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Abstract: Adrenocortical carcinoma (ACC) represents a rare tumor entity with limited treatment
options and usually rapid tumor progression in case of metastatic disease. As further treatment
options are needed and ACC metastases are sensitive to external beam radiation, novel theranostic
approaches could complement established therapeutic concepts. Recent developments focus on
targeting adrenal cortex-specific enzymes like the theranostic twin [123/131I]IMAZA that shows a
good image quality and a promising therapeutic effect in selected patients. But other established
molecular targets in nuclear medicine such as the C-X-C motif chemokine receptor 4 (CXCR4) could
possibly enhance the therapeutic regimen as well in a subgroup of patients. The aims of this review
are to give an overview of innovative radiopharmaceuticals for the treatment of ACC and to present
the different molecular targets, as well as to show future perspectives for further developments since
a radiopharmaceutical with a broad application range is still warranted.
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1. Introduction

Adrenocortical carcinoma (ACC) is a rare tumor entity with an estimated incidence
of about 0.5–2 new cases per million people per year [1,2]. ACC occurs at any age and
shows a peak incidence between 40 and 60 years, whereby women are more often affected
(55–60%) [3]. The tumor arises from the cortex of the adrenal gland and 50–60% of patients
with ACC have clinical hormone excess. Treatment options are limited and complete
resection is the only means of cure. Still, retrospective studies reported that 40–70% of
ACCs eventually recur even after complete resection [4–7]. In general, the prognosis is
heterogeneous and the median overall survival of all ACC patients is about 3–4 years. For
tumors confined to the adrenal gland five-year survival rates are between 60–80%, for
locally advanced disease 35–50%, and much lower in case of metastases with reported
survival rates ranging from 0 to 28% [8–14].

Due to the rareness of the disease and the limited resources dedicated to the implemen-
tation of new therapeutic options, there is little progress in the medical therapy of ACC [15].
International guidelines recommend to use of adjuvant mitotane in most patients [3,16].
The results of a large phase 3 trial led to a combination treatment of mitotane, etoposide,
doxorubicin, and cisplatin as a first-line therapy [11]. Unfortunately, the combination of
these chemotherapeutics only led to an objective response rate of 23% with a progression-
free survival of only 5.1 months despite severe toxicity. Hence, further therapeutic options
for second- and third-line treatment are warranted. ACC used to be considered resistant to
radiation [17,18]. However, recent data show a benefit in regards to local tumor control, the
palliative treatment of symptomatic cerebral or osseous metastases and in case of vena cava
obstruction as well as a reduction of local recurrence after primary resection [19–25]. In
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this sense, endoradiotherapy is a possible therapeutic option in patients with metastasized
ACC after first-line treatment. The concept of endoradiotherapy is based upon theranostic
radiopharmaceuticals that can be used for diagnostic and therapeutic purposes, depending
on the labeled radionuclide. It is possible to use either the same molecule or a very similar
compound. These molecules are radiolabeled with gamma and positron emitters for imag-
ing purposes or beta minus emitters and (rarer) alpha emitters for endoradiotherapy. Some
radionuclides, such as iodine-131 and lutetium-177 are beta and gamma emitters and can
be used for both imaging and therapy, whereas the gamma emitter iodine-123 can be used
only for diagnostics [26]. Other radionuclides for imaging are fluorine-18 or gallium-68
(both positron emitters) and Yttrium-90 (beta minus emitter) for therapy. The use of an
image-based patient selection allows for a personalized medicine approach with a possible
higher therapeutic efficacy. Furthermore, reduced side effects and high tumor doses can be
administered because of the precise radiation deposition and the short tissue penetration
of only a few millimeters of beta minus emitters [27].

The present review aims to give an overview of theranostic radiopharmaceuticals for
the treatment of ACC, to present various molecular targets and to show future perspectives.

