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Abstract: Herpes simplex keratitis (HSK) is a blinding eye disease that is initiated by the herpes
simplex virus type 1 (HSV-1). Resistance to acyclovir (ACV) and the side effects of corticosteroid drugs
have become concerning issues, so it is crucial to develop new antivirals for treating HSK. In this study,
we report that biochanin A (BCA), a naturally occurring flavonoid compound, provides multifaceted
protective effects with anti-viral, anti-inflammatory, anti-oxidative stress and anti-apoptotic activities
to alleviate HSK. The results show that BCA significantly inhibited HSV-1 replication in vitro and
further proved that BCA principally influenced the early stage of virus infection. We reveal that BCA
downregulated the expression of pro-inflammatory factors triggered by HSV-1, including TNF-α,
RANTES, IL-1β and IL-6. Furthermore, BCA treatment alleviated oxidative stress and apoptotic
arising from HSV-1 infection. Lastly, we induced HSK in male C57BL/6 mice and treated them
with either BCA or phosphate buffer solution (PBS) eye drops. We observed the ocular surface
lesions; determined the virus load in the tear fluid, corneas as well as trigeminal ganglions (TGs);
and detected the levels of inflammation and apoptosis in the corneas simultaneously. These results
show that BCA inhibits HSV-1 and alleviates the corneal lesion degree. Our study illustrates that
BCA is a promising therapeutic approach for application in treating HSK.
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1. Introduction

Herpes simplex virus type 1 (HSV-1), an enveloped dsDNA virus, can replicate in
human epithelial cells and establish latent infection in neurons [1]. The virus is highly
prevalent and endemic throughout the world [2,3], with the majority of the world’s popula-
tion reportedly living with this virus [4]. Infection due to HSV-1 is usually asymptomatic,
but it can also cause severe diseases, such as keratitis and encephalitis [5]. Herpes simplex
keratitis (HSK), which primarily affects eyelids, corneas, or conjunctiva, is an important
infectious cause of blindness worldwide [6]. The current standards of care include topical
corticosteroids and antivirals. Topical corticosteroid therapy is usually used to reduce in-
flammation to control serious infection, but it can lead to numerous sequelae, and antivirals
are only beneficial if replicating virus is present [7–9]. More importantly, the resistance
of HSV-1 to acyclovir is a problem of growing clinical importance [10]. Thus, there is an
urgent need to develop new anti-herpetic drugs and strategies.

Typically, when HSV-1 infects a cornea, it starts virus replication in the corneal epithe-
lial cells, activates the innate immune system followed by the adaptive one, and increases
the production of inflammatory substances, including cytokines and chemokines [11].
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Although it is conducive to controlling viral infections, immune responses are major con-
tributors to corneal lesions [12]. An immune-mediated inflammatory reaction leads to HSK,
which results in corneal thinning, focal stromal opacity, corneal neovascularization (CNV),
corneal scarring, and possibly blindness [13]. Consequently, it is an ideal HSK treatment
approach to inhibit viral replication as well as reduce ocular inflammation, which is the
detrimental effect of immune responses.

Natural compounds are a prominent source of novel antiviral drugs [14]. Biochanin A
(4′-methoxy-5, 7-dihydroxy isoflavone, BCA) (Figure 1A) is a dietary isoflavone extracted
from the leaves and stems of Trifolium pratense L and several other Chinese medicine
herbs [15]. The pharmacological and biological activities of BCA are well-documented
as anticancer [16,17], antioxidant [18], and its marked anti-inflammatory effects [19]. In
terms of antiviral effects, BCA has only been reported to have anti-H5N1 activity [20].
Notably, in silico findings revealed that BCA might also be an effective treatment against
SARS-CoV-2 [21]. As a result, less is understood about BCA’s antiviral capabilities in the
treatment of infectious disorders. In this paper, we present the first proof that BCA inhibits
HSV-1 replication in vitro and in vivo and has a protective effect on HSK.
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24 h. (C,D) HCECs and Vero cells were added with dilution HSV-1 and treated with various doses
of BCA for 24 h. In-cell Western analysis was used to identify the viral protein glycoprotein D (gD,
green), which was normalized by DRAQ5 (red). The viral inhibition curves were determined via the
fluorescence expression of gD protein. (E) CC50, the half-maximal cytotoxicity concentration; IC50,
the half-maximal inhibitory concentration; SI, selectivity index (SI = CC50/IC50). Information is
available in the table. (F) HCECs were infected with HSV-1 and treated with vehicle or BCA (150 µM).
The cell monolayers were photographed at 24 h post-infection (hpi) (10×). (G) Inhibition of BCA on
plaque formation. (H) Vero cells were planted in 12-well plates and infected with HSV-1 (MOI = 1) in
the existence of BCA for 24 h. The half-maximum tissue culture-infective dose (TCID50) was used to
calculate viral titers in the media. (I) Cell viability of HCECs exposed to HSV-1 and treated with BCA
for 24 h. The data were presented as mean ± SD of at least three independent experiments (* p < 0.05
and *** p < 0.001).

