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Abstract: Natural compounds with pharmacological activity, flavonoids have been the subject of
an exponential increase in studies in the field of scientific research focused on therapeutic purposes
due to their bioactive properties, such as antioxidant, anti-inflammatory, anti-aging, antibacterial,
antiviral, neuroprotective, radioprotective, and antitumor activities. The biological potential of
flavonoids, added to their bioavailability, cost-effectiveness, and minimal side effects, direct them
as promising cytotoxic anticancer compounds in the optimization of therapies and the search for
new drugs in the treatment of cancer, since some extensively antineoplastic therapeutic approaches
have become less effective due to tumor resistance to drugs commonly used in chemotherapy. In
this review, we emphasize the antitumor properties of tangeretin, a flavonoid found in citrus fruits
that has shown activity against some hallmarks of cancer in several types of cancerous cell lines,
such as antiproliferative, apoptotic, anti-inflammatory, anti-metastatic, anti-angiogenic, antioxidant,
regulatory expression of tumor-suppressor genes, and epigenetic modulation.
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1. Introduction

Cancer cells possess biological properties that confer the ability to develop and become
malignant. The spread of these cells occurs through a variety of tumor physiological strate-
gies, including the maintenance of proliferative signaling, evasion of growth suppressor
genes, evasion of immune destruction, induction of replicative immortality, activation of
invasion and metastasis, promotion of angiogenesis, resistance to cell death, deregulation of
cellular energy and metabolism, unlocking of phenotypic plasticity, and cellular senescence.
These properties are acquired at different stages of neoplasia in diverse types of cancer.
This ability is triggered by strong genomic instability caused by successive mutations
of regulatory genes, the infiltration of tumor-promoting immune cells, non-mutational
epigenetic reprogramming, and polymorphic microbiomes [1–3]. Elucidating these “hall-
marks” of cancer is the subject of intense experimentation to explore cancer therapies, as
the effective intervention of any of these tumor characteristics can potentially improve and
refine anticancer therapeutic treatments against cancer.

Within the therapeutic approaches to various types of cancers, the resistance to multi-
ple drugs (MDRs) exhibited by tumor cells is considered the main cause of chemotherapy
effectiveness failure. This occurs due to cellular physiological responses triggered by
the tumor, including the evasion of drug-induced apoptosis, activation of detoxification
pathways, reduction in drug uptake, and activation of DNA repair mechanisms [4]. From
this perspective, the use of natural products in clinical trials has been instrumental in
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suppressing resistance mechanisms, and hence of utmost importance in the search for
new genotoxic therapeutic approaches against tumors. These products have enabled the
development of more effective strategic combinations with fewer side effects for the treat-
ment of various types of cancer, in addition to improving our understanding of cancer
cell defense and resistance mechanisms [5]. The alteration of gene expression patterns
in tumor cells is linked to genetic and epigenetic events. Aberrant epigenetic modifi-
cations through DNA methylation, nucleosome remodeling, histone modifications, and
non-coding microRNAs play a crucial role in tumor initiation and uncontrolled cellular
progression. The understanding and discovery of drugs capable of restoring or inhibiting
these abnormal epigenetic mechanisms represent a significant advance in the means of
cancer control [6–9]. In this context, natural phenolic compounds have gained prominence
in anticancer pharmaceutical studies. These compounds, found in plants and fruits, are
described as potent epigenetic agents that regulate DNA methylation, histone modification,
and microRNAs in cancer therapy. They have shown effectiveness when combined with
chemotherapy drugs or even when used in combination with other natural compounds.
These promising findings have driven research and the development of new therapeutic
strategies for cancer treatment [10,11]. This review article aims to provide an overview of
the main anticancer properties of flavonoids demonstrated in various scientific studies,
considering the prominent characteristics of cancer, with an emphasis on tangeretin.

