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Abstract: Monoamine oxidases (MAOs) are a family of flavin adenine dinucleotide-dependent
enzymes that catalyze the oxidative deamination of a wide range of endogenous and exogenous
amines. Multiple neurological conditions, including Parkinson’s disease (PD) and Alzheimer’s
disease (AD), are closely correlated with altered biogenic amine concentrations in the brain caused
by MAO. Toxic byproducts of this oxidative breakdown, including hydrogen peroxide, reactive
oxygen species, and ammonia, can cause oxidative damage and mitochondrial dysfunction in brain
cells. Certain MAO-B blockers have been recognized as effective treatment options for managing
neurological conditions, including AD and PD. There is still a pressing need to find potent therapeutic
molecules to fight these disorders. However, the focus of neurodegeneration studies has recently
increased, and certain compounds are now in clinical trials. Chromones are promising structures
for developing therapeutic compounds, especially in neuronal degeneration. This review focuses
on the MAO-B inhibitory potential of several synthesized chromones and their structural activity
relationships. Concerning the discovery of a novel class of effective chromone-based selective MAO-
B-inhibiting agents, this review offers readers a better understanding of the most recent additions to
the literature.

Keywords: chromones; neurodegenerative disorders; monoamine oxidase-B; structure-activity
relationship; Parkinson’s disease; Alzheimer’s disease

1. Introduction

According to epidemiological data, Parkinson’s disease (PD) and Alzheimer’s dis-
ease (AD) are the most prevalent neurological illnesses. These conditions substantially
negatively impact the suffering of individuals, relatives, caretakers, and the community.
Unfortunately, only palliative treatments are currently available, which makes the design
and creation of novel medications necessary [1–3]. AD is a neurological condition primarily
affecting older people and is characterized by memory loss and dementia [4,5]. A range of
illnesses, mostly related to neuronal cells in the human brain, are called neurodegenera-
tive diseases. These disorders, often age-dependent, can be broadly characterized by the
gradual degradation of the framework and functioning of the central or peripheral nervous
systems [6–9]. Because neuronal cells are the basic units of the neurological system, they
seldom reproduce or replenish themselves, and neuronal destruction or demise results in

Pharmaceuticals 2023, 16, 1310. https://doi.org/10.3390/ph16091310 https://www.mdpi.com/journal/pharmaceuticals

https://doi.org/10.3390/ph16091310
https://doi.org/10.3390/ph16091310
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0002-7131-2496
https://orcid.org/0000-0002-2944-7856
https://orcid.org/0000-0002-7203-3712
https://doi.org/10.3390/ph16091310
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph16091310?type=check_update&version=1


Pharmaceuticals 2023, 16, 1310 2 of 31

an inevitable loss of memory and cognitive impairments in people; however, under rare
circumstances, it could lead to impairments in movement, speech, and breathing [10].

The World Health Organization (WHO) has projected that 50 million individuals will
live with dementia worldwide by 2020, with approximately 10 million new cases occurring
yearly. This number is expected to increase to 152 million by 2050. According to the WHO,
AD may be a factor in 60–70% of dementia cases [6,11]. Despite numerous investigations
into novel treatments in various phases of clinical trials, no effective therapies cure or
reduce the progression of neurodegenerative illnesses [12–14]. Existing therapies may help
alleviate most associated psychological and physical symptoms [12,15].

Monoamine oxidase (MAO) is a flavin adenine dinucleotide-dependent enzyme that
is mainly found on the outer surface of mitochondria and is responsible for the oxida-
tive breakdown of monoamines, including neurotransmitters such as dopamine, nore-
pinephrine, as well as 5-hydroxytryptamine (serotonin) [16–19]. MAO-A and MAO-B are
two subtypes that differ in tissue distribution, substrate particularity, susceptibility to par-
ticular inhibiting agents, and amino acid sequence [20,21]. Specifically, MAO-A deaminates
noradrenaline, whereas MAO-B preferentially deaminates phenylethylamine, serotonin
(5-hydroxytryptamine), and benzylamine [22]. MAO-B is primarily present in glial cells in
the brain [23], whereas MAO-A is found in noradrenergic, serotonergic, and dopaminergic
nerves and extra-neuronal compartment terminals [24]. Specific MAO-B blockers have
been employed with levodopa to treat PD, whereas specific MAO-A-inhibiting agents have
been utilized as antidepressants and anxiolytics [25–28]. MAO catalyzes the generation of
hydrogen peroxide (H2O2) and reactive oxygen species (ROS), which may lead to oxidative
stress and cell damage, ultimately leading to the progression of neurodegenerative disor-
ders (ND); therefore, the concurrent inhibition of MAO may provide additional advantages
for the treatment of ND [29–31]. MAO inhibitors are uncommon in clinical settings because
only two medications, rasagiline and selegiline, have been approved for use as MAO-B
blockers [32]. Both inhibitors have irreversible effects and are used to treat PD. Another
MAO-B inhibitory compound, safinamide, has been clinically tested and functions as a
reversible blocker [33]. Various scientific communities have focused on searching for novel
MAO-B blockers with characteristics similar to those approved because of the limited
number of -B blockers accessible for clinical use [34].

This review is solely concerned with substances belonging to the chromone class with
MAO-inhibitory capabilities. The well-known MAO-B blockers chalcones and coumarins
share structural similarities with chromones (Figure 1).
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As shown in Figure 1, the structures of chalcones and coumarins are closely related
to those of chromones. The MAO-B inhibitory properties of coumarins and chalcones
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have been reported in numerous studies [35–39]. Considering the similarities between
these structures and chromones, further studies are needed to identify novel therapeutic
candidates.

2. Chemistry of Chromones

Chromones (4H-chromen-4-one,4H-1-benzopyran-4-one) are a significant class of
oxygen-containing heterocyclic compounds with a benzoannelated-pyrone ring [40,41].
They belong to the flavonoid family, which includes isoflavones and flavones (Figure 2).
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Figure 2. Structure of a chromone, isoflavone, and flavone.

