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Abstract: Hepatocellular carcinoma (HCC) is the fifth most common and fatal cancer reported, repre-
senting 72.5% of malignancies around the world. The majority of HCC incidents have been associated
with infections caused by hepatitis B and C viruses. Many first- and second-line conventional drugs,
e.g., sorafenib, cabozantinib, or ramucirumab, have been used for the management of HCC. Despite
different combinational therapies, there are still no defined biomarkers for an early stage diagnosis
of HCC. The current study evaluated the potential of Bergenia stracheyi, Bergenia ciliata, Bergenia
pacumbis, and Bergenia purpurascens, which belong to the family Saxifragaceae, to treat HCC using an
integrated network pharmacology and molecular docking approach. Four active phytochemicals
were selected based on oral bioavailability (OB) and drug likeness (DL) parameters. The criteria of
phytochemical selection were set to OB > 30% and DL > 0.18. Similarly, the gene targets related to
Bergenia spp. and the genes related to HCC were retrieved from different databases. The integration
of these genes revealed 98 most common overlapping genes, which were mainly interrelated with
HCC pathogenesis. Ultimately, the 98 Bergenia-HCC associated genes were used for protein–protein
interaction (PPI), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Gene Ontology
(GO) enrichment analyses. Finally, the topological analysis revealed the top ten hub genes with
maximum degree rank. From the top ten genes, STAT3, MAPK3, and SRC were selected due to their
involvement in GO annotation and KEGG pathway. To confirm the network pharmacology results,
molecular docking analysis was performed to target STAT3, MAPK3, and SRC receptor proteins. The
phytochemical (+)-catechin 3-gallate exhibited a maximum binding score and strong residue interac-
tions with the active amino acids of MAPK3-binding pockets (S-score: −10.2 kcal/mol), SRC (S-score:
−8.9 kcal/mol), and STAT3 (S-score: −8.9 kcal/mol) as receptor proteins. (+)-Catechin 3-gallate and
β-sitosterol induced a significant reduction in cell viability in HepG2 after 24 h of treatment in a
dose-dependent manner. The results of this study explore the potential of (+)-catechin 3-gallate and
β-sitosterol, which can be used in the future as potential drug candidates to suppress HCC.

Keywords: hepatitis B virus; hepatitis C virus; (+)-catechin 3-gallate; β-sitosterol; KEGG;
protein–protein interactions

1. Introduction

Hepatocellular carcinoma (HCC) or liver cancer is the second death-related cancer
worldwide with late-stage diagnosis due to its severely fatal tumor [1]. Chronic liver
infections such as hepatitis B, hepatitis C, alcoholic abuse, and metabolic disorders later
progress into liver inflammation, liver fibrosis, and cirrhosis, which develop symptoms of
HCC [2]. HCC is frequently multinodular upon diagnosis and it has a specific proclivity
to develop inside the blood vessels and then infiltrate the portal or hepatic veins [3]. The
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prognosis of HCC is directly associated with tumor stage at the time of diagnosis. The early
stage diagnosis of HCC is poorly reported, with a median of 5 years and a 7% survival
rate [4]. HCC solely accounts for 75–85% of tumor cases in all liver cancer reports. In a
report, the World Health Organization (WHO) predicted 1.3 million deaths by 2040 due to
liver cancer [5]. The HCC-linked infection(s) could be recognized and decreased through
inhibiting the development of HCC, which in turn increases the life span of the patients
through early diagnosis with better combinations [6].

Different pathways including Wnt/ß-catenin pathway, phosphatidylinositol-3-kinase,
MET receptor tyrosine kinase pathway, and Hedgehog (Hh) signaling pathway play a
leading role in the proliferation of the tumor, which ultimately leads to HCC. Any muta-
tional changes in the genetic makeup and signaling of the metabolic cascade mainly cause
the onset of carcinogenesis [7]. Recently, against advanced HCC, sorafenib/lenvatinib
and regorafenib/cabozantinib have been administrated as first-line and second-line drugs,
respectively. Moreover, the combinational therapy of nivolumab and ipilimumab with
pembrolizumab monotherapy has received FDA approval for the treatment of HCC [8].
Despite the combinational therapies and licensed drugs, the survival rate is limited due to
the poor diagnosis and severe side effects of such drugs. Many other clinical trials including
immune checkpoint inhibitors, chimeric antigen receptor T-cells, and dendritic cell vaccines
are in the first stage of testing. Therefore, there is a dire need of drugs with no or fewer
side effects for the treatment of HCC.

