPCR was performed in a Bio-Rad CFX96 real-time system with SsoFast™ Eva-
Green®qPCR Supermix (Bio-Rad, Hercules, CA, USA) master mix, using the following hu-
man specific primer pairs: IL-6 sense: 5′-CAGCTATGAACTCCTTCTCCAC-3′ and Il-6 antisense
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5′-GCGGCTACATCTTTGGAATCT-3′, Actb sense 5′-TTCTACAATGAGCTGCGTGTGGCT-
3′ and Actb antisense 5′-TAGCACAGCCTGGATAGCAACGTA-3′. Cycle threshold (Ct)
values were calculated for β-actin and Il-6, and the relative gene expression levels were
determined by the 2−∆∆Ct method. The relative expression level was indicated as 2−∆∆Ct,
where ∆∆Ct = ∆Ct for the experimental sample and −∆Ct for the control sample. Statistical
analysis of data was performed with GraphPad Prism 8.0.1. software, using one-way
ANOVA. p value < 0.05 was considered statistically significant.

5. Conclusions

In this study, a novel inhalable nanoembedded coated microparticle system using
particle engineering technologies was produced. Common pulmonary inflammations can
be lethal, particularly if they are associated with unusual mucus accumulation. This work
revealed that inhalation of mannitol and ketoprofen together from a single inhaler is feasible
and promising for targeting pulmonary inflammations. This approach is fundamental and
supports further in vivo studies.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ph17010075/s1: Table S1: A preliminary study of ketoprofen-
containing nanosuspension using different stabilizers and concentrations; Table S2: Spray dryer
parameters’ impact on yield, particle size, and polydispersity index.
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