The development of substituted chromone analogs has an extensive background
and is of great interest [42]. One of the most frequently used methods for producing
chromones is the Claisen–Schmidt condensation of an aromatic aldehyde with an ortho-
hydroxyarylketone, followed by cyclization [43,44] (Scheme 1). The small polar surface area
(PSA) of chromones promotes blood–brain barrier crossing, which is primarily responsible
for chromone-derived substances’ ability to exert their effects on the CNS. Numerous
heterocyclic scaffolds have been considered for developing novel MAO-B inhibitors be-
cause isoform selectivity is a major concern. Isomers of coumarin, called chromones
(4H-1-benzopyran-4-one), constitute the flavone backbone. The chromone ring system is
regarded as a favored scaffold owing to its range of pharmacological and biological effects
and the minimal risk of toxicity associated with chromone derivatives. Compounds derived
from chromone scaffolds inhibit MAO. The AChE inhibitory potential of chromones was
also investigated [45,46]. As dopamine D2 receptor agonists, chromones have been shown
to mimic the actions of dopamine in the body, making them a potentially useful class of
drugs for treating PD [47]. Chromones have been shown to have a significant capacity
to adhere to adenosine receptors and have been studied clinically for managing PD and
various CNS disorders [48–52].
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Studies investigating the specificity of chromones have discovered that the methyl
substitution on the chromone ring seemed more crucial for MAO-B inhibition than that
of MAO-A. The current review, therefore, focuses on investigating the structure–activity
relationship (SAR) and different methods of synthesis of various substituted chromones to
determine how they affect MAO inhibitory activity.

3. SAR Studies of Chromone as MAO-B Inhibitors

Li et al. (2017) reported the discovery of multipurpose chromone-containing ligands
with the potential for MAO inhibition, reaction with β-amyloid, chelation with metals,
antioxidant activity, and regulation of reactive oxygen species [29]. They employed phenolic
hydroxyl groups and Schiff bases as metal chelators. Target multifunctional ligands (MLs)
were modified with phenolic substituents because they are known to have antioxidant
properties. Several unique chromone derivatives were obtained and positioned at the C3
position of the pyrone ring as a result of the functionalization of the chromone nucleus. The
compounds were prepared by condensing an aldehyde with an aromatic amine in ethanol
under reflux conditions, which is the traditional technique for imine synthesis shown in
Scheme 2.
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Scheme 2. Synthesis of chromones based on Schiff’s base compounds (1–23).

Figure 3 shows that adding different substituents to the phenyl ring or chromone moi-
ety improved hMAO-B activity compared to compound 1 with no substitution
(IC50 = 31.5 µM). It was found to be more effective in inhibiting MAOs when the bromine
substitution was at the R4 position of the chromone, as in the cases of 8–13 and 12, with the
F substitution at the R2 position of the phenyl ring. Introducing the methyl group in the R4
position of compounds 14–19 showed better activity than other analogs. Still, compound
18 showed the least inhibitory activity, with an IC50 value of 21.45 µM for hMAO-B, with
the CH3 group at the R2 position. The highest inhibitory activity was demonstrated by
compound 16, which had a methyl substitution at the R4 position, and in the R3 position
of the phenyl ring, a chlorine group was introduced. The IC50 of 0.634 µM is roughly
12 times more active than the standard iproniazid (IC50 = 7.98 µM). A complete loss of
inhibitory activity was observed when Cl group 15 was replaced with NO2 group 14 at
the R2 position of the phenyl ring. Compounds 12, 13, 15, 16, and 19 demonstrated potent
MAO inhibitory activities. The phenyl ring in the proposed compounds was changed to
a different naphthalene ring 20 and pyridine rings 21–23, which were found to have less
potent activity. According to this study, it can be concluded that the NO2 and CH3 groups
at R3 decrease MAO activity, whereas halogens such as chlorine or fluorine can cause a
marked increase in activity. More potency was found with a methyl substitution at R4.



Pharmaceuticals 2023, 16, 1310 5 of 31

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 5 of 34 
 

 

decrease MAO activity, whereas halogens such as chlorine or fluorine can cause a marked 

increase in activity. More potency was found with a methyl substitution at R4. 

 

Figure 3. SAR study of chromone derivatives as MAO-B inhibitors. 

A docking study was performed using this protein (PDB ID:2V61). Figure 4 explains 

the two-dimensional interaction, which showed that the FAD cofactor was situated near 

the chromone moiety of 19 and that the phenyl group of 19 had a π-π stacking interaction 

with Tyr435 at a distance of 3.18 Å. Tyr326 was involved in a π-π stacking contact with 

the amide carbonyl of 19 separated by a distance of 3.49 Å. Additionally, the hydrophobic 

pocket in the entrance cavity created by Leu171, Ile198, and Ile199 was occupied by the 2-

amino-4-methylphenol moiety in compound 19. These interactions may account for com-

pound 19’s effective inhibitory activity against MAO-B. 

Figure 3. SAR study of chromone derivatives as MAO-B inhibitors.

A docking study was performed using this protein (PDB ID:2V61). Figure 4 explains
the two-dimensional interaction, which showed that the FAD cofactor was situated near
the chromone moiety of 19 and that the phenyl group of 19 had a π-π stacking interaction
with Tyr435 at a distance of 3.18 Å. Tyr326 was involved in a π-π stacking contact with
the amide carbonyl of 19 separated by a distance of 3.49 Å. Additionally, the hydrophobic
pocket in the entrance cavity created by Leu171, Ile198, and Ile199 was occupied by the
2-amino-4-methylphenol moiety in compound 19. These interactions may account for
compound 19’s effective inhibitory activity against MAO-B.
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Fonseca et al. (2017) developed a set of novel coumarin and chromone derivatives
and tested their biological activities against MAO-B [1]. With a focus on the lead opti-
mization and under the guidance of the data obtained thus far, they carried out a detailed
SAR examination of the two structural isomers. Compounds 34 and 54 were the most
effective, selective, and reversible non-competitive MAO-B inhibitors. Searching for novel
chemical compounds with pharmacological activities primarily involves using heterocyclic
compounds. Benzopyrones are primarily coumarins and chromones. Chromones and
coumarins are abundant and have useful therapeutic activities, such as antioxidant, anti-
inflammatory, cardioprotective, and antibacterial effects. Coumarin-3-phenylcarboxamide
24 and chromone-3-phenylcarboxamide 25 (Figure 5) are desirable structures for the ratio-
nal creation and identification of novel MAO-B inhibitors, according to Fonseca et al. and
his research team.
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Figure 5. Coumarin-3-phenylcarboxamide (24) and chromone-3-phenylcarboxamide (25).