2. Molecular Imaging and Theranostic Approaches in ACC

For molecular imaging of ACC, positron emission tomography (PET)/computed
tomography (CT) with [18F]fluorodeoxyglucose (FDG) can be used [28] but is not considered
standard of care [3], in contrast to CT or magnetic resonance imaging. Nevertheless, FDG
PET/CT is useful for prognostic evaluation as a higher uptake is associated with a shorter
survival [29,30]. However, FDG does not provide a theranostic approach. For a detailed
description of molecular imaging approaches in ACC, please refer to a recent review of
adrenal imaging [31].

Peptide receptor radionuclide therapy targeting the somatostatin receptor (SSTR) us-
ing, i.e., [177Lu]Lu-DOTA-0-Tyr3-Octreotate (DOTATATE) is established in the treatment
of well-differentiated neuroendocrine midgut tumors [32] and other neuroendocrine tu-
mors [33]. A recent ex vivo study described a heterogeneous SSTR expression in some ACC
tissue samples [34]. However, to date, only one study exists that reports the results of a
case series of 19 patients with 2 patients receiving either [90Y]Y- or [177Lu]Lu-DOTATOC
(DOTA(0)-Phe(1)-Tyr(3))octreotid), which resulted in disease control of 4 and 12 months,
respectively [35].

In analogy, endoradiotherapy targeting the prostate-specific membrane antigen (PSMA)
is not just a treatment option for metastasized castration-resistant prostate cancer using,
i.e., [177Lu]Lu-vipivotide tetraxetan (PSMA-617) [36], but also for other tumor entities.
In an ex vivo analysis, PSMA was significantly overexpressed in ACC tissue samples
compared to normal adrenal glands and adrenocortical adenomas [37]. To our knowledge,
there is no report providing data on PSMA radioligand therapy in ACC. Only one case
report describes a patient with ACC having a PSMA expression in tumor sites equal to
physiological liver background on [68Ga]Ga-PSMA-11 PET/CT, which was not considered
sufficient for PSMA-directed radioligand therapy [38].

C-X-C motif chemokine receptor 4 (CXCR4) is a G-protein coupled receptor that can
be found in many hematological malignancies as well as solid tumors and constitutes
a possible theranostic target [39]. CXCR4 expression can be found in ACC samples as
well [40]. A strong membranous expression of CXCR4 in ACC specimens was found in half
of the cases (94 of 187 specimens) in an ex vivo study. Interestingly, immunohistochemical
staining of CXCR4 was higher in samples derived from metastases than from primary
tumors [41]. A high in vivo CXCR4 expression on CXCR4-directed PET/CT was found in
30 patients with ACC [42]. A possible theranostic application was found by Bluemel et al.,
who rated 17 (57%) of 30 patients as suitable and 4 patients (13%) as potentially suitable
for CXCR4-directed treatment [43]. Of note, CXCR4-directed therapy using, i.e., [177Lu]Lu-
/[90Y]Y-anditixafortide (PentixaTher) leads to bone marrow ablation and can only be
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applied in case of available hematopoietic stem cells which are usually harvested during
previous chemotherapeutic protocols [44].

The enzymes CYP11B1 (11β-hydroxylase) and CYP11B2 (aldosterone synthase) are
part of the cortisol and aldosterone synthesis in the adrenal gland and can be blocked by im-
idazole drugs such as etomidate or ketoconazole [45]. As these enzymes are highly specific
for the adrenal gland, they are potential targets for molecular imaging [46]. Bergström et al.
developed the PET imaging agent [11C]etomidate and its methyl ester [11C]metomidate
([11C]MTO) and showed their potential to specifically visualize the normal adrenal cortex
in an animal study [47]. This approach was transferred to a clinical setting and the authors
could demonstrate that [11C]MTO PET can distinguish between lesions of adrenocortical
and nonadrenocortical origin in a cohort of 15 patients [48], and in another cohort of 173 pa-
tients [49]. The latter study included 13 patients with ACC which showed a relatively high
tracer uptake.