2. Results
2.1. BCA Inhibited HSV-1 Replication In Vitro

We initially investigated BCA’s cytotoxicity by treating HCECs and Vero cells with
varying doses of BCA for 24 h before assessing cell viability using the CCK8 assay. Accord-
ing to Figure 1B, BCA exhibited no obvious cytotoxicity in cells at concentrations below
200 µM. However, treatment with 200 µM BCA elicited about 30% cell death and thus we
chose doses of less than or equal to 150 µM to use in subsequent experiments. Then, the
inhibitory impact of BCA on HSV-1 was assessed. HCECs and Vero cells were infected
with HSV-1 while being treated with escalating doses of BCA. After 24 hpi, the gD protein
expression was assessed with an In-Cell Western assay, and the IC50 values were calculated
concurrently. As illustrated in Figure 1C,D, BCA significantly inhibited HSV-1 infection
at 75–150 µM concentrations. For BCA, the 50% cytotoxic concentration (CC50) was more
than 200 µM, and the IC50 was determined to be about 37 µM (Figure 1E). Accordingly,
the biologically active concentration was significantly lower than the cytotoxicity one. As
shown in Figure 1F, in the presence of BCA or a solvent control, HCECs were infected
with HSV-1 (MOI = 1). At 24 hpi, the cytopathic effect was clearly observed in vehicle-
treated cells, but not in BCA-treated cells. Subsequently, 50, 100 and 150 µM were chosen
as concentrations of BCA treatment in the following in vitro experiments. The antiviral
activity of BCA was analyzed by a standard plaque assay as the gold standard phenotypic
method. Compared to the control group, those treated with BCA produced significantly
fewer plaques (Figure 1G). BCA also significantly reduced viral particles in the culture
supernatants (Figure 1H). Furthermore, BCA at concentrations ranging from 50 to 150 µM
protected HCECs from death induced by HSV-1 (Figure 1I). Taken together, our data show
that BCA inhibited HSV-1 infection in vitro.

2.2. BCA Suppressed the Expression of HSV-1-Immediate–Early (IE), -Early (E) and -Late (L)
Genes and Blocked HSV-1 at an Early Stage

To gain further insight into BCA’s effects on HSV-1 infection, we investigated whether
BCA prevented HSV-1 replication by modulating the expression of replication-associated
viral genes. ICP0, ICP8 and gD corresponded to the IE, E and L genes, respectively, and
were necessary for HSV-1 replication [22–24]. According to Figure 2A, the relative mRNA
levels of IE genes ICP0, ICP8 and gD were significantly decreased in the presence of BCA
for 24 h in a dose-dependent manner. Therefore, BCA suppressed HSV-1 replication by
inhibiting the viral IE, E and L genes. Following that, virucidal experiments were conducted
to rule out the idea that the antiviral action against HSV-1 was due to the direct inactivation
of the released virus. HSV-1 viral suspensions were mixed with different doses of BCA for
2 h at 37 ◦C before being diluted to a non-inhibitory drug concentration and introduced
into Vero cells. After 24 h, we used qRT-PCR to detect viral gene expression. There was
no difference in HSV-1 gene expression between the control and BCA groups (Figure 2B).
This implies that the pre-treatment with BCA has no virucidal effect on HSV-1 virions. We
used the time-of-addition assay to identify which phase of the HSV-1 replication cycle BCA
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inhibited. Vero cells were exposed to 150 µM BCA at varied time intervals of −2, 0, 2, 4,
6, 8 and 12 hpi. After 24 hpi, viral gene expression was detected by qRT-PCR. As shown
in Figure 2C, HSV-1 replication was significantly inhibited when BCA was added at −2,
0 and 2 hpi. As seen in Figure 2C, when BCA was introduced at −2, 0 and 2 hpi, HSV-1
replication was noticeably suppressed, while the antiviral efficacy steadily diminished
with the time lag of intervention. This finding indicates that BCA might have a role in the
beginning of HSV-1 replication.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW  5  of  19 
 

 

 