A library of novel coumarins 32–45 (Scheme 3) and chromones 52–65 (Scheme 4)
was synthesized and evaluated for MAO-B inhibition. Scheme 3 shows the synthesis of
coumarin derivatives by treating salicylaldehyde with diethylmalonate to obtain coumarin-
3-carboxylates 28 and 29 and coumarin carboxylic acids 30 and 31. The coumarin-3-
carboxamide derivatives 32–45 were created via the EDC-induced coupling of compounds
30 and 31 with phenylamines.
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Scheme 3. Synthesis of the coumarin derivatives 32–45. Reagents and conditions: (a) diethyl
malonate, EtOH, piperidine, reflux, overnight; (b) NaOH (0.5% aq. ethanol), reflux, 4 h; (c) EDC,
DMAP, DCM, substituted phenylamine, 0◦ to room temperature (rt), 4 h.
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Scheme 4 explains the synthesis of chromone derivatives by treating acetophenone
with phosphoryl chloride (POCl3) and N,N-Dimethyl formamide (DMF) at −10 ◦C for
15 h to obtain chromone-3-carbaldehydes (48 or 49) followed by oxidation of the formyl
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group with sodium chlorite to obtain chromone carboxylic acids (50–51). The synthesis
of chromone-3-carboxamide derivatives (52–65) required the in situ formation of an acyl
chloride intermediate, followed by the inclusion of a suitable phenylamine.

SAR analysis was conducted in response to earlier studies examining substituents’
effects at comparable positions on the isomeric scaffolds of coumarin- and chromone-based
compounds as MAO inhibitors. Adding 6-CH3 or 6-OCH3 substituents to benzopyrone-3-
phenylcarboxamide scaffolds led to strong MAO-B inhibition (Table 1). However, the 6-
methylcoumarin derivatives (32–38) were more potent than their 6-methoxy analogs (39–45).
The addition of a 6-methyl (52–58) or 6-methoxy (39–45) group to the chromone framework
had no appreciable impact on the MAO-B inhibitory activity, except for compound 52
(which lacks substituents on the exocyclic ring). Derivatives with meta-alternatives on the
exocyclic ring were shown to have increased potency in both series. Compounds 34, 54,
and 61, all of which had m-chlorine substituents, were the major active compounds in both
sets, with IC50 values of 5.07, 4.2, and 3.94 µM, respectively. The addition of substituents in
the para-group resulted in decreased activity, except for compound 43 (IC50 = 19.43 µM),
which had a p-CH3 group, as compared to compound 40 (IC50 = 47.24 µM), which had a
m-methyl group. The activity was reduced by the influence of an OH group at either the
meta- or para-position (Figure 6). The location of the benzopyrone carbonyl group on the
pyrone ring did not appear to have a significant effect, although MAO-B inhibition was
a function of this group. All compounds under investigation were selective for MAO-B
(Table 1).

Table 1. MAO inhibitory activities of benzopyrone derivatives 32–45 and 52–65.

Compound IC50 (µM)
hMAO-B Compound IC50 (µM)

hMAO-B

32 15.32 ± 1.02 52 21.35 ± 1.10
33 7.52 ± 1.05 53 17.10 ± 1.17
34 5.07 ± 1.25 54 4.20 ± 1.08
35 45.40 ± 1.30 55 78.22 ± 1.30
36 13.90 ± 1.30 56 151.6 ± 5.14
37 11.08 ± 1.20 57 45.42 ± 2.32
38 621.70 ± 1.8 58 512.6 ± 2.81
39 5.95 ± 1.28 59 41.8 ± 2.2
40 47.24 ± 1.12 60 21.80 ± 1.21
41 9.03 ± 1.07 61 3.94 ± 1.08
42 228.6 ± 1.26 62 113.5 ± 1.10
43 19.43 ± 1.19 63 210.8 ± 8.1
44 18.90 ± 1.01 64 10.31 ± 1.55
45 * 65 674.2 ± 1.72

Deprenyl 16.73 ± 1.48 Safinamide 23.07 ± 2.07
Rasagiline 49.66 ± 2.26 Clorgyline *

(*) Inactive at 100 µM.

The Reis collection of chromone was developed, synthesized, and tested for MAO and
choline esterase inhibition by Reis et al. [53]. Briefly, the chromone moiety was modified
by adding a phenylcarboxamide group at position C2 or C3 and an acrylate moiety with
a tertiary amine function at position C6. The potential byproducts of acrylate side-chain
hydrolysis were also determined, and their biological activities were assessed in vitro.
Additionally, testing was conducted on the most potent compounds, which were tested to
determine their ability to permeate the blood–brain barrier, enzyme inhibition, kinetics and
mechanisms, drug-like properties, and cytotoxicity profiles. Using models based on the
crystal shapes of the targets, molecular modeling studies were performed to understand
the interactions between the compounds and targets. The protein (PDB ID:2V5Z) was used
as the receptor model for hMAO-B.
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Scheme 5 shows the synthesis of chromone-2-phenylcarboxamide derivatives by treat-
ing 6-bromo-4-oxo-4H-chromene-2-carboxylic acid with phenylamine derivatives, followed
by microwave-assisted Pd(II)-catalyzed Heck cross-coupling using 2-(dimethylamino)ethyl
acrylates 73, 75, 77, 79, 81, and 83 or 2-(diethylamino)ethyl acrylates 74, 76, 78, 80, 82,
and 84.
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Scheme 5. Synthesis of three substituted amide-based chromones.

In Scheme 6, compound 86 (6-bromo-4-oxo-4H-chromene-3-carbaldehyde) was pre-
pared from the starting material 5′-bromo-2′-hydroxyacetophenone 85 using POCl3-induced
cyclization followed by subsequent oxidation in the presence of sodium chlorite and
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sulfamic acid to obtain bromo-4-oxo-4H-chromene-3-carboxylic acid (87). From 87, the
derivatives 88–93 were prepared by the condensation of phenylamine derivatives, followed
by a microwave-assisted Pd(II)-catalyzed Heck cross-coupling reaction, as described in
Scheme 5, to obtain chromone 3-phenylcarboxamides 94–105.
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Scheme 7 shows the synthesis of chromones 106–111 and 112–117 prepared by the acid
hydrolysis of chromone 2-phenylcarboxamides 73–84 and chromone 3-phenylcarboxamides
94–105.
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Scheme 7. Synthesis of chromone 3-phenylcarboxamides derivatives.

Compound 73, with two methyl (CH3) groups in the tertiary amine nucleus and no
substituents on the exocyclic phenyl ring, specifically inhibited MAO-B with an IC50 value
of 2.28 µM. Derivative 74 inhibited MAO-B, which has two -CH3 groups bound to the
tertiary amine and a methyl group at the para position of the chromone exocyclic phenyl
ring (Figure 7).
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Figure 7. SAR study of chromone 2-phenylcarboxamide derivatives (73–84) and its MAO-B
inhibitory activity.