Plant-based herbal remedies have gained much interest in recent years for the treat-
ment of various cancers. Plants are a natural source of biologically active compounds, which
play a leading role as potential drug candidates for the treatment of multiple disorders and
infections [9]. Bergenia is a genus of flowering plants and belongs to the Saxifragaceae family
with about 35 known species. Different Ayurvedic formulations have used Bergenia species
over the centuries to treat piles, kidney stones, bladder, and pulmonary infections [10].
Almost six species of this genus are present in Pakistan. These are mostly present in the
northern areas of Pakistan, particularly in Kashmir or around it. They are present in a large
number in temperate Himalayan regions at elevations from 2000 to 2700 m [11].

Network pharmacology is an elaborative domain that predicts the drug mechanism to
treat different diseases, which is similar to Chinese medicine’s multitargeting functions.
Network pharmacology is a multidimensional field in pharmacology, interpreting the
network targeting and interrelation of plant phytochemicals to target enormous types of
disorders [12]. In this study, the aim to treat HCC using phytochemical constituents of the
Bergenia species was accomplished via network targeting of multidrug or multi-targeting
approach. Using multi-therapeutics with the networking of targeted genes, biologically
active phytochemicals have been used as leading drug candidates against key targeted
genes with their role in different signaling mechanisms involved in the pathogenesis
of HCC.

2. Results
2.1. Active Compounds of Bergenia spp.

A library was constructed which contained 16 phytochemicals from B. ciliate, 6 from
B. pacumbis, 64 from B. purpurascens, and 61 from B. stracheyi. These phytochemicals were
collected from different plant parts (e.g., roots, leaves, rhizome) reported in the literature
and IMMPAT database. For network pharmacology analysis, only four compounds (i.e.,
β-sitosterol, cianidanol, (+)-catechin gallate, and leucocianidol were selected based on their
pharmacokinetic criteria of drug likeness (DL > 0.18) and oral bioavailability (OB > 30%).
In Table 1, different properties of the four compounds are given.



Pharmaceuticals 2023, 16, 1239 3 of 20

Table 1. Properties of active phytochemicals.

Sr. No. Compound Molecular
Formula

Oral
Bioavailability

(>30%)

Drug
Likeness
(>0.18)

MW
(g/mol)

PubChem
ID

1 β-Sitosterol C29H50O 36.91 0.75 414.79 222284

2 Cianidanol C15H14O6 54.83 0.24 290.29 9064

3 (+)-catechin
gallate C22H18O10 53.57 0.75 442.4 5276454

4 Leucocianidol C15H14O7 30.84 0.27 306.29 440833
MW: Molecular weight.

2.2. Target Prediction for Bergenia spp.

The Bergenia spp.-related gene targets were predicted from the SwissTargetPrediction
and STITCH database. In total, 313 targets were predicted for the four phytochemicals of
Bergenia spp. Then, 228 unique drug-related gene targets were predicted after removal of
duplicates by aligning the UniprotKB protein IDs.

2.3. Target Prediction for Hepatocellular Carcinoma

A total of 3176 hepatocellular carcinoma-related gene targets were retrieved from
GeneCard and DisGeNet databases. After removal of duplicates, a total of 2742 unique
gene targets were used for further analysis. The intersection of Bergenia spp.-related targets
and HCC-related predicted targets was performed for mapping of common overlapping
gene targets. Out of these, a total of 98 targets were selected after interaction of drug-related
gene targets and HCC-related gene targets (Figure 1).
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Figure 1. Venn illustration of potential targets.

2.4. Compound-Target Network

The Cytoscape software was used for compound–target network construction for
four active plant constituents and 98 potential gene targets. A plug-in Network Analyzer
was employed to calculate the topological parameters of the constructed network. The
network has 102 nodes and 135 edges representing the active constituents and targeted
genes, which are interrelated with lines (Figure 2). The topological analysis represented the
network density of 0.026, network centralization of 0.448, and network heterogeneity of
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2.694. Furthermore, the active phytochemicals were also categorized by degree method:
(+)-catechin gallate (47), β-sitosterol (42), leucocianidol (41), and cianidanol (5), which
represented the interactions with multiple targets. In network pharmacology, the network
density is a quantitative measure, which is applied to characterize the interconnectedness of
nodes (i.e., biological entities such as genes and proteins) within a network. A greater level
of interactions between nodes is indicated by a high network density, which results in a
more interconnected network. Within a biological network, such as drug–target interaction
network or protein–protein interactional network, the network centralization is the degree
to which some nodes play influential or important roles compared to other nodes. Similarly,
network heterogeneity is considered as the diversity and complexity of interactions within
biological networks, specifically, to reveal interactions between drugs, genes, proteins, and
other molecules.
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2.5. Protein–Protein Interactions (PPIs)