Figure 2. Effects of BCA on the expression of HSV-1 genes and replicative circle. (A) Vero cells were 

infected with HSV-1 and  then  treated with 50, 100 or 150 µM BCA.  ICP0,  ICP8 and gD mRNA 

transcription levels at 24 hpi were determined via qRT-PCR. (B) BCA has no virucidal effect against 

HSV-1. (C) Vero cells in 24-well plates were infected with HSV-1, and then 150 µM BCA was added 

at specified time points (−2, 0, 2, 4, 6, 8 and 12 hpi). We used the samples at 24 hpi (without BCA) as 

a control to reflect the viral replication. Culture mixtures were collected at 24 hpi. The virus load 

was analyzed by qRT-PCR. The  time-of-drug-addition assay revealed  that  the  inhibition of BCA 

turned out to be more effective in the early stage of HSV-1 infection. The data were presented as 

mean ± SD of at least three independent experiments (** p < 0.01 and *** p < 0.001). 

2.3. The Inhibition of HSV‐1 Infection by BCA Was Independent on Interferons (IFNs) and BCA 

Reduced the Overproduction of Inflammatory Cytokines in Corneal Epithelial Cells 

Next, we determined whether BCA could  increase the expression of type I IFN and 

interferon-induced genes. OAS1,  ISG15,  IFN-α and  IFN-β mRNA were not activated by 

BCA  in HCECs  treated with  BCA  (Figure  3A).  Therefore,  BCA  had  a  non-interferon-

mediated action against the virus in corneal epithelial cells, which might contribute to the 

lower release of inflammatory mediators. We then sought to validate the anti-inflammatory 

activity  of  BCA  in  the  context  of HSV-1  infection.  Beforehand, we  confirmed  the  anti-

inflammatory property of BCA. We transfected cultured 293 T cells with cGAS and STING 

expression plasmids and then treated them with BCA. Then, we measured the transcription 

of TNF-α, RANTES, IL-1β and IL-6. Our data show that BCA inhibited the transcription of 

genes linked to the inflammatory response triggered by the overexpression of cGAS and 

STING  (Figure 3B). The  inhibitory effects of BCA on HSV-1-induced  inflammation were 

further  investigated via an established HSV-1-infected HCEC model. The results suggest 

that BCA inhibited the HSV-1 infection-triggered activation of TNF-α, RANTES, IL-1β and 

IL-6 proinflammatory genes in a dose-dependent manner in HCECs (Figure 3C). 

Figure 2. Effects of BCA on the expression of HSV-1 genes and replicative circle. (A) Vero cells
were infected with HSV-1 and then treated with 50, 100 or 150 µM BCA. ICP0, ICP8 and gD mRNA
transcription levels at 24 hpi were determined via qRT-PCR. (B) BCA has no virucidal effect against
HSV-1. (C) Vero cells in 24-well plates were infected with HSV-1, and then 150 µM BCA was added at
specified time points (−2, 0, 2, 4, 6, 8 and 12 hpi). We used the samples at 24 hpi (without BCA) as a
control to reflect the viral replication. Culture mixtures were collected at 24 hpi. The virus load was
analyzed by qRT-PCR. The time-of-drug-addition assay revealed that the inhibition of BCA turned
out to be more effective in the early stage of HSV-1 infection. The data were presented as mean ± SD
of at least three independent experiments (** p < 0.01 and *** p < 0.001).

2.3. The Inhibition of HSV-1 Infection by BCA Was Independent on Interferons (IFNs) and BCA
Reduced the Overproduction of Inflammatory Cytokines in Corneal Epithelial Cells

Next, we determined whether BCA could increase the expression of type I IFN and
interferon-induced genes. OAS1, ISG15, IFN-α and IFN-β mRNA were not activated
by BCA in HCECs treated with BCA (Figure 3A). Therefore, BCA had a non-interferon-
mediated action against the virus in corneal epithelial cells, which might contribute to the
lower release of inflammatory mediators. We then sought to validate the anti-inflammatory
activity of BCA in the context of HSV-1 infection. Beforehand, we confirmed the anti-
inflammatory property of BCA. We transfected cultured 293 T cells with cGAS and STING
expression plasmids and then treated them with BCA. Then, we measured the transcription
of TNF-α, RANTES, IL-1β and IL-6. Our data show that BCA inhibited the transcription of
genes linked to the inflammatory response triggered by the overexpression of cGAS and
STING (Figure 3B). The inhibitory effects of BCA on HSV-1-induced inflammation were
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further investigated via an established HSV-1-infected HCEC model. The results suggest
that BCA inhibited the HSV-1 infection-triggered activation of TNF-α, RANTES, IL-1β and
IL-6 proinflammatory genes in a dose-dependent manner in HCECs (Figure 3C).
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Figure 3. The effects of BCA on the expression of IFNs and IFN-regulated genes and the anti-
inflammatory property of BCA in the context of HSV-1 infection. (A) Levels of OAS1, ISG15, IFN-α
and IFN-β were analyzed in HCECs by qRT-PCR. (B) Following BCA treatment for 24 h, 293 T cells
were transfected with FLAG-cGAS plus FLAG-STING or the corresponding mutant plasmids, and
gene expression was assessed by qRT-PCR. As a negative control, an empty vector was transfected.
(C) BCA reduced the transcription of TNF-α, RANTES, IL-1β and IL-6 genes induced by HSV-1
infection for 12 h in HCECs in a dose-dependent manner. The data are presented as mean ± SD of at
least three independent experiments (** p < 0.01 and *** p < 0.001).