Except for compounds 96, 100–103, and 105, most of the chromone 3-carboxamide
derivatives exhibited micromolar and sub-micromolar MAO-B-specific inhibition. In this
sequence, the spatial volume of the substituent on the tertiary amine and/or in the exocyclic
aromatic ring significantly influenced MAO-B inhibitory activity. Dimethyl-N-substituted
compounds 100–105 were inert towards MAOs, except for compound 104. Notable
MAO-B inhibitory activity was observed for compound 94, which had no derivatives
on the exocyclic ring. The p-CH3 group on compound 95 allowed it to selectively inhibit
MAO-B compared to MAO-A, with an SI value > 4.2 (Figure 8).
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The potential compounds 106–117, synthesized by the hydrolysis of acrylate-substitut-
ed chromones, were examined for their MAO inhibitory potential (Figure 9). The re-
sults revealed that the presence of the C6-carboxylic acid group significantly reduced
the inhibitory activity of MAO. In particular, the hydrolyzed compounds of chromone
2-phenylcarboxamide 106–111 showed no effect on either of the MAO isoforms. Compared
to the related precursors, compounds 94 and 99, chromone 3-phenylcarboxamide 112 and
117 exhibited micromolar MAO-B inhibitory activity.
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Figure 9. SAR study of chromone-2-phenyl and 3-phenyl carboxamide carboxylic acid derivatives
106–117 as MAO-B inhibitors. *, not determined.

Mpitimpiti et al. developed a novel series of 15 chromone derivatives and tested their
MAO inhibitory activity in light of earlier investigations on the possible inhibition of MAO
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by chromone compounds [54]. This study strongly emphasized the third position vs. the
potential of MAO inhibition concerning the effect of flexible side chain replacement.

Scheme 8 illustrates the preparation of ester 126–130 and amino 131–141 derivatives of
chromone by treating the chromone 3-carboxylic acid 124 with aromatic/aliphatic amines
and alcohols in the presence of carbonyldiimidazole (CDI). Although the target esters
were successfully synthesized, it is not surprising that the reaction of 122 with the amine
compounds produced chromane-2,4-diones (131–141). The results of the MAO inhibition
studies revealed that the ester derivatives were ineffective MAO inhibitors; however, several
chromane-2,4-diones showed promising MAO-B inhibition potencies. The most effective
MAO-B inhibitor was compound 133, with an IC50 value of 0.638 µM. Compound 131 is
a reversible MAO-B inhibitor. However, compound 131 was a less potent MAO inhibitor
than lazabemide, a reversible MAO-B-specific inhibitor (IC50 = 0.091 µM), assessed under
comparable laboratory conditions. Similar to previously reported C6- and C7-substituted
chromones, 135 had a much lower MAO-B-inhibiting potential. Chromones 118–120, at
least one order of magnitude more effective MAO-B inhibitors than 131, serve as indicators.
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For example, a group of chromone compounds with C6 and C7 substitutions were
shown to be efficient reversible MAO-B inhibitors. These studies have led to the devel-
opment of effective MAO-B inhibitors, including compounds 118–121. Although some of
these chromones also displayed IC50 values for MAO-A inhibition in the nanomolar range,
these derivatives were specific inhibitors of the MAO-B isoform.

Intriguingly, chromone substitution at position C5 resulted in modest MAO-B inhibi-
tion, in contrast to the C6- and C7-substituted derivatives [55]. Chromone 3-carboxylic acid
122 is an effective and selective MAO-B inhibitor (IC50 = 0.048 µM), despite that the COOH
group being present in location 2 of the 4-pyrone nucleus resulted in a decrease in activity
compound 125 [56–58]. Similarly, a phenylcarboxamide substitution at position 3 of the
4-pyrone nucleus resulted in significant MAO-B inhibition, with derivatives 123 and 124
exhibiting IC50 values of 0.40 and 0.063 µM (Figure 10) [57–59].

Figure 11 illustrates the results of the MAO inhibition experiments. Ester deriva-
tives often exhibit IC50 values between 18.6 and 66.7 µM and 9.74 and 27.3 µM, which
shows that the ester analogs are poor MAO-A and -B inhibitors, as shown in Figure 11.
The benzyl derivative was more effective than the phenyl analog when comparing the
potencies of compound 127 (benzyl-substituted) and compound 126 (phenyl-substituted).
The MAO inhibitory efficacy increased as the chain lengthened from phenyl to benzyl.
A similar phenomenon was observed when the activity of derivative 128 was compared
with that of compound 126. The MAO inhibitory action was enhanced when comparing
the 4-chlorophenyl substitution 128 to the phenyl side chain without substitution 126. A
comparison of compound 130 with compound 127 revealed a similar pattern. Compound
130 was a derivative of the 4-chlorobenzyl replacement. The introduction of chlorine had
little to no impact on the MAO inhibitory action, as shown by comparing 4-chlorophenyl
and 3-chlorophenyl substitutions 128 and 129. Therefore, it can be deduced that extending
the side chain from phenyl to benzyl and adding a Cl atom to position 3 or 4 of the side
chain improved the MAO inhibitory activity of the ester analogs.
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Figure 10. SAR study of chromone derivatives and the inhibition of MAO-B by chromone derivatives
118–125.