The 98 potential targets were imported into STRING 11.5 for protein–protein inter-
actions with a high confidence score of 0.700 and by selecting H. sapiens as the default
organism (Figure 3). In the constructed PPI network, there were 98 nodes, 377 edges
with an average node degree of 7.69, and a PPI enrichment p-value of <1.0 × 10−16. The
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compound–target network of 98 target genes only displayed interactions with (+)-catechin
gallate, β-sitosterol, and leucocianidol. Therefore, the phytochemical cianidanol was
eliminated from further analysis. In addition, the network density of 0.094, network hetero-
geneity of 0.907, and network centralization of 0.329 were also calculated by the Network
Analyzer tool of the software Cytoscape. The plug-in cytoHubba was also employed to
examine the hub genes. The network degree is the number of interactions a node (i.e.,
compound, gene, protein) makes with other nodes within a biological network. A node
with a higher network degree is considered as a hub node, as it shows significant control
or influence on the functioning of the network. The degrees of the top targeted genes are
represented in Table 2 and Figure 4.
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Table 2. Degrees of hub gene calculated by Cytoscape.

Sr. No. Hub Genes Degrees

1 STAT3 37

2 MAPK3 34

3 SRC 33

4 EP300 25

5 VEGFA 22

6 PIK3CA 22

7 TNF 22

8 PTPN11 21

9 ESR1 19

10 HIF1A 19
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2.6. Analysis of Gene Enrichment

The GO and KEGG enrichment analyses were performed through the DAVID database
to predict the functional annotation and pathway enrichment associated with active plant
constituents for the treatment of hepatocellular carcinoma. The GO annotation revealed
373 biological processes (BPs), 108 molecular functioning (MF), 40 cellular components
(CCs), and 135 KEGG pathways. The top 20 terms in GO and KEGG analyses were identified
as mainly involved in cancer pathways (Figure 5). The BPs mainly contain the cellular
response toward oxygen-containing compounds, the regulation of programmed cell death,
cell proliferation, and responses to stimuli, hormones, and hypoxia. The CC GO annotation
was related to mitochondria, ER, receptor complex, chromosome, extracellular matrix, and
membrane compartments. The MF was related to phosphotransferase activity, ligand-
activated transcription factor activity, nuclear receptor activity, protein kinase activity, and
ATP binding. The analysis of the KEGG pathway mainly pointed to the involvement
of genes in pathways related to cancer, proteoglycans in cancer, microRNAs in cancer,
EGFR tyrosine kinase inhibitor resistance, endocrine resistance, and prostate cancer. These
pathways are all co-related directly or indirectly with the onset of hepatocellular carcinoma.



Pharmaceuticals 2023, 16, 1239 7 of 20Pharmaceuticals 2023, 16, x FOR PEER REVIEW 8 of 22 
 

 

(A)                        BP (B)                            CC 

 

 
(C)                            MF (D)                       KEGG 

 
 

Figure 5. The illustration of functional annotation and enriched pathways in terms of HCC is 
shown by the bubble plot. (A) Gene ontology in terms of biological processes (BP). (B) Gene on-
tology in terms of cellular components (CC). (C) Gene ontology in terms of molecular function 
(MF). (D) KEGG pathway analysis. 

Figure 5. The illustration of functional annotation and enriched pathways in terms of HCC is shown
by the bubble plot. (A) Gene ontology in terms of biological processes (BP). (B) Gene ontology in
terms of cellular components (CC). (C) Gene ontology in terms of molecular function (MF). (D) KEGG
pathway analysis.

The ShinyGO tool was used for interpretation and visualization of the top 20 selected
pathways in the bar plot. The target–pathway network was constructed with the cystoscope
software to fully understand the interrelation of targets with the associated signaling
pathways (Figure 6).
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2.7. Construction of Compound–Target–Pathway Network

The Cytoscape software was employed for the integration of the compound–target
network and the target–pathway network for the construction of the compound–target–
pathway network. The Network Analyzer represents 166 edges and 33 nodes in three active
phytochemicals, 10 hub genes, and 20 signaling pathways (Figure 7).
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2.8. Molecular Docking Study

The molecular docking approach was used to explore potential drug candidates to
target screened genes from a network pharmacology study for the precise targeting of HCC
genes for the treatment of liver cancer. The top three genes (i.e., STAT3, MAPK3, SRC) were
selected based on their topological analysis, GO, and KEGG enrichment analyses results.
These three genes were at the top of the hub genes, sub-gene clustering, and common in the
top 20 GO terms and KEGG pathways. The 3D structures of these target proteins STAT3
(with PDB ID 6TLC), MAPK3 (with PDB ID 6GES), and SRC (with PDB ID 2H8H) were
retrieved from the Protein Data Bank in PDB format. The removal of solvent molecules and
already bound ligand, energy minimization, and 3D protonation of these proteins were
performed using the MOE tool. The 3D structures of the selected phytochemicals were
retrieved from the PubChem database in .sdf format.