2. Polyphenols

Polyphenols constitute a diverse group of phytochemicals associated with secondary
metabolism in plants. They have antidiabetic, antiosteoporotic, cardioprotective, neuropro-
tective, antioxidant, anti-inflammatory, antimicrobial, immunomodulatory, and anticancer
properties [12,13]. They protect plants from ultraviolet radiation and microbial infections,
serve as signaling molecules during the pollination process, and modulate plant growth
hormones [14–16]. Based on their structure, polyphenols are classified into non-flavonoids
(curcuminoids, lignans, stilbenes, and tannins) and flavonoids [17] (Figure 1).
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found in plants, fruits, and natural compounds, divided into non-flavonoids and flavonoids.

Flavonoids (or bioflavonoids) represent an extensive class with over 10,000 described
subtypes of compounds [18–20]. They are the most abundant phenolic compounds in the
human diet, ubiquitously found in fruits, seeds, roots, cereals, teas, and wines [21–24].
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Although some are colorless, their etymology is derived from the Latin word “flavus,”
which means yellow [25]. In addition, flavonoids exist in various derived forms, including
glycosylated, acetylated, methylated, and sulfated aglycones [20,26,27].

3. Structure and Classification of Flavonoids

Structurally, flavonoids have fifteen carbons in their chemical structure (C6-C3-C6),
consisting of two benzene rings (A and B) connected by a heterocyclic pyran ring (C)
(2-phenyl-1,4-benzopyran) [28,29] (Figure 2).
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Figure 2. Main molecular structure of flavonoids.

The classification of flavonoids is based on the arrangement of the hydroxyl groups, the
degree of unsaturation, and the oxidation of the heterocyclic C-ring. The main subclasses
include flavones, flavonols, flavanones, flavanonols, flavanols, isoflavones, anthocyanidins,
and chalcones [30–34] (Figure 3). Flavanones and flavanonols show a saturated benzopyran
ring, the difference between them being the presence of a hydroxyl group on carbon
number three of the benzopyran ring in flavanols. Similarly, flavanols also have a saturated
benzopyran ring and hydroxyl groups on carbon number three; however, they differ in the
absence of a carbonyl group on carbon number four of the benzopyran ring. Anthocyanins
are hydroxylated at carbon number three and have two double bonds. Isoflavones have
a double bond between carbon numbers two and three of the benzopyran ring, with the
phenyl group attached to carbon number three. Flavonoids that do not have the benzopyran
ring are called minor flavonoids. This is true for chalcones, characterized by the absence of
the heterocyclic benzopyran ring with oxygen [35–37].
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4. Antitumor Activity of Flavonoids

These bioactive compounds exhibit many biological properties, including antioxidant,
antiviral, antifungal, antibacterial, anti-inflammatory, antidiabetic, anti-obesity, antimu-
tagenic, cardioprotective, and anticancer activities [38–42]. Concerning their anticancer
activities, the recognized importance of flavonoids has led to efforts and challenges to
elucidate the molecular and cellular mechanisms of antitumor effects [43]. This awareness
has been accompanied by an increasing number of scientific publications comparing the
human health benefits of flavonoids in the field of oncology with those of other medical
specialties, such as endocrinology, cardiology, and neurology [44]. Epidemiological studies
support the chemopreventive benefits of flavonoids when included in the human diet, with
their intake correlated with a lower risk of developing some tumors, such as gastric, breast,
prostate, and colorectal cancers [45,46]. Flavonoids mediate anti-neoplastic mechanisms
by modulating reactive oxygen species (ROS) levels in tumor cells, inhibiting carcinogens,
pro-inflammatory pathways, angiogenesis, autophagy, inducing apoptosis, and inhibiting
tumor proliferation and invasion [47–55] (Figure 4).

Even though the anticancer efficacy of flavonoids is described in the literature, the
pharmacological activity of these compounds may be limited due to their water insolubility.
The low solubility of flavonoids presents a double-edged sword in the therapeutic field.
On one hand, their reduced absorption due to low solubility does not confer toxicity
to the organism. On the other hand, it also becomes a problem as it may reduce their
chemosensitizing effectiveness due to inefficient absorption [55,56].