2.4. BCA Alleviated Oxidative Stress and Apoptosis in Corneal Epithelial Cells Infected by HSV-1

According to previous research, HSV-1 infection produces oxidative stress in tissues
and cells [25]. Remarkably, Nrf2 activation is recognized as a targeted method for regulating
oxidation [26]. As shown in Figure 4A,B, we investigated the localization and expression
(red fluorescence intensity) of Nrf2, and immunofluorescence staining showed that the
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BCA-treated group significantly motivated the activation of Nrf2 and its translocation to the
nucleus. Moreover, an excess of reactive oxygen species (ROS) resulted in oxidative stress,
which is one of the key elements in the pathogenesis of corneal disorders [27]. According
to previous studies, HSV-1-infected cells could induce the production of ROS, which is
beneficial to viral replication and leads to oxidative damage. Considering the notable
antioxidant properties of BCA, we wondered whether BCA could prevent HSV-1-induced
ROS overproduction. HCECs were infected with HSV-1 (MOI = 1) after BCA pretreatment.
The intracellular ROS level at 24 hpi was detected by immunofluorescence microscopy
(Figure 4C) and quantified by measuring the level of fluorescence on a microplate reader
(Figure 4D), following DCFH-DA staining. HSV-1 infection significantly increased fluores-
cence in HCECs compared to the control cells, but BCA treatment weakened fluorescence
intensity and removed ROS.
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Figure 4. BCA augmented Nrf2 nuclear translocation, reduced the production of ROS and inhibited
the apoptosis in infected HCECs. (A) Immunofluorescence staining of Nrf2 and DAPI colocalization
in HCECs. (B) Quantification of Nrf2-positive nuclei in each group. (C) Fluorescence microscopy was
used to monitor the generation of ROS in each treatment group. (D) A fluorescence microplate reader
for detecting the fluorescence intensity of ROS. (E) The apoptosis rates of HCECs in different treatment
groups were examined by flow cytometry using Annexin-V FITC/PI staining. (F) Quantification
of apoptosis rates of HCECs in different treatment groups (n = 3). The data are from at least three
independent experiments (* p < 0.05, ** p < 0.01 and *** p < 0.001).

It has been reported that the activation of apoptotic pathways may be necessary for
efficient viral replication in corneal epithelial cells [28]. We also examined the apoptosis
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rate of HCECs in different treatment groups by flow cytometry with Annexin-V FITC/PI
staining. In the results of flow cytometry, early apoptotic and late apoptotic cells were
located in the lower right and upper right quadrants, respectively. The sum of cells in both
quadrants represents all apoptotic cells. The data indicate that HSV-1 infection increased the
percentage of apoptotic cells in cells, while BCA decreased the apoptotic rate (Figure 4E,F).

2.5. Safety Assessment of Topical BCA on the Cornea in Mice

The toxicity of BCA for the corneal epithelium was assessed prior to conducting mice
models of efficacy tests. First, right eyes were scarified with a 30-gauge needle and then
5 µL PBS was dropped on the cornea (Figure 5A). This intervention was to simulate the
infection process and reflect the impact of medication on the ocular surface more accurately.
Next, mice were randomly divided into three groups and received topical application
of PBS or doses of BCA (200 µM and 400 µM) higher than therapeutic one (150 µM)
three times per day for 6 days. We recorded daily body weight and observed the ocular
surface lesions by fluorescein sodium staining on day 1, 3 and 6 for each mouse. The data
suggest that there were no significant differences between the three groups in body weight
during administration (Figure 5B). Compared with PBS-treated mice, corneal transparency
and epithelial integrity were not affected (Figure 5C,D). We further examined damage in
corneal structure by HE staining (Figure 5E), and there were no changes in the BCA-treated
groups. These results suggest that it is safe to use BCA eye drops within a certain range of
concentration in mice eyes.