The PyRx software was employed for ligand-based molecular docking of the selected
compounds with three target proteins. Among the three phytochemicals, (+)-catechin
3-gallate showed the maximum binding score and the strongest interactions with the
active residues of all target proteins. The (+)-catechin 3-gallate, with a docking score of
−10.2 kcal/mol, interacted with LysA:71, AspA:128, CysA:183, and AspA:184 residues of
the binding pocket of MAPK3 via hydrogen bonding (Figure 8). Similarly, (+)-catechin
3-gallate with a docking score of −8.9 kcal/mol interacted with LysA:295 of the SRC
protein and with a docking score of −8 kcal/mol interacted with AlaA:250, GluA:324,
GlnA:326, and AspA:334 residues of the STAT3 protein via conventional hydrogen bonds
(Figures 9 and 10). The other ligands also showed good energy with substantial binding
interactions with the active site residues of binding pockets of target proteins (Table 3).
BIOVIA Discovery Studio visualizer was used to visualize the ligand–protein 2D interac-
tions and maps.
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Table 3. Binding affinities of phytochemicals with target proteins revealed in the molecular
docking study.

Sr.
No.

Target
Protein PDB ID UniProt ID Phytochemical Binding Energy

(kcal/mol)

1 STAT3 6TLC P40763

(+)-Catechin 3-gallate −8.0

β-sitosterol −7.4

Leucocianidol −7.1

2 MAPK3 6GES P27361

(+)-Catechin 3-Gallate −10.2

β-sitosterol −9.2

Leucocianidol −7.4

3 SRC 2H8H P12931

(+)-Catechin 3-Gallate −8.9

β-sitosterol −8.4

Leucocianidol −7.2

2.9. ADMET Profiling

The ADMET analysis classifies the drug into five parameters (i.e., absorption, distribu-
tion, metabolism, excretion, and toxicity). These attributes of a potential drug classify it
from the chemical perspective (Table 4). All selected ligands were found to not cross the
blood–brain barrier and as being non-Ames toxic. These properties exhibited the potential
of these compounds as lead drug candidates for the treatment of HCC.

Table 4. ADMET profiling of lead drug candidates.

ADMET Parameters
Phytochemicals

(+)-Catechin 3-Gallate β-Sitosterol Leucocianidol

Absorption and distribution

BBB No No No

Intestinal absorption
(human) 62.096% 94.464% 56.712%

PGS Yes No Yes

PGI No No No

Metabolism

CYP3A4 substrate No Yes No

CYP2D6 substrate No No No

CYP3A4 inhibition No No No

CYP2C9 inhibition No No No

CYP2C19 inhibition No No No

CYP2D6 inhibition No No No

CYP1A2 inhibition No No No

Excretion

Total Clearance −0.169 log mL/min/kg 0.628 log mL/min/kg −0.072 log mL/min/kg

Toxicity

AMES Toxicity No No No

Hepatotoxicity No No No

Skin Sensitization No No No
Blood–brain barrier (BBB); P-glycoprotein substrate (PGS); P-glycoprotein inhibitor (PGI).

2.10. Cytotoxic Potential of the Best Selected Phytochemicals in HepG2 Cells

To examine the cytotoxicity potential of (+)-catechin 3-gallate, β-sitosterol, and leu-
cocianidol in HepG2 cells, the MTT assay was used. Initially, different concentrations of
these compounds, including a standard drug cisplatin (i.e., 1.5625, 3.125, 6.25, 12.50, 25, 50,
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100, and 200 µg/mL) were applied to HepG2 cells for 24 h and their cytotoxicity potentials
were evaluated through an MTT test. The cytotoxicity potential and percent cell viability
of control, (+)-catechin 3-gallate, β-sitosterol, and leucocianidol-treated cells are shown in
Figure 11. Treatment with (+)-catechin 3-gallate and β-sitosterol significantly (p < 0.001)
increased the cytotoxicity of HepG2 cells (Table 5). After treatment with 1.56 µg/mL of (+)-
catechin 3-gallate and β-sitosterol, a significant inhibitory effect on the viability of HepG2
cells was observed. After 24 h of treatment in HepG2 cells, the IC50 values for (+)-catechin
3-gallate, β-sitosterol, and leucocianidol were estimated to be approximately 5.258, 1.784,
and 49.94 µg/mL, respectively, compared to cisplatin (i.e., 2.25 µg/mL) (Figure 11).
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Figure 11. Cytotoxic potential of best selected phytochemicals (i.e., (+)-catechin 3-gallate, β-sitosterol,
and leucocianidol). (a) Cytotoxicity analysis by MTT assay. The experiment was performed in
triplicate and the values are shown as mean ± standard error of mean. (b) Percentage of cell viability.
If the p-value is >0.05, the results were considered statistically significant, represented by * vs. control.
** p-value > 0.01 vs. control were considered very significant and *** p-value > 0.001 vs. control were
considered highly significant. To represent the data, values are presented as mean ± S.E.M.
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Table 5. Comparison of percentage inhibition of control groups and treatments at different concentrations.