In order to overcome this disadvantage, nanoparticle-based delivery systems have
been developed aiming to improve the bioavailability and absorption of drugs in cancer
therapy. These drug-carrying nanocarriers, such as polymeric micelles, liposomes, den-
drimers, and carbon nanotubes, have been extensively investigated to ensure the chemother-
apeutic and chemosensitizing effectiveness of drugs targeted to cancer cells [57,58]. In this
context, the production of flavonoid-loaded phytoparticles has added advantages to the
treatment, prevention, and clinical perspectives of cancer. These phytoparticles increase the



Pharmaceuticals 2023, 16, 1229 5 of 21

bioavailability of compounds with low solubility, prolong the half-life of drugs, improve
blood absorption, and reduce gastrointestinal degradation. Moreover, this delivery system
allows for lower quantities of flavonoids to be used, thereby decreasing the risk of toxicity
in non-tumor cells [59–62].
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As an example, the effect of an oral nanoparticle delivery system of chitosan contain-
ing an encapsulated epigallocatechin-3-O-gallate (EGCG) flavonoid has been described as
excellent in vitro in human melanoma cells and in vivo in melanoma tumor xenografts. It
promotes cell growth inhibition and the induction of apoptosis in vivo, showing enhanced
effectiveness in vitro when compared to native EGCG treatment [63]. These results stem
from efforts to improve the bioavailability of EGCG based on previous research focus-
ing on melanoma cancer, aiming to optimize the anticancer effects of antiproliferation
and pro-apoptosis physiologically [64]. These findings reaffirm that the encapsulation
(nanochemoprevention) of substances with chemopreventive activity in EGCG nanoparti-
cles can be an efficient alternative in cancer treatment [65].

In the same way, treatment with EGCG nano-emulsion (nano-EGCG) in lung cancer
cells showed the anti-tumor effects between EGCG and nano-EGCG groups. Both treatment
groups blocked tumor cell growth. Importantly, the nano-EGCG treatment inhibited cell
migration and invasion in a dose-dependent manner, achieved through the stimulation of
the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway [66].
This pathway is altered in the metabolic reprogramming of cancer cells and is responsible
for conferring resistance to cancer-fighting drugs, preventing the autophagy of cancer
cells [67,68].

Moderate levels of reactive oxygen species (ROS) resulting from mitochondrial activity
act as redox signaling molecules in growth, differentiation, and cell proliferation pathways.
However, excessive levels of ROS induce DNA mutations, protein and lipid damage, and
stimulate pro-oncogenic signaling pathways, thus contributing to carcinogenesis [69,70].

https://creativecommons.org/licenses/by/3.0/
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Tumor cells have significantly higher ROS levels in the tumor microenvironment compared
to the homeostatic conditions of non-tumor cells. However, excess ROS can be harmful
to cancer cells, leading to cell death. Consequently, tumor cells develop adaptive detox-
ification mechanisms in response to excessive ROS [71,72]. As the elevation of ROS can
trigger apoptosis in cancer cells, therapeutic strategies aimed at modulating ROS levels
in cancer treatment have shown the efficacy of anticancer drugs [73–75]. In this sense,
flavonoids are described to exhibit antioxidant biological activity in non-tumor cells and
pro-oxidant activity by inducing increased oxidative stress in cancer cells, thereby inhibiting
cell proliferation signaling, suppressing pro-inflammatory cytokines, promoting apoptosis,
necrosis, and autophagy activation [28]. The ability to scavenge oxygen reactive species
is related to the presence of a large number of phenolic hydroxyl groups in the molecular
structure of flavonoids, where intense electron exchange facilitates substitution reactions
with free radicals, forming a more stable compound. Therefore, the higher the number of
hydroxyl groups, the greater the oxidant and pro-oxidant capacities of the flavonoid [76,77].
Ovarian cancer cells treated with flavonoids apigenin, luteolin, and myricetin showed an
intracellular increase in ROS levels in a dose-dependent manner compared to untreated
control cells, resulting in the activation of the intrinsic apoptotic pathway, cell cycle arrest,
and anti-invasion [78]. Similarly, it was described that the flavonoid quercetin triggered
cell death in cancer cells by positively regulating ROS levels [79]. The expression of the
transglutaminase 2 (TGM2) gene is generally associated with poor prognosis in pancreatic
cancer and is involved in its initiation, inflammation, and progression, making it a target
marker in studies analyzing drugs with chemosensitizing activity [80–82]. Treatment with
kaempferol suppressed pancreatic cancer growth in vivo and in vitro. It was observed that
treated cells had decreased TGM2 expression, and the increase in ROS induced apoptosis
through the Akt/mTOR signaling pathway [83]. The therapeutic potential of flavonoids in
modulating ROS demonstrates that their pro-oxidant activity can positively contribute to
anticancer research.