2.6. BCA Treatment Ameliorates HSK Severity in Mice

To investigate the therapeutic effects of BCA in vivo, mice were separated into two
groups and received a topical application of BCA (150 µM) or PBS three times for 6 days
after HSV-1 infection (Figure 6A). We chose the 6 dpi to observe, photograph and collect
the samples. Compared to the BCA-treated group, the PBS-treated group had obvious
corneal opacification, serious blepharitis and even difficulty in eye opening (Figure 6B).
By comparison, BCA treatment greatly reduced HSV-1-related eye symptoms. Following
HSV-1 infection, body weights were measured daily. We noticed a statistically significant
reduction in body weight in the PBS-treated mice compared to the BCA-treated ones
after 5 dpi (Figure 6C). Mice treated with BCA displayed significant improvement in
clinical symptoms as measured by using the blepharitis score and the HSK lesion degree
score (Figure 6D). The HE staining illustrated that the corneas in the PBS group were
structurally affected, with an apparent loss of corneal epithelium cells and a notable influx
of inflammatory cells (Figure 6E). In vivo confocal microscopy (IVCM) was applied to
further observe the pathological changes in HSK. Langerhans cell (LC) maturation and
keratocyte activation were the characteristic appearance of HSK by IVCM, and the former
was also an excellent indicator of inflammatory activity [29,30]. LC maturation (Figure 6F)
and keratocyte activation (Figure 6G) were observed evidently in the PBS group while
failing to be seen in the BCA one. Moreover, we measured the virus levels in the eyes of
two groups. We collected tears from the treated mice and calculated TCID50 using the
method of Reed–Muench. We observed that BCA treatments obviously reduced the viral
titers at 6 dpi. We evaluated the HSV-1 gene expression in tissues by qRT-PCR. At 6 dpi, gD
expression was dramatically reduced in both the corneas and the trigeminal ganglions (TGs)
of the BCA-treated mice (Figure 6H). Additionally, we discovered that BCA treatments
clearly decreased the virus titers at 6 dpi (Figure 6I). We further detected the expression
of pro-inflammatory cytokines TNF-α, RANTES, IL-1β and IL-6 by qRT-PCR. The results
show that BCA eye drops inhibited the transcription of pro-inflammatory cytokines in the
corneal tissues (Figure 6J). In addition, TUNEL staining was used to examine apoptosis
in tissues. The results show that BCA inhibited the apoptosis of the corneal epithelium,
which played a protective role (Figure 6K). These data demonstrate that BCA efficiently
ameliorated HSK.
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3. Discussion

HSV-1 corneal infection causes rapid HSV-1 replication and epithelial damage, and
then the host cell contacts with HSV-1 creates an inflammatory cascade that is responsible
not only for virus clearance but also for progressive corneal opacification due to inflamma-
tory cell infiltrate, angiogenesis and corneal nerve loss. In this research, we proved that
the natural flavonoid BCA has antiviral activity and therapeutic effects both in vitro and
in vivo, and therefore showed enormous potential as a new treatment for HSK (Figure 7).
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HSV-1 infection remains a serious worldwide health concern, particularly given the
rising incidence of drug resistance in immunocompromised patients, emphasizing the
importance of developing new effective treatment options [31]. To date, there has been
little focus on the clinical development of biologically active natural ingredients for anti-
HSV drugs. Thus, the search for new drugs derived from natural products with reduced
resistance, fewer side effects and diverse mechanisms of action is critical in breaking down
the barriers to novel antiherpetic drug development [32]. Biochanin A’s anti-inflammatory
activity has been extensively investigated, but the study of BCA antiviral activity remains
limited. In this study, we first revealed that BCA inhibited HSV-1 infection through blocking
virus replication at an early stage, implicating that BCA could be a potential anti-herpetic
drug candidate. In a future study, the combination inhibitory effect of BCA and acyclovir
deserves further investigation to provide a better choice of treatment. Additionally, the
transcript level of HSV-1 gD was decreased in the TGs after BCA treatment, which means
that BCA may also play a protective role in recurrent HSK.

