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Abstract: The NS2B-NS3 protease (NS2B-NS3pro) is regarded as an interesting molecular target
for drug design, discovery, and development because of its essential role in the Zika virus (ZIKV)
cycle. Although no NS2B-NS3pro inhibitors have reached clinical trials, the employment of drug-
like scaffolds can facilitate the screening process for new compounds. In this study, we performed
a combination of ligand-based and structure-based in silico methods targeting two known non-
peptide small-molecule scaffolds with micromolar inhibitory activity against ZIKV NS2B-NS3pro
by a virtual screening (VS) of promising compounds. Based on these two scaffolds, we selected
13 compounds from an initial library of 509 compounds from ZINC15’s similarity search. These
compounds exhibited structural modifications that are distinct from previously known compounds
yet keep pertinent features for binding. Despite promising outcomes from molecular docking and
initial enzymatic assays against NS2B-NS3pro, confirmatory assays with a counter-screening enzyme
revealed an artifactual inhibition of the assessed compounds. However, we report two compounds,
9 and 11, that exhibited antiviral properties at a concentration of 50 µM in cellular-based assays.
Overall, this study provides valuable insights into the ongoing research on anti-ZIKV compounds to
facilitate and improve the development of new inhibitors.

Keywords: biochemical assays; NS2B-NS3 protease; scaffold similarity; virtual screening; Zika virus

1. Introduction

Zika virus (ZIKV) is an enveloped positive-strand RNA virus transmitted by mosquitoes [1].
ZIKV belongs to the family Flaviviridae and is closely related to other flaviviruses such as dengue
virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), and Japanese encephalitis virus
(JEV) [2]. In the 2016 outbreak, the World Health Organization (WHO) declared Zika infection a
public health emergency due to its association with severe symptoms, neurologic disorders (e.g.,
Guillain-Barré syndrome), and congenital syndromes, including microcephaly [3–6]. According
to the most recent WHO data from 2022, there are currently 89 countries and territories where
ZIKV is still being transmitted at relatively low levels [7]. As of June 2023, no vaccine is available,
and no therapeutic option is approved to treat Zika and its infection, with treatment relying
upon symptoms’ relief [8]. As a result, efforts have been made to monitor the disease and
develop diagnostics, vaccine candidates [8], and therapeutics. Extensive research has been
dedicated to understanding and potentially inhibiting ZIKV viral particles’ components, such
as structural and nonstructural proteins [9].

Among ZIKV molecular targets, the nonstructural protein NS2B-NS3 protease (NS2B-
NS3pro) is a promising target for anti-flavivirus drug design due to its role in proteoly-
sis and viral replication [10,11]. NS2B-NS3pro is the association of the NS3 N-terminal
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domain, a chymotrypsin-like serine protease with a conserved catalytic triad (His51-
Asp75-Ser135), with the hydrophilic region of the membrane-bound NS2B [12]. Available
three-dimensional structures of NS2B-NS3pro from ZIKV, DENV, and WNV suggested a
functioning mechanism for this target [13–20], while unbound structures have an open and
inactive conformation with a flexible and disordered NS2B C-terminal [20]. When bound
to a ligand (substrate or inhibitor), the NS2B co-factor wraps around NS3, forming a closed
and active conformation, and paired with host cell proteases (e.g., furin), it cleaves the viral
polyprotein that is essential for viral assembly and replication [19].

Different studies supported by in silico methods have proposed reversible and irreversible
inhibitors with potential broad-spectrum activity targeting ZIKV NS2B-NS3pro [21–23]. NS2B-
NS3pro inhibitors include repurposed drugs [24–28], substrate-derived peptides [13,17,29–31],
and small molecules targeting the active site [18,32,33] and allosteric sites [34–36]. Although
no putative inhibitors have advanced to clinical trials, these drug-like scaffolds can aid in the
development of new potential candidates. Thus, drug design efforts can focus on similarity
searches based on the concept that comparable molecules can have similar activity [37].

We focused on non-peptide small-molecule inhibitors with micromolar inhibitory activ-
ity (IC50) and binding affinity (Kd) against ZIKV NS2B-NS3pro identified by Lee et al. [33].
This set of ten inhibitors (here described as LEE-1 to LEE-10, Figure 1) was categorized into
two different scaffolds. Scaffold 1 (LEE-1, -2, -3, -4, -5, -6, -7, -8, and -10) comprises sulfon-
amide and benzothiazole groups, while scaffold 2 (LEE-9) holds sulfonamide and thiazole
connected next to each other [33]. Based on this set of inhibitors, a search in the ZINC15
database for similar commercially available compounds was conducted. Using ligand-
based and structure-based in silico methods, we screened the compounds to select those
that structurally resemble the two known scaffolds, but with modifications in important
groups that differentiate them. A set of 13 compounds was selected and evaluated using
biochemical and cellular-based assays. Taken together, our findings offer an understanding
of a group of small-molecule inhibitors that may aid in developing potential candidates as
ZIKV antivirals.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 3 of 18 
 

 

 
Figure 1. Heatmap of LEE-1-10’s Tanimoto Coefficients (Tc). The ten known inhibitors from Lee et 
al. [33] are colored from low (red) to high (blue) similarity. The hierarchical clustering dendrogram 
(left) shows the scaffold division between scaffold 1 (LEE-1, -2, -3, -4, -5, -6, -7, -8, and -10) and 
scaffold 2 (LEE-9). 