Table 2 illustrates that chromane-2,4-diones are specific MAO-B inhibitors, with IC50
values of 0.638–16.66 µM. Compared to ester derivatives, chromane-2,4-diones often have
higher MAO-B inhibitory effects. Compound 133, with an IC50 value of 0.638 µM, is the
most potent MAO-B inhibitor. Side chain elongation increased with MAO-B inhibition from
compounds 132 to 133 (phenyl to benzyl); however, from compounds 134 to 135, as chain
elongation increased, MAO-B inhibitory activity decreased. Compounds 136, 137, and 138
did not affect MAO-A or MAO-B, which could be attributed to adding a sterically large
chlorine atom. When the MAO inhibitory activities of compounds 132–133 were compared
with those of compounds 136–138, it was concluded that Cl substitution decreased the
MAO-B inhibitory activity. When comparing the compounds with benzyl/phenyl substitu-
tions to those with pyridyl substitutions, the former showed superior inhibition (Figure 12).
Chain elongation from pyridyl 140 to ethyl pyridyl 141 led to a two-fold increase in MAO
inhibition compared to compounds with pyridine-containing side chains. The results also
demonstrate that chromane-2,4-diones are more effective MAO-B inhibitors than ester
chromone analogs, with an IC50 value of 0.638 µM for 133 compared to 14.7 µM for 127.
For instance, phenyl-substituted molecule 132 was approximately 28 times more potent
than 126. Similarly, the MAO-B inhibitory potencies of chromane-2,4-diones 133 and 137
were much greater than those of their corresponding ester derivatives 127 and 128. The
3-aminomethylidene-2,4-chromandiones are inseparable mixtures of E- and Z-isomers,
and the MAO inhibitory potencies indicated are those of the mixtures, which should be
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emphasized. According to a study by Cagide et al., the MAO inhibitory characteristics
of four 3-(phenylamino)methylidene chromane-2,4-dione derivatives and chromane-2,4-
diones are weak MAO-A inhibitors [59]. These compounds failed to suppress human
MAO-A at the highest tested concentration of 10 µM. However, as reported by Cagide
et al., the IC50 values for 132 (0.268 µM) and 137 (0.065 µM) to inhibit human MAO-B are
considerably different from those found in the current study. Although the exact cause
of this mismatch is unknown, it could be related to the different experimental methods
employed to determine the MAO activity.
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Figure 11. SAR study of ester chromone derivatives 126 and the inhibition of MAO-A and MAO-B.

Table 2. Inhibition of MAO by 3-aminomethylidene-2,4-chromandione derivatives.

Code R
IC50 (µM)

MAO-A MAO-B

132 C6H5 79.6 0.947
133 C6H5CH2 77.9 0.638
134 C6H5(CH2)2 101 0.897
135 C6H5(CH2)3 312 1.43
136 C6H5(CH2)4 155 142
137 4Cl-C6H5 72.1 3.08
138 4-Cl-C6H5cH2 288 NI
139 3-Cl-C6H5(CH2)2 NI NI
140 C5H4N 73.1 38.7
141 C5H4N(CH2)2 41.6 16.66

NI, no inhibition at a maximum tested concentration of 100 µM.
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Over the past few decades, in both academic and professional contexts, molecular
docking has been frequently used as a quick and affordable approach. There is still no
easy and accurate way to quickly identify real ligands among a group of molecules or to
precisely pinpoint the right ligand conformation inside the binding pocket of MAO, despite
the fact that this discipline has had enough time to consolidate in many ways [60]. Based
on the crystal structures of MAO-B in combination with reversible inhibitors, it is possible
to predict that chromane-2,4-diones will bind to the active site of their moiety close to FAD,
the most polar area. The chromane-2,4-dione moiety forms hydrogen bonds with the water
molecules and amino acid residues. The 3-aminomethylidene side chain is intended to
fill the entrance cavity, lined mostly with nonpolar residues. Interestingly, the binding
positions of the trans- and cis-isomers are comparable. A π-π stacking interaction with
Tyr-398 and a π-sulfur interaction with Cys-172 are both seen, despite normal hydrogen
bonding (cis isomer). The side chain phenyl ring is stabilized by π-alkyl interactions with
Ile-199 and Ile-316, while π alkyl interactions between the chromane-2,4-dione and Leu-
171 and Ile198 and Cys-172 (trans-isomer) create the π alkyl interactions. By forming a
carbon-hydrogen bond with the benzylic H of the side chain and the C2 carbonyl oxygen
of chromane-2,4-dione, Ile-199 becomes even more significant. The phenolic oxygen of
Tyr-326 additionally forms a carbon–hydrogen bond with benzylic H. Both isomers of
132 can bind to and interact with MAO-B; according to this analysis, the binding mech-
anisms and interactions are relatively comparable. Thus, both isomers are involved in
MAO-B inhibition.

Takao et al. synthesized and assessed the MAO-A and MAO-B inhibitory properties of
18 2-styrylchromone derivatives [61]. In the prepared series, compound 150 had the greatest
MAO-B inhibitory capacity and specificity with an –OCH3 substitution at R1 and a Cl sub-
stitution at R4. Compound 150 inhibited MAO-B competitively and reversibly. They used
the pIC50 values of 2-styrylchromone derivatives to perform quantitative structure–activity
relationship (QSAR) studies using the molecular operating environment (MOE) and dragon,
which revealed significant relationships (p < 0.05). Through 3D-QSAR investigations using
AutoGPA, based on a molecular field analysis method using MOE, 2-styrylchromone struc-
tures were investigated as valuable scaffolds. Based on these findings, the 2-styrylchromone
moiety may be a good building block for novel MAO-B antagonists.

Scheme 9 explains the synthesis of the 2-styrylchromone derivatives involved in
the reaction of acetophenone derivatives with ethyl acetate, followed by intramolecular
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cyclization. The generated IIa-IIc then interacted with benzaldehyde derivatives IIIa–f in
the presence of a base.
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The inhibitory effects of 2-styrylchromone compounds 142–159 (Table 3) on MAO
(A and B) were assessed. Modifications to R3 and R4 phenyl rings and R1 and R2 chromone
rings showed several intriguing structure–activity relationships, as shown in Figure 13. We
discovered that these compounds had inhibitory effects on MAO-A.

Table 3. Inhibition of MAO by 2-styryl chromone derivatives.