HSV-1 can rapidly stimulate the innate immune response in the cornea, gradually
causing corneal opacification and visual loss [33]. Primarily neutrophils, macrophages
and NK cells are among the innate response cells that rapidly infiltrate after the initial
HSV-1 exposure [34]. Various pro-inflammatory cytokines, including interferons, TNF-α
and IL-6, are secreted by innate immune cells [35,36]. Although these immune responses
are intended to be protective, the cytokines generated by immune cells reduce visual acuity
by causing fibrosis and inflammation [37]. It has been documented that HSV-1 can induce
cGAS-STING signaling, which is an important cytosolic DNA sensor mechanism in in-
nate immunity and an immune inflammatory route, and the activated STING initiates a
sequence of downstream pathway activation and events that transcriptionally up-regulate
inflammatory cytokines and other factors, such as IL-6, TNF-α and RANTES [38–41]. The
hyperproduction of pro-inflammatory cytokines can drive pathological inflammation and
exacerbate HSK [42]. Thus, blocking them can alleviate corneal immunopathological dam-
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age. Therefore, we simulated the process of the HSV-1-triggered activation of cGAS-STING
pathway and the subsequent expression of proinflammatory cytokines by transfection.
Our in vitro experiments proved that the transcription of representative cytokines (TNF-α,
IL-1β, RANTES and IL-6) in 293 T cells transfected with cGAS and STING expression plas-
mids were downregulated by BCA. Afterwards, we demonstrated the anti-inflammatory
effect of BCA in the context of HSV-1 infection on corneal epithelial cells. However, spe-
cific mechanisms that mediate the inflammation regulation of BCA in HSK still require
further investigation.

Oxidative stress is often induced by viruses to overwhelm the infected cells and create
an environment that favors its replication [43], and HSV-1 is no exception [44]. There is
evidence that oxidative stress participates in HSK and its inhibition can protect cells against
oxidative damage, thereby alleviating corneal injury induced by HSV-1 infection [45]. In
addition, interactions between HSV-1 and host cells result in the triggering of the apoptotic
cell death program [46]. Compelling evidence indicates that HSV-1 infection leads to
increased apoptosis in both animal models and patients with ocular HSV-1 infection [47,48].
Thus, we explored and confirmed that BCA played a role in regulating oxidative stress and
reducing corneal epithelium cell apoptosis in HSK.

The treatment mechanisms of BCA on HSK are still in their infancy and can be pro-
gressed in multiple aspects. Firstly, prior studies have reported that the upregulation of
Nrf2 activity restricted HSV-1 viral infection [49,50], and isoflavones have the ability to
activate Nrf2 [51]. Several studies have confirmed that BCA has the ability to activate
Nrf2 [52,53], and our study determined it too. Therefore, we further hypothesized that
BCA could inhibit HSV-1 replication via activating Nrf2 signaling pathway. Second, the
modulatory effects of BCA on the inflammatory response need further studies. The bulk of
cells in corneal lesions are known to be derived predominantly from neutrophils, which
cause inflammatory processes as well as tissue damage, and the same is true for HSK [54].
Importantly, BCA has been reported to promote the activation of pro-resolving programs,
including neutrophil apoptosis [55]. Whether this action plays a role in HSK deserves
further investigation. Moreover, the roles of BCA in other immune cells and inflammatory
response in HSK models equally deserve further inquiry and exploration. Finally, corneal
neovascularization (CNV), one of the most serious corneal complications of HSK, is a prob-
lem that cannot be ignored [56]. Multiple studies have shown that BCA has the property
of reducing neovascularization by directly targeting various facets of angiogenesis [57,58].
In a follow-up study, the effects of BCA on HSK-induced CNV will be further explored.
Altogether, we need more evidence to reinforce the important therapeutic potential of BCA
to pave the way for a deeper application of BCA in clinical practice. In this paper, we
just explored the anti-HSV-1 activity of BCA, but there must be more than that. Due to
its antiviral capabilities and powerful anti-inflammatory properties, the natural flavonoid
biochanin A is a prospective option for the treatment of infectious disorders associated
with inflammation.

4. Materials and Methods
4.1. Cell Culture, Viruses and Reagents

Vero cells were kindly gifted by Professor Zhiwei Wu from Nanjing University. Human
SV40 immortalized corneal epithelial cells (CRL-11135, HCE-2; ATCC, Manassas, VA, USA)
were cultured in DMEM/F12 medium (Gibco, Billings, MT, USA) supplemented with 10%
FBS (Gibco, USA) in a humidified 37 ◦C 5% CO2 incubator. The HSV-1 strain McKrae
was used in this study and prepared as described previously [59]. It was propagated and
titrated using a plaque-forming unit (PFU) assay as previously described [60,61]. Biochanin
A was purchased from MedChemExpress (Shanghai, China). Antibody to gD was brought
from Santa Cruz (Santa Cruz, CA, USA).
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4.2. Cytotoxicity Assay

HCECs or Vero cells were cultured in 96-well plates for 12 h and then treated with
various concentrations of BCA. After incubation for 24 h, the supernatant was removed
and a diluted CCK8 solution (Vazyme, Nanjing, China) was added to each of the wells and
incubated for another 1.5 h. The optical density (OD) values were measured at 450 nm by a
multimode microplate reader (Tecan Spark, Männedorf, Switzerland). Cell viability was
expressed as the percent of untreated cells.