2. Results and Discussion 
2.1. Using Similarity Search to Build a Compound Library for Virtual Screening 

To find ZIKV NS2B-NS3pro inhibitors related to the two scaffolds described by Lee 
et al. [33], we searched the ZINC15 database [38] (version 2019) for compounds with any 
structural similarity employing the Substructure and Tanimoto similarity options. The 
database was queried for both scaffolds, using each of the ten compounds for substructure 
searches. This search resulted in 509 similar compounds (Supplementary Table S1). Using 
the rCDK package [39], a pair-wise chemical similarity assessment of all compounds was 
employed against the known inhibitors using the Tanimoto Coefficient (Tc) [40]. 

Although most of the known inhibitors belong to scaffold 1 (e.g., conserved 
sulfonamide, benzothiazole, and phenyl groups), an average Tc ≈ 0.51 was determined 
among them. These highlight different substituents and ring modifications (Figure 1). For 
instance, the Tc ≈ 0.84 among inhibitors LEE-1, LEE-3, and LEE-8 depicts a close similarity 
and the changes in the terminal group between chlorine, methyl, and methoxy. Therefore, 
we employed a filter of Tc ≤ 0.51 to select compounds that conserved important groups 
from this class, but that would also contain significant modifications. After applying this 
filter, we obtained a library of 365 compounds, which presented a chemical space that 
complements the scaffolds previously identified. The discovery of compounds that 
possess scaffolds remotely related to those previously reported by Lee et al. [33], while 
also exhibiting similar activity and drug-like properties, would provide promising results 
in the search for NS2B-NS3pro inhibitors, as small molecule inhibitors for this target are 
especially rare. Most of its inhibitors are positively charged and have a high molecular 
weight [21]. 

  

Figure 1. Heatmap of LEE-1-10’s Tanimoto Coefficients (Tc). The ten known inhibitors from Lee et al. [33]
are colored from low (red) to high (blue) similarity. The hierarchical clustering dendrogram (left) shows
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2. Results and Discussion
2.1. Using Similarity Search to Build a Compound Library for Virtual Screening

To find ZIKV NS2B-NS3pro inhibitors related to the two scaffolds described by
Lee et al. [33], we searched the ZINC15 database [38] (version 2019) for compounds with
any structural similarity employing the Substructure and Tanimoto similarity options. The
database was queried for both scaffolds, using each of the ten compounds for substructure
searches. This search resulted in 509 similar compounds (Supplementary Table S1). Using
the rCDK package [39], a pair-wise chemical similarity assessment of all compounds was
employed against the known inhibitors using the Tanimoto Coefficient (Tc) [40].

Although most of the known inhibitors belong to scaffold 1 (e.g., conserved sulfon-
amide, benzothiazole, and phenyl groups), an average Tc ≈ 0.51 was determined among
them. These highlight different substituents and ring modifications (Figure 1). For instance,
the Tc ≈ 0.84 among inhibitors LEE-1, LEE-3, and LEE-8 depicts a close similarity and
the changes in the terminal group between chlorine, methyl, and methoxy. Therefore,
we employed a filter of Tc ≤ 0.51 to select compounds that conserved important groups
from this class, but that would also contain significant modifications. After applying this
filter, we obtained a library of 365 compounds, which presented a chemical space that
complements the scaffolds previously identified. The discovery of compounds that possess
scaffolds remotely related to those previously reported by Lee et al. [33], while also exhibit-
ing similar activity and drug-like properties, would provide promising results in the search
for NS2B-NS3pro inhibitors, as small molecule inhibitors for this target are especially rare.
Most of its inhibitors are positively charged and have a high molecular weight [21].

2.2. Virtual Screening of Compounds Based on Competitive Inhibitors

To search for novel inhibitors of ZIKV NS2B-NS3pro, we performed molecular docking-
based virtual screening (VS) of our library. Since LEE-2 and LEE-3 were reported as
competitive inhibitors [33], we focused on the NS2B-NS3pro substrate-binding site. This
site contains the catalytic triad, His51, Asp75, and Ser135, and is shallow, solvent-exposed,
and negatively charged according to available ZIKV NS2B-NS3pro structures [15]. In a
previous study [41], we established a putative binding mode for LEE-2 and LEE-3 in the
active site by combining docking and molecular dynamics simulations. These proposed
binding modes were stable and anchored by non-covalent interactions, such as aromatic
stacking, hydrophobic, and hydrogen bonds with conserved NS2B-NS3pro active site
residues [41].

