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Abstract: Cadmium is an environmental toxicant that instigates cognitive deficits with excessive
glutamate excitatory neuroactivity in the brain. Topiramate, a glutamate receptor antagonist, has
displayed favorable neuroprotection against epilepsy, cerebral ischemia, and Huntington’s disease;
however, its effect on cadmium neurotoxicity remains to be investigated. In this study, topiramate was
tested for its potential to combat the cognitive deficits induced by cadmium in rats with an emphasis
on hippocampal oxidative insult, apoptosis, and autophagy. After topiramate intake (50 mg/kg/day;
p.o.) for 8 weeks, behavioral disturbances and molecular changes in the hippocampal area were ex-
plored. Herein, Morris water maze, Y-maze, and novel object recognition test revealed that topiramate
rescued cadmium-induced memory/learning deficits. Moreover, topiramate significantly lowered
hippocampal histopathological damage scores. Mechanistically, topiramate significantly replenished
hippocampal GLP-1 and dampened Aβ42 and p-tau neurotoxic cues. Notably, it significantly dimin-
ished hippocampal glutamate content and enhanced acetylcholine and GABA neurotransmitters. The
behavioral recovery was prompted by hippocampal suppression of the pro-oxidant events with no-
table activation of SIRT1/Nrf2/HO-1 axis. Moreover, topiramate inactivated GSK-3β and dampened
the hippocampal apoptotic changes. In tandem, stimulation of hippocampal pro-autophagy events,
including Beclin 1 upregulation, was triggered by topiramate that also activated AMPK/mTOR path-
way. Together, the pro-autophagic, antioxidant, and anti-apoptotic features of topiramate contributed
to its neuroprotective properties in rats intoxicated with cadmium. Therefore, it may be useful to
mitigate cadmium-induced cognitive deficits.

Keywords: topiramate; cadmium; Alzheimer; autophagy; apoptosis; glutamate

1. Introduction

Cadmium is a prominent environmental contaminant that exists in tobacco and various
foods such as root crops, cereals, vegetables, and seafood. Due to its ubiquitous usage
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in industrial and agricultural activities and its extended biological half-life in humans,
cadmium exposure has been considered unavoidable [1,2]. Growing evidence has revealed
that repeated cadmium exposure triggers marked neurotoxicity, including memory deficits.
In this regard, several epidemiological studies have affirmed the diminished cognitive
ability upon repeated exposure to cadmium metal in humans [3].

The pathways that mediate the neurotoxic impact of cadmium remain elusive. How-
ever, multiple mechanisms have been proposed, including redox perturbations and exces-
sive apoptosis/neuronal cell loss in the brain hippocampus [4–6]. In this regard, ample
evidence has revealed that the hippocampus plays a central role in the learning process
and memory. Hence, cognitive dysfunction and impaired memory and learning have
been characterized as hallmark manifestations of cadmium-induced neurotoxicity [4,5].
Neuronal pro-oxidant events are vital in the pathogenesis of cadmium neurotoxicity. In
perspective, cadmium triggers the depletion of neuronal antioxidants and aberrant reactive
oxygen species (ROS) generation. In the same regard, cadmium-evoked neurotoxicity is
also mediated by inhibition of the nuclear factor erythroid 2-related factor-2 (Nrf2)/heme
oxygenase-1 (HO-1) cascade. Intriguingly, there have been conflicting studies on the in vivo
impacts of cadmium on Nrf2/HO-1 axis where activation [6], as well as inhibition [4] of
this antioxidant cascade, have been characterized. Hence, further investigation is war-
ranted to explore its exact role in the in vivo pathogenesis of cadmium neurotoxicity. In the
same regard, the depletion of silent information-regulated transcription factor 1 (SIRT1)
protein was observed in rodent models of cadmium-induced cognitive dysfunction [5]. In
experimental animals, SIRT1 is essentially a cytoprotective NAD+-dependent deacetylase
that dampens neuronal oxidative damage and apoptosis, resulting in considerable neuro-
protection [7]. Upon exposure to excessive neuronal stresses and oxidative stress, neurons
undergo cell death through the mitochondrial apoptotic pathway as the prevalent pathway.
This is characterized by excessive pro-apoptotic signals like Bcl-2-associated x protein (Bax)
together with diminished anti-apoptotic markers [5,6,8], which culminate in hippocampal
neuronal loss and associated impairment of memory and learning in rodents [5,9].

Autophagy has recently been identified as a key player in the pathophysiology
of cadmium-evoked neurotoxicity and cognitive impairment. Classically, autophagy
is a catabolic condition that has evolved to cleanse cells of misfolded proteins and
damaged mitochondria, thereby favoring cellular survival [10]. In the in vitro studies,
conflicting results have been described in cadmium-triggered neuronal toxicity, where
inactivation [10–12] and stimulation [13] of autophagy events have been characterized in
neuronal cells. In addition, studies have inadequately addressed the in vivo autophagy
process in experimental animals [6]. Specifically, the present study examines the effects of
repeated cadmium exposure on rat hippocampi, the main brain area for learning and mem-
ory formation [14], focusing on autophagy events. According to the evolving evidence [13],
autophagy is positively regulated by the adenosine monophosphate-activated protein
kinase (AMPK)-mammalian target of rapamycin (mTOR) cascade, facilitating multiple
neurotoxic signal removal [14].