4.3. In-Cell Western Assay

This assay was performed by the Odyssey Infrared Imaging System (LI-COR, Lincoln,
NE, USA), according to the manufacturer’s instructions. HCECs or Vero cells grown in
96-well plates were fixed and permeabilized with Triton X-100 (Beyotime, Shanghai, China),
and incubated with PBS-containing 5% BSA after infection and treatment. The cells were
then stained overnight at 4 ◦C with gD antibody (1:400). After being washed three times
with PBST, the cells were stained with IRDye IgG (1:1000) for 1 h, following 1 h DRAQ5
staining and being scanned with an Odyssey Infrared Imager. The relative amount of gD
protein expression was obtained by normalizing to endogenous DRAQ5 in all experiments.
DRAQ5 is a far-red DNA stain for fluorescent cellular imaging applications in live cells.

4.4. Antiviral Activity

HCECs or Vero cells were cultured in 96-well plates and then infected with HSV-1
(multiple of infection (MOI) = 1). Simultaneously, the cells were exposed to BCA at the
indicated concentrations. After 24 h, the supernatant was discarded, and the virus load
was measured by the In-Cell Western assay.

4.5. Quantitative Real-Time PCR (qRT-PCR)

Total RNA was extracted from cells and corneal or TG tissues using TRIzol reagent
(Takara, Kusatsu, Japan). The concentration and purity of the total RNA were examined
by a Nanodrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA). A total of 1 µg of the
total RNA was reverse-transcribed using the HiScript III RT SuperMix (Vazyme, Nanjing,
China) following the manufacturer’s instructions. The expression levels of the target genes
were measured by qRT-PCR on QuantStudio 5 (Thermo Fisher Scientific, USA). Gene
expression was normalized to that of GAPDH and determined by the 2−∆∆Ct method.
Primer sequences are listed in Supplementary Table S1.

4.6. Plaque Reduction Assay

Vero cells were pretreated with BCA for 12 h after being seeded on the plates and
adhering to the wall, and then PBS was used to remove the residue. All wells were added
with the virus inoculum, and the supernatant liquid was removed 1 h later. The monolayers
were overlaid with a 1:1 mixture of low-melting-point agarose and 2 ×MEM and placed
at room temperature for 20 min until solidified. Then, the plates were incubated for 48 h
to collect the samples. A total of 500 µL crystal violet was added to each hole during the
sample collection and then placed in the refrigerator at 4 ◦C for 4 h; the gel was rinsed off
and then dried.

4.7. Time-of-Drug-Addition Assay

Vero cells were seeded in 12-well plates (5 × 105 cells/well). The cells were exposed
to HSV-1 (MOI = 1) for 1 h. Next, the viral supernatant was removed, and the cells were
washed three times with PBS. At −2, 0, 2, 4, 6, 8 and 12 h post-infection (hpi), 150 µM BCA
was added to the infected cells. After 24 hpi, the samples of each time point were collected
for viral yield measurement using qRT-PCR.
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4.8. Virucidal Assay

Vero cells were seeded in 24-well plates to 80% confluence. Different concentrations
of drugs and virus dilutions (50 PFU/well) were mixed and incubated at 37 ◦C for 2 h
in a humidity incubator. Virus control groups were mixed with the serum-free media.
After that, the mixture was diluted to non-inhibitory concentrations of the compounds and
added to the plates; each concentration had three duplicate wells, and incubated at 37 ◦C
for another 2 h. After 24 hpi, cells were collected for viral yield measurement by qRT-PCR.

4.9. Transfection

The 293 T cells were seeded on six-well plates. On the following day, cells were trans-
fected with PRK-FLAG-cGAS and PRK-FLAG-STING using Lipofectamine 3000 (Thermo
Fisher Scientific, USA), according to the manufacturer’s protocol.