Thus, to preserve this interaction profile, we used DOCK6’s flexible ligand protocol [42]
combined with the MultiGrid [43] score function. In this docking approach, a non-bonded
interaction energy signature between protein residues and a reference ligand is generated
and compared to a candidate signature (i.e., protein residues that interact strongly with
the reference ligand) and is used to generate individual grids [43]. These grids allow the
algorithm to assess the intermolecular energy profile between the reference and a given
ligand pose on each grid, prioritizing poses that interact with the target protein, such as the
reference ligand.

Inhibitors LEE-2 and LEE-3 had similar energy signatures (Supplementary Figure S1A)
and stable binding modes (Supplementary Figure S1B,C). Van der Waals and electrostatic in-
teraction energies (kcal/mol) highlighted NS2B residues Ser81* (* indicates NS2B residues),
Gly82*, and Asp83*, and NS3 residues His51, Val52, Lys54, Asp75, Pro131, Ser135, Tyr150,
Gly151, Asn152, and Tyr161. Some of these residues are conserved and known to be
involved in the recognition of substrates and different inhibitors, such as His51, Asp75,
Ser135, and Tyr161 in NS2B-NS3pro from other flaviviruses [13,17–19]. Also, Asp83* is
specific to ZIKV and aids in stabilizing the substrate in its NS2B-NS3pro catalytically active
configuration [19,44,45]. Therefore, we performed molecular docking of the 365 compounds
guided by both signatures to prioritize binding modes that interact with the same residues.

Poses that predicted binding site complementarity and at least one hydrogen bond with
a protein residue were visually inspected [46]. Thus, we selected 36 compounds with scores
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ranging from −47.70 to −34.95 kcal/mol (Supplementary Table S2). Most hydrogen bond
interactions occurred between compounds and residues His51, Asp83*, Tyr161, and Ser135.
Among this set, we purchased 13 compounds (Table 1, Supplementary Figures S2 and S3),
which can be divided into five groups (two clusters and three singletons) based on their
scaffolds (Figure 2A) that preserved some elements of scaffold 1 from Lee et al. [33] but have
low similarity with them (average Tc of 0.34) (Figure 2B).

Table 1. Final compound selection to be tested against ZIKV NS2B-NS3pro.
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For instance, all compounds have two phenyl groups linked by a sulfonamide, except
compound 8, in which the sulfonamide nitrogen is replaced with methylene (Table 1).
Millies et al. [35] demonstrated the significance of the sulfonamide group in ZIKV inhibitors
when an analog lacking this moiety exhibited weak activity. Compounds 8 to 11 have
a benzothiazole moiety similar to scaffold 1 from Lee et al. [33]. For compounds 1 to 7
and 12, a benzimidazole replaces the benzothiazole, distancing them from scaffold 1 from
Lee et al. [33]. This inclusion of both benzothiazole and benzimidazole moieties within
scaffolds is of interest, as benzothiazole groups are shown as an important structural feature
for DENV and ZIKV inhibitors [35,47]. Moreover, benzimidazole-derived compounds were
also identified as potential inhibitors of the hepatitis C virus and ZIKV [48,49].

2.3. ZIKV NS2B-NS3pro Inhibitory Assays

The selected compounds were subjected to inhibitory assays using a fluorogenic
substrate to monitor the ZIKV NS2B-NS3pro proteolytic activity (Table 2). An initial
inhibition test was conducted on the compounds at a concentration of 100 µM, except
for compounds 8 to 11, which were tested at 10 µM (the highest soluble concentration
in assay conditions). The test was performed with and without a 10 min preincubation
of the compounds with the enzyme to detect any time-dependent ligand binding effects
(Table 2). Most tested molecules exhibited at least 90% inhibition, regardless of preincu-
bation. Compound 3, however, exhibited less inhibition (approximately 50% at 100 µM),
and among the compounds tested at 10 µM, the highest inhibition was observed for
compound 9 (62 ± 8%). It is worth noting that the lack of time dependence observed in the
most promising inhibitors suggests that there are no discernible differences in the binding
time for this set of related molecules.

We performed an analysis of the half-maximal inhibitory concentration (IC50) for the
eight compounds that inhibited the enzyme by at least 90% in the initial screening (Figure 3
and Table 2). Notably, compounds 5 and 12 displayed an IC50 of 5 µM, while the remaining
compounds (1, 2, 4, 6, 7, and 13) showed IC50 values ranging between 13 and 28 µM. It is
worth noting that several compounds exhibited high Hill slope values, a phenomenon often
observed with aggregators [50]. Such dose–response curves are markedly steeper than
those expected for true competitive inhibitors, usually characterized by a Hill coefficient of
1.0 [51]. Except for compound 4, we detected Hill slope values ranging from 1.5 to 6.7 for
all tested compounds (Supplementary Table S3), and although high coefficients can stem
from other causes, these findings strongly suggest colloidal aggregation.