In order for excessive cell growth to be achieved, cancer cells reprogram their energy
metabolism. This reprogramming is directly related to the maintenance and aggressiveness
of neoplastic cells [84]. In this sense, glutathione is a ubiquitous endogenous antioxidant
tripeptide (γ-Glu-Cys-Gly; GSH) found in eukaryotic cells, being responsible for maintain-
ing cellular redox homeostasis by eliminating reactive oxygen species (ROS), a cellular
metabolic byproduct [85–87]. Glutathione (GSH) metabolism has been investigated in
tumor progression and explored as a targeted therapeutic strategy for cancer [87,88]. The
positive modulation of GSH levels is directly related to the response to cellular detoxifi-
cation mechanisms. This provides advantages to various types of cancers, as it is crucial
for the elimination and detoxification of certain chemotherapeutic agents, thus conferring
therapeutic resistance. Moreover, high GSH levels contribute to tumor development and
increase metastasis events [89]. On the other hand, the reduction (depletion) in GSH lev-
els leads to certain types of cell death, such as apoptosis, necroptosis, ferroptosis, and
autophagy, providing a foundation for studies exploring the suppression of GSH levels
in chemosensitization approaches in cancer therapies, making tumor cells prone to the
cytotoxic and cytoprotective effects of antineoplastic substances [90]. In this direction, it
has been observed that tangeretin is able to reduce oxidative stress in human hepatocellular
carcinoma induced by tert-Butyl Hydroperoxide (t-BHP) by inhibiting GSH depletion in the
cell [91]. Similarly, in cisplatin-induced liver lesions in rats treated with tangeretin, protec-
tive activity against cellular oxidative stress was observed, and an increase in antioxidant
defense was also observed, as evidenced by elevated GSH levels [92]. Hence, this flavonoid
is capable of reducing cellular stress and restoring the antioxidant defense system.

Epigenetic mechanisms are commonly associated with cancer development. In breast
cancer, the expression pattern of certain tumor suppressor genes is related to methy-
lation patterns. DNA methylation plays a critical role in controlling gene activity and
nuclear architecture, being the most extensively studied epigenetic modification in humans.
It is involved in the regulation of various biological processes, such as cell differentia-
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tion, embryogenesis, X-chromosome inactivation, microRNA expression, suppression of
transposable elements, and genomic imprinting [93–95]. Hence, DNA methylation is an
epigenetic mark associated with gene silencing, as it affects chromatin structure and blocks
the access of binding factors, preventing the expression of the genes. This pattern can be
stably maintained throughout life or undergo changes during aging [96]. Hypermethyla-
tion of CpG islands in the promoter region of tumor suppressor genes is an early event
in various types of cancer. Consequently, CpG island hypermethylation in the promoter
region can affect genes involved in cell control, DNA repair, apoptosis, and angiogenesis.
In breast and ovarian cancers, hypermethylation is found in the promoter region of the
BRCA1 gene, which acts as a tumor suppressor and is responsible for preventing the un-
controlled proliferation of cells [97,98]. Hypomethylation of DNA also triggers neoplastic
transformations when it causes chromosomal instability, thus reactivating or activating
oncogenes [99]. The literature highlights flavonoids as epigenetic modifiers in breast cancer.
Epigallocatechin-3-gallate (EGCG), genistein, daidzein, resveratrol, and quercetin are capa-
ble of restoring the expression pattern of silenced tumor suppressor genes, such as BRCA1
and BRCA2, by inhibiting the enzymes called DNA methyltransferases (DNMTs). These
enzymes are responsible for catalyzing the gene silencing process in the promoter region of
the genes [99–101]. The restauration of the original expression patterns of these suppressor
genes by the flavonoids was observed in different breast cancer cells, resulting in decreased
proliferation and cancer cell migration [100]. The knowledge of the antitumor properties
and ability of flavonoid subclasses (anthocyanidin—delphinidin, flavones—apigenin, lute-
olin, tangeretin, isoflavones—genistein, flavanones—hesperetin, silibinin, flavanol—EGCG,
flavonols—quercetin, kaempferol, and fisetin) to modulate epigenetic enzymes, such as
DNA methyltransferases (DNMTs), acetyltransferases (HATs), histone methyltransferases
(HMTs), and histone deacetylases (HDACs), reinforce the incentive for research on thera-
peutic combination approaches involving these natural compounds that alter the epigenetic
marks related to cancer development and progression along with drugs already used for
cancer treatment [102].