Compound R1 R2 R3 R4 TC50 (µM)
MAO-A

IC50 (µM)
MAO-B

142 H H H H 0.95 0.24
143 H H H F 0.59 0.17
144 H H H Cl 0.29 0.079
145 H H H Br 0.33 0.069
146 H H H OMe 2.3 0.049
147 H H OMe OMe 25 2.8
148 OMe H H H 0.20 0.18
149 OMe H H F 0.12 0.064
150 OMe H H Cl 26 0.017
151 OMe H H Br 0.53 0.024
152 OMe H H OMe 0.21 0.19
153 OMe H OMe OMe 21 0.68
154 H OMe H H 26 0.22
155 H OMe H F 35 0.12
156 H OMe H Cl >100 0.27
157 H OMe H Br >100 0.45
158 H OMe H OMe 72 1.4
159 H OMe OMe OMe >100 10
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Compounds 142–146 and 148–151 displayed inhibitory activity, with compound 151
showing the most effective inhibition of MAO-A. Except for compound 144 vs. 150, adding
a methoxy substituent at R1 appeared to increase the MAO-A-inhibiting properties of
compounds 142 vs. 147, 143 vs. 149, 145 vs. 151, and 146 vs. 152. All MAO-A inhibitory
activities, including those of compounds 142 vs. 154, 143 vs. 155, 144 vs. 153, 145 vs. 157,
146 vs. 158, and 147 vs. 159, were reduced when the –OCH3 group was at position R2.
The ability of the derivatives to inhibit MAO-B was assessed, and it was found that all
derivatives inhibited MAO-B more potently than MAO-A. The most effective inhibitor
was compound 150, which showed inhibitory activity nearly 13 times greater than that of
pargyline, used as a positive control. Compared to pargyline, compounds 144–146, 149,
and 151 exhibited more potent inhibition, while compounds 142, 143, 148, and 152–157
displayed comparable inhibition. Additionally, 146 vs. 152, 143 vs. 149, 144 vs. 150, 145
vs. 151, and 147 vs. 153 appeared to have stronger MAO-B inhibitory effects when the
methoxy group at position R1 was substituted. Furthermore, compounds 156, 157, 158, and
159 exhibited reduced MAO-B inhibitory effects when the methoxy group at position R2
was replaced.

Derivatives of 2-styrylchromone demonstrated strong and selective MAO-B blocking
effects. The computational analysis of the statistical significance (p < 0.05) of each substi-
tuted group revealed that the methoxy substitution at position R2 substantially influenced
both the selectivity and MAO-B blocking activity.

Wang et al. developed several donepezil-chromone hybrids 160–167 and 168–175
(Table 4) and tested their biological activity, including MAO inhibition and central nervous
system penetration in vitro [62]. Molecular modeling studies were also conducted to evalu-
ate the novel hybrid compounds’ interaction mechanism, structure–activity connections,
and binding strategy.

Scheme 10 shows the formation of donepezil-chromone hybrids 160–167 and 168–175;
they were prepared by treating 2-hydroxyacetophenone with phosphorus oxychloride
(DMF) by a modified Harnisch procedure that resulted in the formation of 3-formyl-
chromones, followed by oxidation with sulfamic acid and sodium chlorite to obtain the
appropriate 4-oxo-4H-chromene-3-carboxylic acids, which were then treated with acetyl
chloride and a catalytic amount of DMF in CH2Cl2 to produce acyl chloride and react with
1-benzylpiperidin-4-amine or 2-(1-benzylpiperidin-4-yl)ethanamine in CH2Cl2, resulting in
the target compounds.
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Table 4. Inhibitory activity of donepezil-chromone hybrids.

hMAO-A hMAO-B

Compound R IC50 (µM) IC50 (µM)

160 H 63.8 17.68
161 6-OCH3 7.5 46.27
162 6-OBn 11.6 0.035
163 6 cH3 48.1 19.46
164 6-Br 35.5 22.82
165 7-OCH3 37.4 28.64
166 7-Br 31.6 19.73
167 H 29.7 33.29
168 H 68.6 35.29
169 6-OCH3 72.4 11.23
170 6-OBn 67.2 0.272
171 6-CH3 30.6 52.45
172 6-Br 48.2 26.13
173 7-OCH3 32.4 30.93
174 7-Br 30.3 29.46
175 H 29.5 20.03
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Scheme 10. Synthesis of donepezil-chromone hybrids 160–167 and 168–175. Reagent and condition,
(i) POCl3, DMF, 0 ◦C, 2 h; (ii) NaClO2, NH2HSO3, CH2Cl2, 0 ◦C, 3 h; (iii) thionyl chloride, reflux;
1-benzylpiperidin-4-amine, K2CO3, CH2Cl2, rt, 8 h; (iv) thionyl chloride, reflux; 2-(1-benzylpiperidin-
4-yl)ethanamine, K2CO3, CH2Cl2, rt, 8 h.

According to the SAR (Figure 14), hybrids containing a benzyloxy substitution at the
sixth position of the chromone were more prone to have an inhibitory effect on hMAO-B.
In particular, compound 162, which had a benzyloxy substitution at C6 of the chromone,
demonstrated the greatest inhibition with an IC50 value of 0.035 µM, demonstrating an
activity that was nearly three and 200 times more than that of the standards pargyline
and iproniazid, respectively. All other analogs produced less activity when other groups
were added instead of the benzyloxy substitution. Compound 171, which contained a
methyl substitution at the same position, exhibited the weakest performance. Additionally,
there was a strong correlation between the alkylene chain length and MAO-B inhibitory
efficacy. Compound 170, an excellent MAO-B inhibitor, had an N-ethylcarboxamide con-
nection between the chromone and benzylpiperidine. This compound had an IC50 value of
0.272 µM and was 7.8 times less effective than its counterpart, compound 162, with a car-
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boxamide linker. These findings suggest that steric parameters affect the inhibitory effects
of hMAO-B. Compound 170, which showed the most balanced ability to selectively block
MAO-B based on the findings of MAO inhibitory activity, is thought to be an appealing
multi-purpose blocker for future research.
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They assessed the ability of these hybrids to penetrate the BBB because brain crossing
is a requirement for efficient anti-AD drugs. Di et al. developed an artificial membrane
permeability test for the BBB (PAMPA-BBB) to achieve this. The three most efficient
compounds (162, 169, and 170) were chosen as candidates to investigate the possible
toxicological effects on rat pheochromocytoma (PC12) cells and the potential for therapy
with these derivatives. Compound 170, which had high MAO-B selectivity, was the most
intriguing variant of the generated compounds. Compound 170 crossed the BBB and
demonstrated minimal cell toxicity when tested in vitro on rat pheochromocytoma (PC12)
cells. Overall, the multifunctional ligand 170, which possesses balanced MAO-B inhibitory
activities, may be considered a potential anti-AD target for future studies.

In the substrate cavity of the enzyme, the chromone moiety of compound 170 is located
adjacent to the FAD cofactor. Its benzyloxy substitution interacts with Tyr435 and Tyr398
via π–π stacking interactions. Tyr326 interacted with the amide carbonyl of compound
172 via a hydrogen bond. In contrast, the benzylpiperidine moiety of compound 172 resides
in the hydrophobic pocket formed by Pro102, Leu88, Ser200, Gly101, Glu84, Thr201, Ile199,
and Ile316 in the entrance cavity. Additionally, Glu84 and the quaternary nitrogen present
in piperidine form hydrogen bonds.