Pharmaceuticals 2023, 16, 1319 7 of 16

Table 2. Final compound selection to be tested against ZIKV NS2B-NS3pro.

% ZIKV NS2B/NS3pro Inhibition (100 µM) ZIKV
NS2B/NS3pro

IC50 (µM)

% ZIKV NS2B/NS3pro
Inhibition % Cruzain

Inhibition b

Compound With
Preincubation

Without
Preincubation

0.001%
Triton 0.01% Triton BSA [Enzyme] =

0.2 nM b
[Enzyme] =

2 nM b

1 100 ± 0 100 ± 0 93 ± 8 47 ± 34 69 ± 6 13 ± 3 45 ± 0.1 26 ± 7 97 ± 7
2 100 ± 0 100 ± 0 94 ± 7 30 ± 19 32 ± 2 18 ± 4 30 ± 0.1 28 ± 7 42 ± 11
3 57 ± 22 56 ± 11 ND ND ND ND ND ND ND
4 100 ± 0 100 ± 0 93 ± 8 25 ± 15 45 ± 4 21 ± 2 44 ± 0.2 29 ± 8 −12 ± 9.1 c

5 100 ± 0 100 ± 0 93 ± 3 6 ± 8 94 ± 8 5 ± 3 62 ± 0.1 23 ± 8 69 ± 24
6 100 ± 0 99 ± 2 89 ± 6 7 ± 9 55 ± 20 19 ± 2 99 ± 0.4 66 ± 21 ND
7 100 ± 0 90 ± 8 88 ± 5 12 ± 17 89 ± 7 19 ± 4 87 ± 0.04 27 ± 6 ND

8 a 8 ± 8 15 ± 11 ND ND ND ND ND ND ND
9 a 62 ± 8 58 ± 8 90 ± 3 12 ± 7 0 ND ND ND ND
10 a 42 ± 3 30 ± 12 87 ± 3 8 ± 3 0 ND ND ND ND
11 a 13 ± 4 9 ± 7 ND ND ND ND ND ND ND
12 100 ± 0 91 ± 9 90 ± 5 5 ± 7 87 ± 18 5 ± 1 94 ± 0.06 30 ± 10 ND
13 95 ± 2 100 ± 1 100 ± 0 45 ± 9 57 ± 15 28 ± 1 43 ± 0.1 26 ± 10 ND

a Compounds evaluated at 10 due to solubility limitations b Compounds were evaluated at a concentration close
to their IC50 values against ZIKV NS2B/NS3pro: 25 µM in the case of compounds 1, 2, 4, 6, 7, and 13; 10 µM for
compounds 5 and 12. c Enzyme activation was observed instead of enzyme inhibition. ND = not determined
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Figure 3. IC50 curves for NS2B-NS3pro inhibitors. Curves for compounds 1 (A), 2 (B), 4 (C), 5 (D),
6 (E), 7 (F), 12 (G), and 13 (H) are represented. Each curve was based on the percentage of ZIKV
NS2B-NS3pro inhibition in the presence of seven compound concentrations. Each condition was
assessed in triplicate and repeated in two independent assays (n = 6 data points).

Confirmatory assays were subsequently assessed to detect eventual false positives
among these compounds. The most common cause of artifactual inhibition in enzymatic
assays is colloidal aggregation [50,52], which can be formed by some molecules (therefore
called aggregators), resulting in promiscuous inhibition. We employed four approaches
to detect eventual aggregators among our compounds: changing the detergent present in
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the assay buffer and its concentration, pre-incubation with bovine serum albumin (BSA),
compound evaluation at different enzyme concentrations, and performing an assay against
the enzyme cruzain from Trypanosoma cruzi (T. cruzi), herein referred to as a counter-
screening enzyme test.

First, changing the detergent concentration in the assay buffer represents a cost-
effective way of obtaining information regarding an aggregator [53]. Increasing detergent
concentrations is expected to reduce inhibitory activity by disrupting aggregates, thus
suggesting false positives. Here, we investigated the effects of modifying the buffer with
0.001% to 0.01% Triton X-100 on inhibitory activity for all tested compounds (Table 2), and a
significant reduction in inhibitory activity was observed when the detergent concentration
was increased.

Subsequently, compounds were pre-incubated with BSA before adding the enzyme
and initiating the proteolytic reaction [51]. This aims to assess whether BSA could saturate
the protein-binding capacity of the aggregates before the addition of ZIKV NS2B-NS3pro,
which would cause a reduction in inhibition of the proteolytic activity. Around a 30–70%
reduction in inhibition was observed for compounds 1, 2, 4, 6, and 13 (Table 2), which
provide evidence of colloidal aggregation.