Concentration (µg/mL) DMSO Catechin β-Sitosterol (+)-Catechin 3-Gallate

1.5625 0 7 NS 19.42 *** 16.21 **

3.125 1.3 12 NS 39.3 **** 34.23 ****

6.25 1.7 15 NS 40.2 **** 42.65 ****

12.50 2 29.24 ** 41.65 ** 55.92 ***

25 2 36.95 *** 49.14 **** 60.05 ****

50 2 41.56 ** 64.86 **** 69.6 ****

100 2 43.1 *** 56.29 **** 75.63 ****

200 2 78.4 **** 46.8 **** 80.24 ****

Concentration (µg/mL) Cisplatin Catechin β-Sitosterol (+)-Catechin 3-Gallate

1.5625 5.6 7 NS 19.42 ** 16.21 *

3.125 10.5 12 NS 39.3 **** 34.23 ****

6.25 13.4 15 NS 40.2 *** 42.65 ***

12.50 27.5 29.24 NS 41.65 NS 55.92 **

25 32.4 36.95 NS 49.14 NS 60.05 **

50 39.5 41.56 NS 64.86 ** 69.6 **

100 46.4 43.1 NS 56.29 ** 75.63 ***

200 65.4 78.4 NS 46.8 NS 80.24 ****
NS: Non-significant; *: significant; **: very significant; ***, ****: highly significant.

3. Discussion

The pathogenesis of HCC is complex due to sneaking symptoms which make HCC dif-
ficult to diagnose. Hepatocarcinogenesis involves the complex cellular dysfunctioning that
predominantly transforms into primary liver carcinoma. The lack of predictable biomarkers
and continuous resistance make it limited for treatment and sequential therapies. Con-
ventional anticancer therapies have been associated with severe side effects due to lack
of diagnosis and selectivity [13]. The vast diversity and low toxicity make plant-derived
compounds a more reliable source of drugs compared to synthetic drugs. Plant-derived
compounds are much more effective as anticancer agents counter to multiple hallmarks of
cancer [14,15]. In most of the cancer pathways, the triggering of apoptosis is an ideal way
to induce tumor death and, in this perspective, plant secondary metabolites are reported as
natural triggers of apoptosis signaling in different cancers [16].

In the current study, four plants (i.e., B. ciliate, B. pacumbis, B. purpurascens, and
B. stracheyi) from the Saxifragaceae family have been used due to their anti-inflammatory
history as anticancer therapy. The current study is based on previously used Bergenia spp.
in different cancer therapies. B. ciliate, B. pacumbis, B. purpurascens, and B. stracheyi have
been reported with great potential as natural sources of antioxidant, anti-inflammatory, and
anticancer compounds. Studies have reported the anticancer effects of Bergenia spp. on the
inhibition of protein kinase and the induction of apoptosis [17]. Similarly, Faheem et al. [18]
reported Bergenia ligulata silver nanoparticles for arresting p53-mediated mitochondrial
apoptosis in breast cancer. The results of their study reveal the potential of BgAgNps as
anticancer agents via the cleavage of caspase-3 and downstream targeting of p53 like Bax.
In another study, Dulta et al. [19] synthesized zinc oxide NPs from the rhizome extract
of Bergenia ciliate. The prepared ZnONPs exhibited antibacterial and antioxidant activity
against Gram-negative bacterial strains. The ZnONPs with an absorbance band of 340 nm
displayed maximum cytotoxic potential in human cervical cancer and human colon cancer
cell lines. This indicated the green synthesis of natural NPs to combat with different cancers.
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In this study, the overlapping and mostly involving gene(s) in each top signaling
pathway for the onset of primary liver carcinoma were selected for precise targeting for
the selective treatment of HCC. The ten hub genes with their highest degree ranks in
topological analysis and PPIs were further selected for pathway and enrichment analysis.
The genes STAT3, MAPK3, SRC, EP300, VEGFA, PIK3CA, TNF, PTPN11, ESR1, and HIF1A
were on the top of PPIs and mostly involved in the top twenty GO annotations and KEGG
pathways. Among these, the genes STAT3, MAPK3, and SRC were evaluated for HCC
treatment. Network pharmacology can be used to create a complex integrated network
of compound–target–pathways to understand the complex relation of drugs with their
respected targets and signaling mechanisms to manage those specific diseases. These
networks are based on targets, biologically active compounds, and biological signaling
pathways of the gene that addresses the potential of compounds to tackle the involvement
of that specific gene to target that pathway. The selection and screening of targets from the
pool of genes make it more reliable to point out the involved gene(s) in common cancer
pathways [20].