In order to develop a possible theranostic radiopharmaceutical, the compound [123I]
iodometomidate ([123I]IMTO) that inhibits CYP11B1/2 was developed. High imaging
quality was shown in animal studies [50–52] and a high and specific tracer uptake of
the radiopharmaceutical was found for adrenocortical tissue [51]. These promising re-
sults could be transferred into clinical application: [123I]IMTO planar whole-body scans
and single photon emission computed tomography (SPECT)/CT images showed high
sensitivity and specificity for the differentiation of adrenocortical tumors from lesions of
non-adrenocortical origin in case of a lesion size of 2 cm or more [53]. The theranostic
counterpart of [123I]IMTO is [131I]IMTO, which can be used in patients with advanced ACC.
Disease control was achieved in 6 of 11 patients with ACC treated with [131I]IMTO with a
median progression-free survival of 14 months (range 5–33 months) in responders. Of these,
5 patients showed a stable disease on follow-up CT scans, and a partial response was found
in one patient [54]. As IMTO shows a rapid metabolic inactivation, the metabolically more
stable derivative (R)-1-[1-(4-iodophenyl)ethyl]-1H-imidazole-5-carboxylic acid azetidinyl
amide (IMAZA) was developed by replacing the methyl ester in IMTO by a carboxylic
amide. IMAZA outperformed IMTO in regards to pharmacokinetic and imaging properties
in mice and in a dual tracer approach in three patients [55]. Hahner et al. screened 69 pa-
tients with advanced ACC refractory to standard treatments using [123I]IMAZA SPECT/CT
and identified 13 patients with intense uptake in all tumor lesions [56]. These patients
were treated with a median of 25.7 GBq [131I]IMAZA (range 18.1–30.7 GBq). Response to
therapy was assessed according to Response Evaluation Criteria in Solid Tumors (RECIST
version 1.1) [57]. Two patients experienced a decrease in RECIST target lesions of up to
26%. A median progression-free survival of 14.3 months (range 8.3–21.9) was noted for five
patients with stable disease. Median overall survival in all 13 patients was 14.1 months
(4.0–56.5). The treatment was well tolerated by the patients, and no severe toxicities
(CTCAE grade ≥ 3) were noted. Figure 1 shows a patient who underwent [131I]IMAZA
therapy. Figure 2 summarizes the different theranostic targets in ACC and Figure 3 shows
the corresponding radiopharmaceuticals.
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Figure 1. [131I]IMAZA therapy in a 53-year-old patient with metastatic adrenocortical cancer. FDG 
PET maximum intensity projection (MIP) is shown at baseline (A). Post-therapeutic whole-body 
scintigraphy 2 days after first therapy (B) shows concordant tracer accumulation to FDG PET/CT. 
Response assessment after 3 and 8 months (C,D) shows a significant decrease in metabolic activity 
and a reduction in the diameter of the target lesion of 26%. After a progression-free survival of 18 
months, a second therapy with [131I]IMAZA was applied. The patient died after an overall survival 
of 56 months after the first [131I]IMAZA therapy. 

Figure 1. [131I]IMAZA therapy in a 53-year-old patient with metastatic adrenocortical cancer. FDG
PET maximum intensity projection (MIP) is shown at baseline (A). Post-therapeutic whole-body
scintigraphy 2 days after first therapy (B) shows concordant tracer accumulation to FDG PET/CT.
Response assessment after 3 and 8 months (C,D) shows a significant decrease in metabolic activity
and a reduction in the diameter of the target lesion of 26%. After a progression-free survival of
18 months, a second therapy with [131I]IMAZA was applied. The patient died after an overall
survival of 56 months after the first [131I]IMAZA therapy.
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Fürstenfeldbruck, Germany) inside a well-ventilated lead cell (see Figure 4). 
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the injection valve of the semi-preparative high-performance liquid chromatography 
system (HPLC) equipped with a RP-18 HPLC column (250 × 8 mm). An ethanol/phosphate 
buffer (40/60 v/v) mixture served as the HPLC solvent with a flow of 2.0 mL/min. Using 
typical starting activities of 34 GBq [131I]iodide, reproducibly > 25 GBq [131I]IMAZA were 
obtained, which were administered to the patients after successful quality control. 