Furthermore, we assessed the compounds’ sensitivity to ZIKV NS2B-NS3pro concen-
tration, considering that as enzyme concentration increases, the percentage of inhibition by
aggregators tends to decrease [51]. As expected, we observed that all compounds exhibited
up to a 60% reduction in inhibitory activity upon a 10-fold increase in enzyme concentration
(Table 2).

Last, we also tested the inhibitory activity of the compounds against cruzain. Un-
fortunately, compounds 6 and 13 were insoluble in the cruzain assay buffer. However,
compounds 1, 2, and 5 showed 40–100% inhibition against the cysteine protease, as ex-
pected for promiscuous inhibitors such as aggregators [51]. Conversely, no inhibitory
activity of compound 4 was observed against cruzain, suggesting a specific inhibition of
ZIKV NS2B-NS3pro. Despite this specificity, aggregation is a condition-dependent phe-
nomenon [50], and while the detection of promiscuous inhibition is a strong indication of
aggregation, it is also possible to observe specificity because of the lack of aggregation in
an assay buffer.

Altogether, these results show that the inhibition observed is due to colloidal aggre-
gation, which reinforces the importance of careful compound validation in biochemical
assays, even when working with a series related to literature leads. In a parallel study, we
also evaluated the compounds LEE-2 and LEE-3 after resynthesis and verified that any
inhibition observed was due to colloidal aggregation [54]. Similarly, for a series of thiosemi-
carbazones with potent trypanocidal activity recently reported [55], it was demonstrated
that cruzain inhibition at low nanomolar concentrations was due to colloidal aggregation.
It is worth noting that thiosemicarbazones are well-established as potent cysteine protease
inhibitors [56]. Aggregators were also identified among a series of competitive cruzain in-
hibitors, either solely responsible for enzyme inhibition or resulting in a dual mechanism of
inhibition [55,57,58], which also highlights the need for continued monitoring for possible
false positives while attempting to optimize bioactive compounds.

Finally, we highlight the importance of experimentally investigating aggregation. It is
tempting to develop computational models to predict aggregation, and models with rea-
sonable accuracy [59,60] have been developed. However, it is also known that even drugs
successfully used in the clinic can aggregate at high concentrations [61]. Considering the
concentration- and buffer-dependency [50,61] reported for colloidal aggregators, it is essen-
tial to experimentally investigate if the compound of interest aggregates at concentrations
similar to those in which biochemical inhibition is observed.

2.4. Antiviral Activity Evaluation against ZIKV

In parallel with biochemical validation, the selected set of 13 compounds was assessed
with a single MTT assay in 96-well microplates. Compounds showed CC50 values ranging
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from <12.5 to 119.79 ± 3.68 µM (Table 3). The effective concentration of 50% (EC50) was also
assessed with MTT (same conditions as previous), adding a viral suspension (MOI of 0.1)
of ZIKV (PE243). Here, two compounds, 9 and 11, showed antiviral activity at 50 µM,
resulting in selectivity indexes (SI) of 2.02 and 1.47, respectively. These compounds that
showed antiviral activity could be evaluated in the enzyme assays only at concentrations up
to 10 µM, due to their low solubility in the assay buffer. It is also important to consider that
experimental determination of inhibitors should follow in vitro determination in cellular-
based assays (e.g., cytotoxicity and antiviral activity) [62,63], and those may complement
initial computational approaches and target validation, such as the proposed ZIKV NS2B-
NS3pro inhibitors presented in this study. Therefore, further experiments are needed to
determine the mode of action of compounds 9 and 11.

Table 3. Biological evaluation of the selected compounds against ZIKV (PE243).

Compound CC50 (µM) EC50 (µM)

1 22 ± 0.79 NA
2 32.47 ± 1.95 NA
3 119.79 ± 3.68 NA
4 57.11 ± 1.86 NA
5 <12.5 NA
6 38.36 ± 2.18 NA
7 32.76 ± 1.55 NA
8 23.57 ± 1 NA
9 100.95 ± 4.23 50
10 76.21 ± 3.81 NA
11 73.36 ± 4.02 50
12 <12.5 NA
13 <12.5 NA

Ribavirin a >100 4.1 ± 0.35
a Results from Serafim et al. [64]. NA = not active.

3. Materials and Methods
3.1. Similarity Search Approach

We queried the ZINC15 database (version 2019) [38] to retrieve compounds with simi-
lar structures and substructures. Specifically, the SMILES representation of the ten known
inhibitors (IC50 < 50 µM), from Lee et al. [33], were individually used as queries employing
the Substructure and Tanimoto similarity search options to find commercially available
compounds. The scaffold of these inhibitors incorporates benzothiazole, thiazole, and
sulfonamide moieties, relevant to ZIKV NS2B-NS3pro inhibitors [35]. ZINC15 results
were saved in SMILES format. SMILES were converted into ECFP [65] fingerprints with
the R package rCDK (version 2.4.0) [39]. The Tanimoto coefficient (Tc) was used to com-
pare compounds’ fingerprints, forming a matrix with values from 0 (no similarity) to
1 (identical) [66]. Thus, higher Tc values show more similarity between compounds, and a
molecule compared to itself has a Tc of 1. We selected compounds that had Tc ≤ 0.5 with
all the ten known inhibitors for molecular docking. Thus, we expected compounds that
were different but maintained the scaffolds of the known inhibitors.