Takao et al. (2020) synthesized a collection of 2- and 3-(N-cyclicamino) chromone
compounds and investigated their inhibitory activities against MAO [63]. Among the
derivatives tested, including safinamide, which was employed as the control substance,
compound 187iii, 7-methoxy-3-(4-phenyl-1-piperazinyl)-4H-1-benzopyran-4-one, demon-
strated a major antagonistic action, demonstrated the largest specificity towards MAO-B,
and functioned reversibly and competitively. These findings implied that the lead sub-
stances for MAO-B inhibitory studies could be 3-(N-cyclicamino) chromone derivatives.

The formation of 2- and 3-(N-cyclic amino) chromone analogs is shown in Scheme 11.
When 3-iodochromone derivatives 177i–iii were treated along with 1,2,4-triazole in the pres-
ence of K2CO3, DMF at 80 ◦C, it resulted in the generation of 2-(1,2,4-triazolyl)-chromone
variants 178i–iii, which then underwent a substitution reaction by interacting with the
corresponding cyclic amine (DMF at 80 ◦C), forming the compounds of interest. Next, 3-(N-
cyclicamino) chromone variants 185–188 were generated by the epoxidation of chromone
derivatives 183i–iii using an aqueous H2O2 solution under basic conditions to obtain 2,3-
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epoxychromone derivatives 184i–iii, which reacted with the corresponding cyclic amine to
form the target compounds (Table 5).

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 24 of 34 
 

 

 

Scheme 11. Synthesis of 2- or 3-(N-cyclic amino) chromone derivatives: (a) K2CO3, DMF, and at 80 °C; 

(b) cyclic amine, DMF, and at 80 °C; (c) H2O2, PhCH2N+(CH3)3OH-, Et2O, and at 0 °C; and (d) cyclic 

amine, CH3CN, rt. 

  

Scheme 11. Synthesis of 2- or 3-(N-cyclic amino) chromone derivatives: (a) K2CO3, DMF, and at
80 ◦C; (b) cyclic amine, DMF, and at 80 ◦C; (c) H2O2, PhCH2N+(CH3)3OH-, Et2O, and at 0 ◦C; and
(d) cyclic amine, CH3CN, rt.



Pharmaceuticals 2023, 16, 1310 23 of 31

Table 5. Inhibition of MAO by 2- or 3-(N-cyclic amino)chromone derivatives.

Compound R1 R2
IC50 (µM)

MAO-A MAO-B

2-(N-Cyclic amino)chromone

177i H H 38 59
177ii OMe H 16 27
177iii H OMe 57 36
178i H H 31 22
178ii OMe H 4.1 5.6
178iii H OMe 8.8 7.4
183i H H 38 22
183ii OMe H 2.6 2.8
183iii H OMe 59 12
184i H H 66 58
184ii OMe H 36 40
184iii H OMe 34 31

3-(N-Cyclic amino)chromone

185i H H 23 2.0
185ii OMe H 23 0.99
185iii H OMe 18 14
186i H H >100 1.5
186ii OMe H >100 >100
186iii H OMe >100 0.25
187i H H >100 0.72
187ii OMe H >100 >100
187iii H OMe >100 0.015
188i H H 57 23
188ii OMe H 34 8.0
18Siii H OMe 25 7.3

Compounds 178ii, 179iii, and 183ii displayed equivalent IC50 concentrations for
MAO-B and mildly inhibited MAO-A and MAO-B. Due to the smaller site action of MAO-
A compared to MAO-B, compounds 186 and 187 did not show any inhibiting effects
against MAO-A at a concentration of 100 µM. The derivatives 186i, 186iii, 187i, and 187iii
effectively and selectively inhibited MAO-B. Compounds 185i, 188ii, and 188iii moderately
inhibited MAO-B. The most effective inhibition and MAO-B specificity were observed for
compound 187iii. Safinamide used as a positive control, and it was nearly three times more
effective than compound 188iii when its efficacy and selectivity were examined. Except
for compounds 186ii and 187ii, the 3-(N-cyclic amino) chromone derivatives specifically
inhibited MAO-B, whereas the 2-(N-cyclic amino) chromone derivatives did not. The
current findings clearly distinguish the two sets of compounds, which is in line with earlier
studies on chromone carboxylic acids and related amides, as well as the latest studies
on the MAO-inhibitory activities of flavones (chrysin) and isoflavones (genistein). These
results revealed that substitutions on the chromone ring at position 3 enhance the MAO-B
inhibitory activity. According to the findings for compounds 186 and 187, a significant SAR
(Figure 15), the methoxy group present at position 6 (R1) or 7 (R2) of the chromone ring was
the difference between compounds 186ii or 187ii and 186iii or 187iii, respectively, in the
selective blocking of MAO-B. This indicates that incorporating a methoxy group at position
6, as in compounds 186ii or 187ii, caused MAO-B to be removed from the active site.
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In contrast, a methoxy substitution at C7, as in compounds 186iii or 187iii, led to close
binding at the active site. Therefore, compounds 185i and 186i, which lack a methoxy
group, were expected to exhibit moderate MAO-B inhibition. These results are consistent
with their previous analysis of the impact of -OCH3 replacement on the chromone ring,
which showed that diagonal substitutions on the chromone ring increased the MAO-B
inhibitory action.

Takao et al. (2021) examined MAO-A and MAO-B inhibitory activities of several
3-styrylchromone derivatives [64]. Most derivatives inhibited MAO-B, except for com-
pound 209, which had an OH group at position 4 and a methoxy substitution at posi-
tion 2 in its chemical structure. The chlorine atoms were located at positions 4 and 2
on the phenyl and chromone rings 207. It efficiently inhibited MAO-B, with an IC50
level of 2.2 µM. Derivative 189 showed the highest MAO-B selectivity, with a selectivity
index > 3700. Compounds 189 and 207 were found to be mixed-type, reversible MAO-B
blockers, suggesting that tight-binding blocking of MAO-B may be part of their mechanism
of action.