Signal transducer and activator of transcription 3 (STAT3) modulates chronic inflam-
mation in tumor formulation and mediates interactions between tumor cells and stromal
cells. STAT3 belongs to the STAT family with seven members which mediate the signal
transduction from the plasma membrane toward the nucleus. The overexpression and
ubiquitous activation of STAT3 has been associated with metastasis, immune suppres-
sion, and tumor progression in liver cancer. The participation of STAT3 in oncogenesis,
angiogenesis, anti-apoptosis, and drug resistance has attracted the attention of researchers
as a therapeutic target in liver cancer. Different clinical trials have favored STAT3 gene
transcription targeting as effective for cancer treatment [21,22].

Mitogen-activated protein kinase 3 (MAPK3) is a member of the MAP kinase family
and called extracellular signal-regulated kinases (ERKs). The overexpression or genetic
mutation in the MAPK/ERK signaling cascade has been frequently reported in liver cancer.
MAPK/ERK acts as a signaling cascade being involved in differentiation, proliferation, and
cell cycle signaling in response to outer signals. Any mutation in this signaling cascade
leads to tumor initiation, progression, and modulation of the primary liver tumor, thus
leading to HCC [23].

SRC kinase is predominantly involved in multiple cellular signaling pathways includ-
ing mitochondrial oxidative phosphorylation (OXPHOS). Any abhorrent change in the
signaling cascade due to SRC kinase mutation ultimately leads to cancer development
and metastasis. The change in OXPHOS signaling and expression has been reported in
liver cancer biopsies, which showed the involvement of SRC kinase in HCC [24]. Different
clinical specimens have indicated a high level of SRC kinase in liver tumor cells compared
to non-tumor cells. The SRC expression has been positively related to tumor stage and
metastasis has indicated this kinase as a potential target in liver cancer [25].

The results obtained from network pharmacology were further evaluated through
experimental work and the cytotoxic effects of (+)-catechin 3-gallate, β-sitosterol, and
leucocianidol were explored. The findings show that (+)-catechin 3-gallate and β-sitosterol
have cytotoxic effects on HepG2 cell viability in a dose-dependent manner. In a study,
Pal et al. [26] assessed the impact of varying concentrations of epigallocatechin gallate
(HGCG) on cell viability in normal fibroblasts and hepatocytes, as well as several hepatoma
and colon cancer cell lines including HepG2, Huh7, HLF HCC, HCT-116, HCT-115, and
HT29. The results demonstrated a significant decrease in cell viability in all hepatoma and
colon cancer cell lines (p < 0.01), compared to controls, fibroblasts, and hepatocytes in a
dose-dependent manner.

The IC50 values for (+)-catechin 3-gallate and β-sitosterol were found to be 5.258 and
1.784 µg/mL, respectively, in the current study. In a study, HepG2 cells were treated with
EGCG and metformin and their cell viability exhibited a dose-dependent decrease. The
IC50 values were determined for each treatment. At 24 h of exposure, the IC50 values for
EGCG and metformin were calculated to be 31.4 µg/mL and 7.57 µg/mL, respectively [27].
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Similarly, Ditty et al. [28] conducted a research to examine the potential cytotoxic effects
of β-sitosterol on HepG2 cells using the MTT assay. HepG2 cells were exposed to various
concentrations of the compound (i.e., 0.2, 0.4, 0.8, and 1 mM/mL) for a duration of 24 h,
and their cytotoxicity was evaluated. The results reveal a significant (p < 0.001) induction of
dose-dependent cytotoxicity in HepG2 cells following β-sitosterol treatment. The highest
level of cytotoxicity was observed at a concentration of 1 mM/mL. At 24 h, the IC50 value
of β-sitosterol in HepG2 cells was determined to be 0.6 mM/mL. Similarly, Raj [29] also
conducted a study to investigate the effect of various concentrations (i.e., 2, 4, 6, 8, and
10 ng/mL) of β-sitosterol-assisted silver nanoparticles (BSS-SNPs) on the morphology of
HepG2 cells. The HepG2 cells were treated with BSS-SNPs for a duration of 24 h, and
the cytotoxicity was assessed. The results demonstrate a significant and dose-dependent
cytotoxicity in HepG2 cells following treatment with BSS-SNPs (p < 0.001). The IC50 value
of BSS-SNPs in HepG2 cells was determined to be 7 ng/mL.