3.2. Dataset Preparation

When available, three-dimensional structures were obtained directly from ZINC15 [38]
in the MOL2 format. The ones with only SMILES format were converted to three-dimensional
structures with OpenBabel (version 2.3.2) [67] and Avogadro (version 1.2.0) [68]. All com-
pounds were minimized with 100 steps of the steepest descent algorithm to attain low-energy
conformations using OpenBabel (version 2.3.2) [67]. AM1-BCC partial charges were assigned
using the Antechamber module [69] for all compounds.
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3.3. Virtual Screening by Molecular Docking

Molecular docking was performed with DOCK6 (version 6.8) [70] with the flexible
ligand protocol described in Mukherjee et al. [42] paired with the MultiGrid score [43].
Previously in Santos et al. [41], we refined and relaxed structures of ZIKV NS2B-NS3pro
complexed to LEE-2 and LEE-3 [33] using molecular docking and molecular dynamics.
Thus, in this work, the atomic coordinates of these complexes were employed as a reference,
preserving the hydrogen atoms and protonation states of the standard receptor residues
from Santos et al. [41]. Catalytic residues His51 and Ser135 were both neutral, with the
His51 tautomer protonated at Nδ (HID), while Asp75 was deprotonated, and all remaining
aspartic and glutamic acids were also preserved as deprotonated. Protein atomic partial
charges from the AMBER FF14SB [71] force field were kept. The final compounds were
selected based on docking scores, protein–ligand interactions, and overall binding site
complementarity by visual inspection [46].

3.4. NS2B-NS3pro Expression and Purification

The expression and purification protocol used to obtain the ZIKV NS2B-NS3pro
was first described by Lei et al. [19], and the same group kindly provided the construct
in a pET-15b plasmid. The construct codes for NS2B-NS3pro come from the Brazilian
isolate BeH823339, with a Gly4-Ser-Gly4 linker between the two protein chains and
four-point mutations: R96A (in NS2B) and R29G/C80S/C143S (in NS3) (SisGen acces-
sion code: ACCD10D).

BL21-DE3 cells were transformed using this plasmid and were grown overnight (12 h)
at 37 ◦C and 200 rpm of constant agitation in 12.5 mL of 2xYT sterile media containing
100 µg/mL of ampicillin. Next, the grown media was added to 1 L of media under the
same conditions. After achieving an optical density of 0.7 ± 0.1, protein overexpression
was inducted with 1 mM of isopropyl-β-D-galactoside (IPTG), and the culture was kept
overnight at 20 ◦C and 200 rpm of constant agitation. Next, the inducted media was
centrifuged for 30 min at 5000 rpm at 4 ◦C, and the cells were resuspended using 20 mL of
buffer A (25 mM Tris-HCl, 10 mM NaCl, 5% glycerol, pH 8.5). Finally, the cells were lysed
via sonication under on/off pulses of 20/40 s in ice and centrifuged at 4 ◦C and 10,000× g
for 1 h.

The supernatant was injected into a 5 mL HisTrap Sepharose HP (GE Healthcare,
Chicago, IL, USA) nickel column. First, the ZIKV protease was eluted at a flow rate of
1 mL/min of buffer and a linear gradient covering 5 column volumes from 0 to 100% of
buffer B (25 mM Tris-HCl, 500 mM NaCl, 500 mM imidazole, 5% glycerol, pH 8.5). Next,
the protein solution was loaded into a HiLoad 16/600 Superdex 75pg (GE Healthcare)
gel-filtration column and eluted using buffer A at a flow rate of 0.1 mL/min by 1.2 column
volumes. The resulting protein samples were stored at −80 ◦C.

3.5. NS2B-NS3pro Enzyme Assays

To evaluate the ZIKV protease complex’s activity cleavage of a modified peptide (Bz-Nle-
Lys-Lys-Arg-AMC) was monitored using the fluorescent group 7-Amino-4-Methylcoumarin
(AMC) combined with a benzoyl (Bz) quencher group. Fluorescence from the substrate
cleavage was measured for 10 min using a microplate spectrofluorometer (Biotek Synergy 2,
Winooski, VT, USA), with an excitation wavelength of 340 nm and an emission wavelength of
440 nm. These experiments were conducted on 96-well flat-bottom black microplates. A linear
adjustment technique was employed to establish the initial reaction velocity of the potential
inhibitors, which were compared to a control containing DMSO. Each condition was tested in
triplicate and two independent assays (n = 6 data points).