As shown in Scheme 12, to create 3-styrylchromone derivatives 190–213, various
phenylacetic acid/phenylmalonic acid variants were combined with 3-formylchromone
derivatives IIa–c. The condensation of 3-formylchromone compounds and protected
4-hydroxyphenylacetic acids IIIi and IIIj, followed by the removal of the protective group,
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produced 3-styrylchromones with hydroxy groups 193, 201, and 209. Acceptable yields
were obtained in all cases. The Vilsmeier–Hack reagent converted 2-hydroxyacetophenone
derivatives 1a–c to 3-formylchromone derivatives IIa–c.
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Chromone (4H-1-benzopyran-4-one) derivatives, which are extensively present in nat-
ural substances, including 2-styrylchromones, isoflavones, and flavones, are an important
category of oxygenated heterocyclic compounds employed in the discovery of drugs. Re-
searchers have developed several novel chromone compounds, such as
2-azolylchromone, 2-styrylchromone, and 3-styrylchromene, and tested their ability to
inhibit MAO based on the observations of MAO inhibition by synthetic chromone deriva-
tives. They also provided data on the production and MAO-blocking properties of
2- and 3-cyclicaminochromone analogs. Compared to 2-cyclicaminochromone derivatives,
3-cyclicaminochromone derivatives inhibited MAO-B more effectively. These outcomes
led them to explore 3-styrylchromone derivatives comprising recently produced com-
pounds for their MAO-B antagonistic action. This paper describes the synthesis of many
3-styrylchromone variants (Scheme 12) and their inhibitory actions on human MAO-A
and MAO-B.

The inhibitory actions of MAO-A and MAO-B were tested on all the synthetic
3-styrylchromone derivatives 189–212, as shown in Figure 16. Structure–activity con-
nections were discovered by studying the impact of the substituent on the phenyl ring at
positions R3, R4, and R5, the effects on the chromone ring at positions R1 and R2, and their
effects on MAO inhibitory activity.

The 3-styrylchromone derivatives 190, 191, 198, 205, and 208 had IC50 values for
MAO-A below 1 µM. In contrast, compounds 206, 207, 209, and 210 had IC50 values below
0.1 µM, showing that adding a substituent at position R2 as well as position R4 was
successful in MAO-A inhibition. Derivatives 207 and 209 strongly inhibited MAO-A,
with IC50 values of 25 and 22, respectively, compared to the positive control clorgyline,
which had an IC50 value of 4.9 µM. Except for compound 209, all tested 3-styrylchromone
derivatives had much lower IC50 values for MAO-B than for MAO-A. Compounds 206 and
207 showed significantly low IC50 values for MAO-B, with 3.1 and 2.2 µM, respectively,
when contrasted with safinamide, which was a positive reference. This demonstrates the
potential benefit of inhibiting MAO by substituting positions R2 and R4.
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4. The Role of 3-Styryl Chromones’ Substituents in Inhibiting MAO-B

MAO-B was significantly inhibited by methoxy substitutions at positions R1, R2, or
R3. A comparison was made between the pIC50 values of compounds with hydrogen and
those of analogs with methoxy substitutions at positions R1, R2, or R3. The results showed
that the OCH3 groups at positions R1 and R3 reduced MAO-B inhibition, whereas the
methoxy groups at position R2 boosted it. The substituent at position R4 tends to increase
the MAO-B inhibitory activity, which is also true for position R4 chloride. Compounds
196, 204, and 212 with substituents at position R5 appeared to reduce inhibitory activity.
According to Takao et al., the phenyl rings of 2-styrylchromone and 3-styrylchromene were
strengthened by adding chlorine, which improved their capacity to inhibit MAO-B.

Zhang et al. developed, synthesized, and assessed several chromone-hydroxypyrid-
inone hybrids (Table 6) as potential multimodal anti-AD ligands [65]. Compound 216
exhibited selective hMAO-B inhibitory activity, with an IC50 value of 67.02 nM. Derivative
216 considerably improved scopolamine-induced cognitive impairment in AD mice by
crossing the BBB.

Table 6. Inhibitory activity of chromone derivatives against MAO-B.

Compound R IC50 (µM)
hMAO-B

213 H 0.0672
214 7-methyl 0.0827
215 6-methyl 0.0863
216 7-methoxy 0.0670
217 6-methoxy 0.0886

Pargyline 0.1113
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The most promising chromone derivatives, with IC50 concentrations ranging from
0.067 to 0.088 µM, were modified by alkyl groups at C-6 or C-7 of the chromone nucleus
(Figure 17). Compared to the reference medication (pargyline), compound 216 showed the
strongest inhibitory action.
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5. Conclusions

PD therapy was the indication for when MAO-B inhibitors were first made available,
and they are still a frequently prescribed cornerstone of therapy. Although not conclusive,
the pre- and post-clinical evidence in support of a neuroprotective and disease-modifying
effect for MAO-B inhibitors is unmatched by any other class of antiparkinsonian drugs
to date. An additional reason to begin using MAO-B inhibitors early in the course of the
disease and to keep using them over the long term is the potential that they may reduce the
progression of PD. New medicines having MAO-B inhibitory as well as non-dopaminergic
activity are still being developed and tested due to the potential of neuroprotection. Con-
sidering the limited number of MAO-B blockers currently approved for clinical application,
many research projects have focused on developing new MAO-B blockers with greater
efficacy. This review focused on the effects of various chromone ring substituents on MAO-
B inhibition. The inhibitory effect of MAO-B on chromones has been explored in a small
number of studies. Chromone is a MAO-B antagonist. The following is a summary of the
SARs for the inhibition of MAO-B by chromone classes:

• The methyl group at the R4 position of chromone was shown to be a beneficial substi-
tution.

• The R4 position of the chromone with a bromine group demonstrated a large increase
in MAO inhibition and fluorine substitution at R2 of the phenyl ring.

• NO2 and CH3 groups in R3 decreased MAO activity, whereas the electronegative
halogens chlorine and fluorine caused a marked increase in activity.

• Electronegative groups, such as Cl and F substitutions at the para position of styryl
chromones, demonstrated higher MAO-B inhibition, as seen in the cases of compounds
207 and 206.

• The amino chromone derivatives exhibited more powerful MAO-B inhibition than the
ester derivatives 126 and 131. As demonstrated for compounds 131 and 132, phenyl-
to-benzyl chain elongation increased MAO-B inhibition, but further chain elongation
diminished activity, as seen for compound 135. The inhibition of MAO-B was reduced
by compounds containing pyridyl side chains.

• Derivatives with meta substituents on the exocyclic ring showed increased potency.
• In the future perspective of view, researchers could modify and extend the alkyl chains

at the R1 and R5 positions of the chromone ring to develop potent MAO-B inhibitors.
The introduction of heterocyclic-based amide on the C-3 position of chromone was
not explored so far for the development of MAO-B inhibition. This information will
be beneficial for discovering and creating a novel category of powerful and specific
MAO-B blockers based on chromones.
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