The study of the mechanisms of action of apoptotic caspases in cancer has been
explored through the use of antineoplastic drugs as a therapeutic strategy to overcome
resistance and control the proliferation of cancer cells. The modulation of apoptosis under
the action of natural products has demonstrated efficacy in inducing neoplastic cell death,
representing an additional alternative to common chemotherapeutic agents employed in
cancer treatment. It opens up a path for the development of new antineoplastic drugs,
focusing on the apoptotic events executed by caspases [103–107]. The deregulation of the
caspase cascade is implicated in the disruption of programmed cell death and directly
related to the pathophysiology of cancer (evasion of apoptotic programming). The apoptotic
imbalance resulting from negative caspase regulation is considered one of the causes
of the resistance to tumor death found in cancer treatment [108–110]. The apoptotic
proteolytic activation of caspases is executed through intrinsic (mitochondrial) and extrinsic
(cytoplasmic) pathways. The intrinsic pathway is activated as feedback in response to
cellular stress caused by cytotoxic substances, DNA mutations, hypoxia, cytoskeletal
disruption, etc. [111–113]. In lung cancer cells treated with the flavonoid hesperetin, cell
death by apoptosis was induced through the extrinsic pathway by increasing the expression
levels of death domains genes, such as FADD, caspase-8, and FAS. The same study also
mentioned that increased cell death occurred independently of the suppressor protein
p53 and the pro-apoptotic protein Bax [114]. Treatment with malvidin and an analysis
through flow cytometry showed that apoptotic activity was triggered by increased effector
caspase-3 in myeloid and lymphoid leukemia cells in a dose-dependent manner, resulting
in cell death [115]. Another study, also using flow cytometry, as well as Western blot
and real-time PCR, showed the result of cell death by apoptosis in gastric cancer cells,
where silibinin increased the level of caspases-3 and -9, followed by the inhibition of the
transducer of signaling and activator of transcription 3 (STAT3) pathway, which is related
to tumor growth and metastasis [116].
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The molecular protective effect of flavonoids on DNA reduces the damage caused by
carcinogens and promotes cellular genomic stability, allowing the development of strategies
to treat neoplasms [19]. Table 1 presents the developed studies that describe the antitumor
properties of flavonoids in various types of cancers.

Table 1. Subclasses of flavonoids and their compounds with antitumor activity described in cancer
cell lines.

Subclasses Compounds Antitumor Activity Cancer/Cell
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Chalcones  

Phloretin 

Anti-proliferative 
┤ Migration 

↑ ROS 

Prostate/ 
PC3; 

DU145; 
[120] 

 
Flavanones 

 
Naringin 

Apoptosis 
↓ (PI3K/AKT) 

Anti-proliferative 
Anti-metastatic 

┤ (Zeb1) 
Autophagy 

↓ (PI3K/AKT/mTOR) 

Thyroid/ 
TPC-1; 

SW1736; 
[121] 

Osteosarcoma/ 
MG63, 
U2OS; 
[122] 

Gastric/ 
AGS; 
[123] 