Before the assays against the enzyme, the compounds’ solubility when dissolved
in the assay buffer at a concentration of 100 µM was evaluated by visual inspection of
transparent microplates and microtubes. Compounds 8–11 were insoluble at 100 µM and
were therefore tested at their highest soluble concentration (10 µM). During the preliminary
screening phase, the compounds underwent two distinct assays: one with a 10 min pre-
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incubation period with the enzyme and one with no pre-incubation step. Both assays
occurred in a buffer solution comprising 10 mM Tris-HCl at pH 8.5, 0.005% Tween-20,
and 5% glycerol. The final assay conditions consisted of an enzyme concentration of
0.2 nM and a substrate concentration of 44 µM. Compounds that exhibited a 90% or
higher inhibition of the enzyme’s activity at 100 µM underwent a concentration-response
inhibition assay under the same buffer conditions to determine their IC50 values. Nonlinear
regression analysis employing a four-parameter logistic curve with a variable slope was
used to calculate concentration-response curves. GraphPad Prism 6.0 software (GraphPad
Software, San Diego, CA, USA) was used for data analysis.

Confirmatory assays of promising compounds were conducted by adapting well-
established assays [51]. Briefly, to assess the compounds’ sensitivity to detergent, we
determined percentages of enzyme inhibition in the presence of 0.001% and 0.01% Triton
X-100, without the addition of Tween-20, after a 10 min pre-incubation of the compounds
with the enzyme. In a second assay, we evaluated the effect of compound pre-incubation
with bovine serum albumin (BSA) for 10 min, followed by the addition of the protease
and another 10 min incubation before the addition of the substrate solution to start the
enzymatic reaction. For this assay, the final concentrations of substrate and enzyme and
buffer conditions were maintained the same as those used in the initial screening, while
the final BSA concentration was set to 1 mg/mL. Last, we evaluated the impact of enzyme
concentration on the assays with the protein detergent CHAPS 1 mM and each compound
at a concentration close to its IC50. The assay was performed by varying the NS2B-NS3pro
concentration (0.2 nM and 2 nM). The compounds were pre-incubated with the enzyme for
10 min at 37 ◦C.

3.6. Cruzain Enzyme Assays

Cruzain activity was measured by monitoring the fluorescence signal obtained by
cleavage of the fluorogenic substrate Z-Phe-Arg-AMC, following a well-established
protocol [55,57,72,73]. The fluorescence intensity (excitation λ: 340 nm; emission λ:
440 nm) was monitored for at least 5 min. All assays were performed in sodium acetate
0.1 M at pH 5.5 and β-mercaptoethanol 10 mM. The final protein concentration was
0.1 nM, and the substrate concentration was 2.5 µM. Each condition was tested in tripli-
cate and two independent assays (n = 6 data points), with preincubation of the enzyme
for 10 min at 25 ◦C. Assays were performed at compound concentrations near the IC50
value against ZIKV NS2B-NS3pro.

3.7. Cell Lineage and Virus Strain

Viruses were kindly provided by the Laboratório de Vírus at UFMG, Brazil. Zika
virus (ZIKV) PE243 was obtained as described by Donald et al. [74]. The Vero (ATCC®

CCL-81™) cell line was used for the cytotoxicity assays and antiviral activity evaluation
against ZIKV. Cells were cultured in Eagle’s minimum essential media (MEM) (Culti-
lab, Campinas, Brazil). The media was supplemented with 5% fetal bovine serum (FBS)
(Cultilab, Brazil), in addition to 100 IU/mL penicillin (Cellofarm, Rio De Janeiro, Brazil),
100 µg/mL streptomycin (Merck, Darmstadt, Germany), and 0.25 µg/mL amphotericin B
(Cultilab, Brazil). This work is registered in SisGen under number AA7854F.

3.8. Viral Propagation

Viral propagation was conducted according to Serafim et al. [64]. Vero monolayers
with 60–80% confluence were washed twice with phosphate-buffered saline (PBS) and
infected at a multiplicity of infection (MOI) of 0.01 for ZIKV, approximately one viral particle
per 100 cells. Adsorption was made for 1 h at 37 ◦C in a 5% CO2 atmosphere with 2 mL of
diluted virus in MEM (without FBS), gently homogenizing the flasks every 10 min. After
adsorption, 12 mL of MEM with 2% FBS was added to the flasks and incubated under the
same conditions. Cell monolayers were observed daily under optical microscopy until the
cytopathic effect was approximately 80%. The supernatant was removed and centrifuged
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at 2016× g in an RT6000B centrifuge (Sorvall, Thermo Scientific, Waltham, MA, USA) for
10 min at 4 ◦C. Viruses were stored at −70 ◦C.