The link between cadmium exposure and cognitive decline has been highlighted.
Preclinical studies have characterized compromised learning ability and memory im-
pairment in rodents intoxicated with cadmium [4,5]. Moreover, cellular and molecular
studies have revealed that cadmium triggers the deposition of amyloid plaques and
crosslinked amyloid β-peptide (Aβ) aggregates in the brain of animals, particularly
in the hippocampus area. Meanwhile, rodent models of cadmium-induced cognitive
disruption demonstrated that cadmium administration causes phospho-tau (p-tau) depo-
sition as neurofibrillary tangles [14]. Together, the amyloid plaques and neurofibrillary
tangles instigate hippocampal synaptic damage, neuritic dystrophy, and neuronal cell
death, resulting in the manifestation of cognitive decline, memory impairment, and
Alzheimer’s (AD)-like symptoms [2].

As a sulfamate-substituted monosaccharide drug, topiramate serves as a tool for
epilepsy management (Figure 1A shows its chemical structure). It elicits marked anti-
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epileptic actions by inhibiting the excitatory glutamate receptor subtype of 3-hydroxy-
5-methyl-4-isoxazole-propionate (AMPA) and dampening the voltage-gated sodium
channels, as well as increasing neurotransmission by aminobutyric acid (GABA) [15].
Beyond its classical use as an anti-epileptic drug, the clinical experience has suggested
its efficacy for the management of psychiatric disorders, including bipolar disorders
and essential tremors [16]. Meanwhile, it has been successfully used in schizophrenia-
associated obesity and migraine [17]. Interestingly, topiramate has demonstrated re-
markable neuroprotection against experimental models of focal as well as global cerebral
ischemia in rodents [18] and postoperative cognition impairment in rats [19]. In the
clinical setting, evidence revealed that topiramate has demonstrated notable efficacy
in combating behavioral disturbances in patients with AD [16]. In this regard, several
clinical trials have proven that topiramate is effective as a therapeutic approach for
lowering the agitation and aggression behavior linked to AD dementia with similar
efficacy to risperidone [16], carbamazepine, and valproic acid [20]. In the context of AD
pathology, excessive excitotoxicity is involved in its pathogenesis [16,21]. Hence, damp-
ening the hippocampal neuronal hyperactivity has been reported to enhance cognition,
as reported in amnestic cognitive dysfunction [22]. Consistent with this notion, topira-
mate has been reported to suppress the activity of excitatory glutamate and augment
the effects of GABA in neuronal cells, an event that may justify its efficacy against AD
behavioral disturbance [15]. With respect to neurodegenerative diseases, topiramate
has revealed marked neuroprotection against several experimental models, including
3-nitropropionic acid-induced striatal neurodegeneration, Huntington-like manifesta-
tions [23], and methylphenidate-triggered hippocampal neurodegeneration in the CA1
region and dentate gyrus of rats [24]. However, topiramate has not been examined
in animals for its ability to combat learning and memory impairments triggered by
cadmium. Therefore, the purpose of the present study was to assess whether topiramate
may have a neuroprotective effect against cadmium-induced cognitive decline and the
associated molecular and cellular manifestations. Herein, the cognitive impairment in
terms of learning and memory dysfunction was investigated along with the molecular
derangements and neurotoxic signals in the hippocampus of rats, the brain area that
principally controls learning and memory activity [4–6]. In particular, the present work
focused on neuronal autophagy, apoptosis, and redox changes.
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Figure 1. Topiramate counteracts the impairments in spatial learning/retention memory and recog-
nition memory in cadmium-intoxicated rats. (A) Topiramate chemical structure. (B) The Morris wa-
ter maze (MWM) test included 3 days of training (4 training sessions per day; 1 min each) where the 
hidden platform was placed in a fixed quadrant. Twenty-four h later, a probe test was executed 
where the hidden platform was removed. In the probe test, topiramate significantly increased the 
time spent in the target quadrant following platform removal, revealing an enhanced retention 
memory in animals. (C) As part of the Y-maze test (1 h after the training), animal’s short-term recog-
nition memory was examined by measuring the ratio of the time spent in the new/old arm. In this 
test, the ratio was significantly increased by topiramate. (D) As part of the novel object recognition 
test (1 day after the training), animal’s long-term recognition memory was examined by measuring 
the discrimination ratio. In this test, the ratio was significantly increased by topiramate. In each 
group, n = 6 (graph presenting mean ± standard error of the mean). Statistical significance was de-
noted by ** p < 0.01 or *** p < 0.001, versus the control group. Statistical significance was denoted by 
# p < 0.05, ### p < 0.001, or #### p < 0.0001, versus the cadmium group. TOP, topiramate; Cd, cadmium 
chloride. 
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by Cadmium 