 
Hesperidin 

Apoptosis 
↑ (FADD/caspase-8) 

Lung/ 
H522; 
[114] 

 
Eriodictyol 

 

Anti-proliferative 
Apoptosis 

┤ mTOR/PI3K/Akt 
Anti-proliferative 

Apoptosis 
-Anti-metastatic 

┤ PI3K/Akt/NF-κB 

Lung/ 
A549; 
[124] 

Glioma/ 
U87MG; 
CHG-5; 

[125] 

 
 

Flavones 
 

Baicalein 

Induction apoptosis 
Autophagy 

┤ (PI3K/AKT) 

Breast/ 
MCF-7; 

MDA-MB-231; 
[126] 

Chalcones
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5. Antineoplastic Activity of Tangeretin

The flavonoid tangeretin (5,6,7,8,4′-pentamethoxyflavone) is found in the peels of
citrus fruits, especially oranges and tangerines. Studies have reported the beneficial bioac-
tivities of this flavonoid, including its anti-asthmatic, antioxidant, anti-teratogenic, anti-
inflammatory, neuroprotective, and anticancer properties [143–146]. Citrus flavonoids
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have demonstrated their potential anticarcinogenic activity both in in vivo and in vitro
experiments by targeting cancer-related cellular processes, such as carcinogen bioactiva-
tion, cell signaling, cell cycle regulation, inflammation, and angiogenesis [147,148]. Tan-
geretin exhibits pharmacological properties, such as antiproliferative, anti-invasive, and
anti-metastatic, and can induce apoptosis in specific cancers [149–153] (Figure 5). Ex-
perimental molecular analyses have focused on exploring and elucidating the cellular
pathways involved in the metabolic activity of these flavonoids, further supporting their
chemotherapeutic potential [147].

Using a proteomic approach, Yumnam et al. [154] investigated the effect of tangeretin
on a human gastric cancer cell line. They observed that the treatment inhibited the activity
of markers (PKCs, MAPK4, PI4K, PARP14) associated with poor prognosis in various cancers
related to cell migration, proliferation, chemoresistance, the suppression of apoptosis, and
differentiation. Remarkably, this study also sheds light on the importance of the PKC
family as a novel biomarker in gastric cancer, as the overexpression of one of its members,
PKCε, known for its anti-apoptotic functions, was inhibited by tangeretin treatment, which
ultimately induced apoptosis in the gastric cell line. These findings highlight the potential
of the PKC family as a promising marker and therapeutic target for treating gastric cancer
with tangeretin.

Gliomas are responsible for originating the majority of brain tumors, presenting a high
mortality rate, infiltrative growth, and low early detection. Despite intense conventional
therapeutic advancements in gliomas, a cure for these tumors is still considered distant [155].
Increasing clinical data and research demonstrate that natural compounds emerge as
promising agents in therapies aimed at combating GBM [156]. The potential antineoplastic
effect of tangeretin was demonstrated by inducing cell cycle arrest and cell death in GBM.
Tangeretin treatment positively modulated the expression of the PTEN gene and cell cycle
regulating genes, and induced cell cycle arrest in G2/M and apoptosis. This suggests that
tangeretin can be used as a chemopreventive agent in treating GBM. This assay reinforces
the importance of further studies on the antitumor activity of tangeretin in nervous system
tumors [157].