In order to investigate the cytotoxic effects of β-amyrin and β-sitosterol-3-O-glucoside,
the MTT cell viability assay was employed on two cancer cell lines (HepG2 and Caco-2) in
addition to a non-cancer cell line (HEK293). The results reveal a dose-dependent cytotoxicity
of the tested compounds on the cancer cell line. Notably, both β-amyrin and β-sitosterol-
3-O-glucoside exhibited selective cytotoxicity toward cancer cells, as indicated by their
higher IC50 values of 156 and 937 µg/mL, respectively, when tested on the control non-
cancer cell line. The Caco-2 cell line demonstrated significant cytotoxic activity when
exposed to both compounds, with IC50 values of 81 µg/mL for β-amyrin and 54 µg/mL
for β-sitosterol-3-O-glucoside [30].

Through network pharmacology, three main targets (i.e., MAPK3, STAT3, and SRC)
were evaluated in this study as potential targets for (+)-catechin 3-gallate to treat HCC.
These proteins are the main parts of different cancer-leading pathways, which make them
perfect targets for the treatment of cancer. The molecular docking has confirmed the
potential of (+)-catechin 3-gallate as the lead drug candidate for the treatment of HCC. The
minimum energy score has displayed the greater binding affinity of (+)-catechin 3-gallate
as a ligand for the selected receptor proteins. This study provides a systemic layout that
illustrates the key targets and molecular mechanisms as suggestions or recommendations
for a detail study of HCC treatment in the future.

4. Materials and Methods
4.1. Active Compounds and Targets Prediction

The biologically active compounds from four Bergenia spp. (i.e., B. ciliate, B. pacumbis,
B. purpurascens, and B. stracheyi) were also retrieved from the literature and the publicly
available database of Indian Medicinal Plants, Phytochemistry and Therapeutics (IMP-
PAT) [31]. All predicted compounds were virtually screened for their pharmacokinetic
parameters of drug likeness (DL) and oral bioavailability (OB) [32]. Only those compounds
were selected for further analysis which met the criteria of DL > 0.18 and OB > 30%. Among
different pharmacokinetic parameters, the OB is an important one according to the criteria
of absorption, distribution, metabolism, and excretion (ADME). For the determination
of the DL index of active compounds, a high OB usually serves as a vital indicator. The
compounds with OB ≥ 30% are considered for high oral bioavailability [33]. Similarly, the
DL index is also an important tool to screen active compounds rapidly, which serves as
a qualitative concept that is applied in drug design for the estimation of drugability of a
potential compound. The average DL index in the DrugBank is 0.18 and the compound(s)
with ≥0.18 DL index are considered to possess high drugability [34].

4.2. Drug Target Profile for Bergenia spp.

The putative gene targets related to selected active phytochemicals were identified and
collected by providing SMILES with SwissTargetPrediction tool [35] and STITCH network
database [36] by selecting Homo sapiens in species option. Protein IDs of each identified
protein were aligned with UniProtKB to eliminate duplicates [37].
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4.3. HCC-Related Target Screening

Different keywords related to the research studies (i.e., hepatocellular carcinoma,
liver cancer) were searched to retrieve HCC-related target genes from GeneCard [38] and
DisGeNET databases [39] and aligned with UniProtKB IDs to eliminate duplicates. A
Ven-diagram was drawn using Jvenn plug-in [40] to illustrate the common overlapping
drug-target related genes.

4.4. Compound–Target Network

The software Cytoscape 3.9.1 [41] was employed to build the compound–target (CT)
network of active constituents of B. ciliate, B. pacumbis, B. purpurascens, and B. stracheyi with
associated target genes. A plug-in “Network Analyzer” was used to access the topological
features of the network.

4.5. Protein–Protein Interaction Network

Protein–protein interactions (PPIs) are mandatory to reveal the underlying mecha-
nisms and co-expression of genes [42]. The overlapped genes were imported into the
STRING database with a confidence score of 0.7 for PPIs. Multiple protein identifiers were
selected with H. sapiens as target species to construct the PPI maps. The constructed net-
work was then imported into Cytoscape 3.9.1 software to visualize the topological analysis
using Network Analyzer tool. A plug-in “CytoHubba” was used to obtain the hub genes
with the highest degree.

4.6. Gene Ontology and KEGG Enrichment Analysis

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
gene enrichment analysis of selected genes was performed via the DAVID database [43].
DAVID is a functional annotation database which is used to categorize co-occurrence of
sets of genes based on cellular component (CC), biological process (BP), and molecular
functioning (MF). The KEGG analysis reveals high-level genome mapping that reveals the
biological processes and molecular interactions of genes. The probability value of p < 0.05
was set to filter the top twenty enriched pathways for pathway–target network construction
through Cytoscape 3.9.1 [41]. Bubble plot illustrations for enrichment analysis of GO and
KEGG analyses were created through the online tool ShinyGO 0.77 [44].