4.10. Immunofluorescence

HCECs were fixed with 4% paraformaldehyde for 30 min and then permeabilized with
Triton X-100 (0.5% in PBS) for 15 min at room temperature and blocked with donkey serum
for 1 h. Following that, the cells were exposed to primary Nrf2 antibody (Santa Cruz) for
a whole night at 4 ◦C. After rinsing with PBST, the cells were incubated with Alexa Fluor
568 (Servicebio, Wuhan, China) secondary antibody for 1 h at room temperature. DAPI
staining was applied for an additional 5 min to make it easier to see the nuclei. Fluorescence
microscopy was used to capture and evaluate images.

4.11. Measurement of ROS

The ROS activities of cells were measured by a fluorescent probe (DCFH-DA) (Bey-
otime, Shanghai, China). The HSV-1-infected HCECs were treated with BCA at certain
concentrations. After 24 h, cells were subsequently incubated with DCFH-DA for 20 min
and washed three times with PBS before the analysis by the multimode microplate reader
(Tecan Spark, Austria) or the Leica Thunder system (Leica, Wetzlar, Germany).

4.12. Analysis of Apoptosis

HCECs were cultivated in six-well plates for 24 h at a density of 5 × 105 cells per well.
The cells were pretreated with BCA for 12 h and then infected with HSV-1 for an additional
2 h. Following the manufacturer’s instructions, the Annexin V/PI staining kit (Beyotime)
was used to assess the amount of apoptosis that occurred in the treated cells. BD Accuri C6
(BD, San Jose, CA, USA) was used to detect the total number and percentage of apoptotic
cells, and FlowJo V10 (FlowJo, LLC, Ashland, OR, USA) was utilized to analyze the data.

4.13. Mice

Male C57BL/6 mice weighing 18–20 g were acquired from Nanjing Medical Uni-
versity’s Animal Center in Nanjing, China. The Nanjing First Hospital’s Animal Ethics
Committee provided its approval to all experimental procedures in accordance with the
ARVO Statement for the Use of Animals in Ophthalmic and Vision Research (permission
ID: 23017617). The animals were kept in a shared environment with constant access to food,
water and air conditioning.

4.14. Corneal Toxicity of BCA in a Mouse Model

All mice were administered an intraperitoneal injection of 1% sodium pentobarbital
(80 mg/kg) to make them unconscious. The right corneas were scraped with a 30-gauge
needle and inoculated with 5 µL PBS as a control. The injured corneas were topically treated
three times daily with PBS or BCA (200 µM and 400 µM) and evaluated for corneal opacity
and epithelial abnormalities on days 3 and 6. Corneal opacity was assessed following the
Supplementary Table S2.
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4.15. Herpes Simplex Keratitis Mouse Model

The method of anesthesia was the same as that described above. The right corneas
of mice were scarified by 5 × 5 strokes with a 30-gauge needle and were inoculated with
5 µL HSV-1 strain McKrae (1 × 106 PFU/mL). The infection was carried out unilaterally.
The first treatment was started at about 5 h after infection. A total of 150µM BCA (5 µL)
or vehicle (PBS, 5 µL) were topically applied three times per day for 6 days to test the
therapeutic effects of BCA in vivo. These eyes were inspected, eye swabs were obtained
from their tears to determine virus titers and tissues at 6 days post-infection (dpi) were
extracted for subsequent investigations. The severity of the disease was measured by the
blepharitis score and the herpes simplex keratitis lesion extent score. Details of scoring
criteria are listed in Supplementary Table S3.

4.16. TUNEL Assay

The eyes were separated and embedded in optimum cutting temperature (OCT) glue,
sliced into sagittal sections and then kept at −80 ◦C. Frozen slices of mouse eyeballs were
evaluated for apoptosis of corneal epithelium using an in situ cell death detection kit and
fluorescein, according to the manufacturer’s recommendations.

4.17. Statistical Analysis

GraphPad Prism 8.0 (GraphPad software Inc., Boston, MA, USA) was used for sta-
tistical analysis. Comparisons between two groups were identified via t-tests. One-way
ANOVA was used to compare data among three or more groups. All results were repeated
for at least three times. The data are presented as mean ± SD and were considered as
statistically different when p < 0.05 (* p < 0.05, ** p < 0.01 and *** p < 0.001).

5. Conclusions

In conclusion, our research shows the therapeutic efficacy of BCA in HSK both in vivo
and in vitro, particularly in terms of antiviral and protective activities. BCA shows consider-
able promise as a potential therapy for HSK and inflammatory illnesses of the ocular surface.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph16091240/s1, Table S1: Primer sequences used in qPCR; Table S2:
Grading system for corneal opacity; Table S3: Herpes simplex keratitis lesion extent score and
Blepharitis score.
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