In in vivo experiments conducted on rat mammary carcinogenesis, tangeretin exhib-
ited promising results. After cancer induction by 7,12-dimethylbenz(α)anthracene, oral
treatment with this flavonoid affected markers associated with uncontrolled cell growth
(PCNA, COX-2, and Ki-67). It effectively arrested the division of tumor cells at the G1/S
phase by positively regulating the p53/p21 genes. Additionally, tangeretin demonstrated
remarkable antimetastatic and antiangiogenic activities by inhibiting matrix metallopro-
teinases (MMPs) MMP-2/MMP-9 and the vascular endothelial growth factor (VEGF),
respectively [158]. Sangavi and Langeswaran, using in silico approaches [159], investigated
the inhibitory effect of natural compounds on liver cancer, targeting cyclooxygenase 2
(COX-2), an enzyme associated with inflammatory and carcinogenic processes (angiogen-
esis, metastasis, and apoptosis resistance). They found that tangeretin exhibited efficacy,
showing a favorable pharmacokinetic profile for absorption, distribution, metabolism,
excretion, and toxicity. These properties are essential for synthesizing new antineoplastic
drugs and confirming the antitumor activity of this compound on the target cyclooxyge-
nase 2 (COX-2) in hepatocellular carcinoma (HCC). The suppression of cyclooxygenase 2
(COX-2) was also observed in the epidermal cells of mice exposed to ultraviolet-B radiation
(UVB). This occurred by blocking mitogen-activated protein kinase (MAPK) signaling and
NF-kB activation and inhibiting the increase in ROS levels in cells upon UVB exposure,
providing cellular protection against oxidative stress. These results suggest that the anti-
inflammatory and modulatory effects of tangeretin may have a chemopreventive effect on
skin cancer [160].

In macrophage cells, the process of inflammation induced by lipopolysaccharide (LPS)
triggered a substantial increase in pro-inflammatory cytokines (IL-1, IL-6, and TNF-α)
that were activated by the messenger molecule nitric oxide (NO). After incubation with
tangeretin, the activation of anti-inflammatory cytokines (IL-4, IL-13, TNF-β, and IL-10)
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was observed, along with significant inhibition of inducible nitric oxide synthase (iNOS)
and COX-2 [161]. As LPS is responsible for promoting inflammation and cell migration
in certain types of cancer [162–165], the control of cellular inflammation described by the
action of tangeretin may contribute to cancer treatment.

Antineoplastic agents administered as part of therapies can induce apoptosis in cancer
cells. However, these agents often cause cytotoxicity in noncancerous cells, particularly
immature immune system cells (myelocytes) and leukocytes (lymphocytes). In this context,
the use of tangeretin in human leukemic cells (HL-60) from promyelocytic leukemia inhib-
ited their growth by inducing apoptosis without promoting cytotoxicity or other side effects
in immune system cells [128]. Combining antineoplastic agents (synergistic therapy) has
resulted in more effective therapeutic strategies and the mitigation of side effects associated
with chemotherapeutic agents commonly used for cancer treatment. When tangeretin was
combined with the synthetic 5-fluorouracil (5-FU) and administered in treating certain solid
tumors, significant antitumor activity was observed in colon cancer cells. This co-exposure
decreased the antioxidant levels in tumor cells, resulting in oxidative stress through the
accumulation of reactive oxygen species (ROS), triggering a DNA damage response and
directing the cells toward apoptosis via c-Jun N-terminal kinases (JNKs). Significantly,
tangeretin synergistically intensified the induction of apoptosis by 5-FU. Similarly, the
co-treatment also caused a decrease in mitochondrial activity [166].

Another well-known chemotherapeutic agent commonly used to treat various human
cancers is cisplatin, or cis-diamindichloroplatin (II). Cisplatin proves its effectiveness by
causing DNA damage in tumor cells, leading to apoptosis. However, the side effects, such
as kidney problems, weakened immunity, gastrointestinal problems, bleeding, and hearing
damage, limit its applicability and effectiveness [167,168]. The use of tangeretin in acute
liver injury caused by cisplatin in rats showed a protective effect against these histopatho-
logical deformations, underscoring its effect on one of the severe side effects of cisplatin
treatment. Moreover, tangeretin reduced inflammatory mechanisms by neutralizing tumor
necrosis factor-alpha (TNF-α) and stimulating interleukin-10 (IL-10) [92].