3.9. Viral Titration

Following the previous study by Serafim et al. [64], viral titration experiments were
performed. Cells seeded in 24-well microplates (8.0 × 105 cells per well) were incubated at
37 ◦C in a 5% CO2 atmosphere for 24 h. Each well received 100 µL of ZIKV’s serial dilutions
in MEM in a 1:10 ratio (10−1 to 10−5), following adsorption for 1 h. The cells were overlayed
with 1.0 mL of 199 media (Cultilab, Brazil) with 2% FBS and 1% carboxymethylcellulose
(CMC) (Synth, Diadema, Brazil). Microplates were incubated for five days at 37 ◦C in a 5%
CO2 atmosphere and then fixed with 10% formalin overnight, gently washed with distilled
water, and stained with a 1% crystal violet solution for 20 min [75].

3.10. Cytotoxicity Assay: 50% Cytotoxic Concentration (CC50)

Cells were seeded in 96-well microplates (4.0 × 104 cells per well) and incubated at
37 ◦C and 5% CO2 for 24 h. Then, 200 µL of MEM with 1% FBS containing a serial dilution
of the compounds (100 to 12.5 µM) was added. As vehicle control, a serial dilution of
DMSO was used. After 72 h of incubation under the same conditions, 100 µL of 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; ThermoFischer Scientific,
Waltham, MA, USA) [76] diluted in MEM (0.5 mg/mL) was added to each well and
incubated for 3 h. The media was removed, and 100 µL of DMSO was added to each
well to solubilize formazan crystals and shaken for 20 min. The absorbance was read at
570 nm using a spectrophotometer (VersaMax, Molecular Devices, San Jose, CA, USA).
The percentages of inhibition of cell viability were calculated as the ratio between the
absorbance of the compound-treated cells and cells with only the vehicle. The cytotoxic
concentration of 50% (CC50) is defined as the lowest concentration of a specific compound
that reduces by 50% the viability of cultured cells. Linear regression (LR) was used for the
analysis, considering results with r2 > 0.9. All conditions were tested in triplicate and one
independent assay (n = 3 data points).

3.11. Antiviral Activity Assay: 50% Effective Concentration (EC50)

Cells were seeded in 96-well microplates (4.0 × 104 cells per well) and incubated at
37 ◦C and 5% CO2 for 24 h. Then, 100 µL of MEM with 1% FBS containing a serial dilution
of the compounds below their CC50 values (ranging from 100 to 6.25 µM) was added
together with 100 µL of the viral suspensions (MOI of 0.1) in MEM with 1% FBS. Wells
that contained only viruses were used as infection control, with a serial dilution of DMSO.
Treatment with MTT follows the same protocol as for CC50. The EC50 was calculated as
the percentage of the ratio between the absorbance of the compound-treated infected cells
and infected cells with vehicle only. Ribavirin was added as a comparison control. LR was
also used for the analysis, considering results with r2 > 0.9. All conditions were tested in
triplicate in one independent assay (n = 3 data points).

4. Conclusions

We used a ligand-based in silico approach to screen compounds that structurally
resembled ten known competitive inhibitors of NS2B-NS3pro but contained significant
modifications. The compounds were then submitted to a structure-based molecular docking
protocol that guided and prioritized binding modes interacting with important residues
such as His51, Asp75, Ser135, Tyr161, and Asp83*. We selected 36 compounds exhibiting
binding site complementarity and specific interactions with these residues based on visual
inspection and their score-based affinity. Thirteen compounds were then purchased and
submitted to experimental validation, in which enzyme inhibition was observed because of
aggregator characteristics. These findings highlight the crucial importance of confirmatory
tests in detecting artifacts in the experimental screenings of compounds. False positives in
enzymatic assays are frequently caused by aggregation, yet this issue is often overlooked
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in studies in this field. Nonetheless, it is worth noting that two compounds, termed
compounds 9 and 11, exhibited an EC50 of 50 µM in antiviral assays with SI values of 2.02
and 1.47, respectively. Additional research is needed to study their mode of action since they
showed limited solubility in the assay buffer and could not be extensively characterized in
enzymatic assays. Taken together, these findings contribute to a better understanding of
the behavior of serine proteases and their inhibitors and may aid in the design, discovery,
and especially development of potential lead candidates for the treatment of Zika.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/ph16091319/s1; Table S1: Number of compounds found on ZINC15
that have any similarity with Lee et al. inhibitors; Figure S1: Interaction signature and putative
binding modes of LEE-2 and LEE-3; Table S2: Zinc ID, ID, score, and hydrogen bond (hbond) count
for the selected 36 compounds; Figure S2: Binding modes of chosen compounds 1, 2, 3, 4, 5, 6, 7, and
12 from molecular docking; Figure S3: Binding modes of chosen compounds 8, 9, 10, 11, and 13 from
molecular docking; Table S3: Hill coefficient retrieved from dose–response curves for the most potent
ZIKV inhibitors.
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