4.7. Compound–Target–Pathway Network

Cytoscape 3.9.1 was used to build the compound–target–pathway (C-T-P) network by
integration of compound–target and target–pathway networks. The C-T-P network helps to
understand the interrelations of each gene with relevant pathways, which are involved in
certain biological and cellular signaling cascades. This networking was used to determine
the HCC-associated primary key target associations with the active phytochemicals.

4.8. Molecular Docking

The molecular docking study identifies the ligand–target protein interactions to verify
the potential of selected ligands as drug candidates [45]. The results of network phar-
macology and the potential of selected phytochemicals were further confirmed by the
molecular docking approach. The 3D structures of selected receptor proteins were retrieved
from the RCSB-PDB database (https://www.rcsb.org/) in .pdb format [46]. Similarly,
the chemical structures of selected phytochemicals were retrieved from the PubChem
database (https://pubchem.ncbi.nlm.nih.gov/) in .sdf format [47]. The receptor proteins
were optimized by removal of ligands, water molecules, and addition of polar hydrogens.

The PyRx software was used for ligand–protein docking to explore the binding pat-
terns of ligands to the active site residues of selected receptor proteins [48]. The docking
score was set as selection criterion to choose the best ligands. Finally, the BIOVIA Discovery
Studio Visualizer [49] was used to visualize and create 2D/3D figures of interactions and
maps of key ligands with target proteins.

https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
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4.9. ADMET Profiling

The SwissADME [50] and pkCSM [51] freely available online servers were assessed
to evaluate the ADMET profiling of selected compounds. The absorption, distribution,
metabolism, excretion, and toxicity (ADMET) parameters play a leading role in drug
development for finding potential drug candidates [52].

4.10. Experimental Study
4.10.1. Hep-G2 Cell Culture

The DMEM (Dulbecco’s Modified Eagle Medium) with 10% fetal bovine serum (FBS)
and 100 µL/mL each of streptomycin and penicillin was used to develop the hepatocellular
carcinoma cell line Hep-G2. In a CO2 incubator, Hep-G2 cells were maintained and allowed
to grow at 37 ◦C with a 5% carbon dioxide source in a moist environment. For treatment
purposes, the cells were seeded when sufficient confluence had been reached and 0.25%
trypsin-EDTA was added to separate the cells [53].

4.10.2. MTT Cytotoxicity Assay

The MTT assay was used to determine the cytotoxicity-inducing ability of (+)-catechin
3-gallate, β-sitosterol, and leucocianidol. Cisplatin and DMSO were used as a standard drug
and control, respectively. Using the MTT assay, the anticancer activities of the best selected
phytochemicals were evaluated. For this work, Hep-G2 cells were seeded and planted on
96-well plates. After a 12 h incubation period, different concentrations (1.5625, 3.125, 6.25,
12.50, 25, 50, 100, and 200 µg/mL) of the best selected phytochemicals and cisplatin were
delivered to the cancer cells. Following that, cells were treated with 50 µL/mL of MTT
solution for 4 h at 37 ◦C. Then, 0.1% DMSO was also added before aspirating the media.
Finally, the ELIZA plate reader was used to note the absorbance at 540 nm [54].

1% =
[A540(control)− A540(treated)]

A540(control)
× 100

4.10.3. Statistical Analysis

The software Graph Pad Prism 8 was used for the statistical analysis and the sig-
nificance of the inhibition data was measured using one-way ANOVA. The results with
p-value > 0.05 were considered as statistically significant [55].

5. Conclusions

Hepatocellular carcinoma (HCC) is the most lethal cancer type with malignant tumors
mostly reported in Asia and Europe. Despite systemic therapies, there is a continuous
increase in death cases due to the limited diagnosis at the advanced stages of cancer and lack
of diagnosis biomarkers. Moreover, combinational therapies are associated with adverse
side effects that increase the mortality rate with the median postdiagnostic survival of
6–12 after an advanced stage. The network pharmacology approach has pointed out the
compound-related targets for the management of HCC. The PPI, GO, and KEGG analyses
have explored the top genes involved in the pathogenesis of HCC. The viability on HepG2
cells confirmed the cytotoxic effects of (+)-catechin 3-gallate and β-sitosterol in a dose-
dependent manner. In the light of the current results, it has been concluded that Bergenia
spp. could be used as a natural drug source to treat HCC. Furthermore, clinical and in vivo
studies would be required to validate the potential of (+)-catechin gallate, specifically, and
β-sitosterol and leucocianidol, generally, as the leading drug candidates for the treatment
of HCC in the future.
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