The expression of cell division-retarding tumor suppressor proteins, such as p21, p53,
and p27, was increased in colorectal carcinoma cells when treated with tangeretin, thus pro-
moting the inhibition of cell growth by triggering the blocking of enzymes responsible for
regulating cell cycle progression and cyclin-dependent kinases (CDK2) and (CDK4) [125].
The elevation of tumor suppressor protein levels, followed by the inhibition of CDK, shows
important anticancer effects, preventing neoplastic cells from entering division and ensur-
ing the evasion of the suppression mechanism targeted against carcinogenesis. Considering
the anticancer activities exhibited by citrus flavonoids, a study of the effects of a synthetic
derivative of tangeretin (5,4’-didemethyltangeretin (PMF2)) in human prostate cancer cells
demonstrated the restoration of P21 gene expression through epigenetic mechanisms of
demethylation, followed by the blocking of DNMT 3B and HDACs protein expressions,
thereby inhibiting cell proliferation [167].

Given the properties demonstrated for the different tumor characteristics in various
types of cancer, tangeretin presents itself as a promising agent in the development of
anticancer therapeutic strategies.
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Figure 5. Antitumor potential of tangeretin. Anticancer activity of tangeretin under some cancer 
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of tumors. Sustaining proliferative signaling: [127,152,160,161,167,168]; evading growth suppres-
sors: [127,167]; nonmutational epigenetic reprogramming: [167]; tumor-promoting inflammation: 
[161,169]; activating invasion and metastasis: [151,170,171]; inducing or accessing vasculature: 
[170,172]; genome instability and mutation: [143]; resisting cell death: [128,129,173]; deregulating 
cellular metabolism: [92,174]. Parts of the figure are drawn by using pictures from Servier Medical 
Art. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported 
License (https://creativecommons.org/licenses/by/3.0/ accessed on 12 August 2023). 
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of oncology, including pharmacokinetics (low solubility and stability, interaction with in-
testinal microflora, and metabolic interaction with receptors), pharmacodynamics, epide-
miological studies (long duration, delays in data collection and categorization, absence of 
participant data, and exposure to heterogeneous factors), and isolation/purification of 
their natural sources. Among citrus flavonoids, tangeretin exhibited antitumor activities 
against cell proliferation. In addition, it also synergistically promoted improvements in 
reducing the side effects and yield when combined with some traditional chemotherapy 
drugs already implemented in cancer treatments. In order to provide more robust scien-
tific knowledge about the antineoplastic activity of flavonoids, further studies are needed 
to examine the dosage, bioavailability, efficacy, and safety to establish the clinical use of 
these promising anticancer therapeutic agents. 
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Figure 5. Antitumor potential of tangeretin. Anticancer activity of tangeretin under some can-
cer characteristics promotes uncontrolled cell progression and resistance to therapies in different
types of tumors. Sustaining proliferative signaling: [127,152,160,161,167,168]; evading growth sup-
pressors: [127,167]; nonmutational epigenetic reprogramming: [167]; tumor-promoting inflamma-
tion: [161,169]; activating invasion and metastasis: [151,170,171]; inducing or accessing vascula-
ture: [170,172]; genome instability and mutation: [143]; resisting cell death: [128,129,173]; deregulating
cellular metabolism: [92,174]. Parts of the figure are drawn by using pictures from Servier Medical
Art. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported
License (https://creativecommons.org/licenses/by/3.0/ accessed on 12 August 2023).

6. Conclusions and Future Perspectives

The biological potential, bioavailability, cost-effectiveness, and minimal side effects of
flavonoids position them as promising cytotoxic anticancer compounds in the optimization
of therapies and in the search for new drugs for the treatment of cancer. However, it is
crucial to address the challenges that limit the effectiveness of flavonoids in the field of on-
cology, including pharmacokinetics (low solubility and stability, interaction with intestinal
microflora, and metabolic interaction with receptors), pharmacodynamics, epidemiological
studies (long duration, delays in data collection and categorization, absence of participant
data, and exposure to heterogeneous factors), and isolation/purification of their natural
sources. Among citrus flavonoids, tangeretin exhibited antitumor activities against cell
proliferation. In addition, it also synergistically promoted improvements in reducing the
side effects and yield when combined with some traditional chemotherapy drugs already
implemented in cancer treatments. In order to provide more robust scientific knowledge
about the antineoplastic activity of flavonoids, further studies are needed to examine the
dosage, bioavailability, efficacy, and safety to establish the clinical use of these promising
anticancer therapeutic agents.
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