Figure 3. Chemical structure of possible theranostic radiopharmaceuticals for treatment of ACC. To
date, [131I]IMAZA is the only compound that has been already used in patients.

3. Radiosynthesis of [131I]IMAZA

The radiosynthesis and quality control of [123/131I]IMAZA for scintigraphy, dosimetry
and therapy has already been published [55]. Here, destannylation reactions were used for
labeling. Since this method yields the labeled products under very mild reaction conditions
and with very high radiochemical yields, this method is frequently used and should be
easily established in radiochemical laboratories that have experience with radioiodina-
tion. However, this does not apply to radioiodinations with > 30 GBq I-131, which are
challenging in terms of radiation protection due to the high volatility of radioiodine in
combination with the extremely high activity levels and the relatively high gamma energy
of 364 keV. Therefore, labeling of [131I]IMAZA for endoradiotherapy had to be performed
by an automated synthesis module (custom-made by Scintomics GmbH, Fürstenfeldbruck,
Germany) inside a well-ventilated lead cell (see Figure 4).

To the delivery vial in which the [131I]iodide is dissolved in 1 mL 0.01 N NaOH (IBSSO;
GE Healthcare, Braunschweig, Germany) were consecutively injected 5 mg trimethylstan-
nylazetidinylamide in 1 mL ethanol, 120 µL 2 N hydrochloric acid and 2.25 mg chloramine
T trihydrate in 150 µL water. The reaction solution was allowed to stand for three minutes.
Thereafter, the reaction was quenched by adding 135 µL 2 N HCl and a solution of 4.50 mg
Na2S2O5 in 150 µL water and the mixture was injected directly into the injection valve of
the semi-preparative high-performance liquid chromatography system (HPLC) equipped
with a RP-18 HPLC column (250 × 8 mm). An ethanol/phosphate buffer (40/60 v/v)
mixture served as the HPLC solvent with a flow of 2.0 mL/min. Using typical starting
activities of 34 GBq [131I]iodide, reproducibly > 25 GBq [131I]IMAZA were obtained, which
were administered to the patients after successful quality control.
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Figure 4. Photo and scheme of module for radiosynthesis of [131I]IMAZA.

For each radiosynthesis, the exhaust air from the lead box was passed through acti-
vated carbon filters and checked for possible contamination. The personnel involved were
monitored by means of personal dosimeters, finger ring dosimeters and a thyroid monitor.
In all cases, only very low levels of contamination were detectable, so that the high-dose
endoradiotherapies with [131I]IMAZA could be carried out safely. Regarding the radiosyn-
thesis of the commercially available products [177Lu]Lu-DOTATATE, [177Lu]Lu-/[90Y]Y-
PentixaTher and [177Lu]Lu-PSMA-617, please refer to the respective publications [58–61].

4. Future Perspectives

The investigations of patients with metastatic ACC with [123I]IMAZA showed an
uptake in all known lesions (metastases and/or primary tumor) in only about 40% of the
patients. This is likely due to dedifferentiation of the tumor cells resulting in low or no
expression of the target enzymes CYP11B1 and CYP11B2. Therefore, only a minority of
patients with high tracer uptake are candidates for subsequent endoradiotherapy with
the analog [131I]IMAZA. Currently, alternative enzymatic and non-enzymatic targets with
broader expression in ACC tissue are under investigation.

5. Summary

Adrenocortical carcinoma is a rare tumor entity and further therapeutic options in
metastatic disease are desperately warranted. Several possible theranostic approaches
exist, of which radiopharmaceuticals targeting specific enzymes of the adrenal cortex are
currently the most promising and are the only theranostic radiopharmaceuticals ever used
in patients to date. The theranostic twin [123/131I]IMAZA has shown good image quality
and a good therapeutic effect in selected patients with advanced ACC, but cannot be used
in all patients with ACC. Therefore, future developments are needed in order to provide a
radiopharmaceutical with broader applications.
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(grant Z-2/91 to W.S.).
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