To explore whether topiramate can ameliorate cadmium-induced deficits in memory 
and spatial learning in vivo in animals, the Morris water maze (MWM) was employed to 
estimate rodent spatial memory and learning [25]. In the probe trial after removing the 
hidden platform, statistical significance was detected among groups [F (3, 20) = 6.873, p = 
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Figure 1. Topiramate counteracts the impairments in spatial learning/retention memory and recogni-
tion memory in cadmium-intoxicated rats. (A) Topiramate chemical structure. (B) The Morris water
maze (MWM) test included 3 days of training (4 training sessions per day; 1 min each) where the
hidden platform was placed in a fixed quadrant. Twenty-four h later, a probe test was executed where
the hidden platform was removed. In the probe test, topiramate significantly increased the time
spent in the target quadrant following platform removal, revealing an enhanced retention memory
in animals. (C) As part of the Y-maze test (1 h after the training), animal’s short-term recognition
memory was examined by measuring the ratio of the time spent in the new/old arm. In this test,
the ratio was significantly increased by topiramate. (D) As part of the novel object recognition test
(1 day after the training), animal’s long-term recognition memory was examined by measuring the
discrimination ratio. In this test, the ratio was significantly increased by topiramate. In each group,
n = 6 (graph presenting mean ± standard error of the mean). Statistical significance was denoted by
** p < 0.01 or *** p < 0.001, versus the control group. Statistical significance was denoted by # p < 0.05,
### p < 0.001, or #### p < 0.0001, versus the cadmium group. TOP, topiramate; Cd, cadmium chloride.

2. Results
2.1. Topiramate Reverses Spatial Learning/Retention Memory Impairments Triggered by Cadmium

To explore whether topiramate can ameliorate cadmium-induced deficits in memory
and spatial learning in vivo in animals, the Morris water maze (MWM) was employed
to estimate rodent spatial memory and learning [25]. In the probe trial after removing
the hidden platform, statistical significance was detected among groups [F (3, 20) = 6.873,
p = 0.0023], as shown in Figure 1B. In comparison to the vehicle-treated control group,
rats intoxicated with cadmium showed an impaired retention memory, with a significant
(p < 0.01) reduction in the time spent in desired area by 42.4%. By administering topiramate
to cadmium-intoxicated rats, this time was significantly (p < 0.05) increased by 62.9%.
According to the MWM data, topiramate was able to improve the spatial learning/memory
retention impairments caused by cadmium.

2.2. Topiramate Counteracts Cadmium-Induced Deterioration of the Recognition Memory in Rats

To examine whether topiramate can ameliorate cadmium-induced deterioration of the
recognition memory in animals, the Y-maze was used as a reliable test for the spontaneous
alternation behavior in rodents and recognition memory [26]. Regarding the time spent in
the new/old arm ratio, statistical significance was detected among groups [F (3, 20) = 13.31,
p < 0.0001] as shown in Figure 1C. Likewise, statistical significance was detected among
groups in the discrimination ratio [F (3, 20) = 16.02, p < 0.0001] as shown in Figure 1D. In
the Y-maze test, cadmium-intoxicated rats showed an impaired recognition memory in the
short term (1 h post-training) as evidenced by the significantly (p < 0.0001) decreased ratio
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of the time spent in the new/old arm by 92.1%, versus the vehicle-treated control animals.
In tandem, a significant (p < 0.001) decrease was detected in the discrimination ratio by
66.1% in the novel object recognition test, pointing to defective recognition memory in the
long term (1 day). Topiramate administration to cadmium-intoxicated rats demonstrated
an improvement in the recognition memory in the short and long term, as seen by the
significant elevation of the ratio of the time spent in the new/old arm and the discrimination
ratio, respectively. According to these data, topiramate was able to rescue the recognition
memory impairment caused by cadmium.

2.3. Topiramate Ameliorates Hippocampal Neuronal Degeneration in Rats

To examine whether topiramate can ameliorate cadmium-induced hippocampal
histopathological aberrations and neuronal degeneration, the hippocampi of animals were
examined by light microscopy. In both control and topiramate-treated control groups,
normal hippocampal architecture was observed, characterizing normal pyramidal neurons
showing intact subcellular details (Figure 2A,B). Cadmium intoxication triggered marked
degenerative changes in the hippocampi of animals seen by pyknosis of pyramidal neurons
and loss of neurons. In addition, the detection of moderate edema and infiltration of
microglial cells were seen in the cadmium group (Figure 2C). Topiramate administration
to cadmium-intoxicated rats demonstrated an improvement in the histology findings, as
seen by the lowered neuronal pyknosis and microglial cell influx alongside the improved
picture of intact neurons (Figure 2D). The pyknotic changes and microglial cell influx
were quantified to further characterize the histologic aberrations. Herein, the pyknosis
scores [H (3, 20) = 19.89, p = 0.0002] and microglial cell infiltration scores [H (3, 20) = 19.51,
p = 0.0002] demonstrated statistical significance among groups as shown in Figure 2E,F. In
comparison to the vehicle-treated control group, rats intoxicated with cadmium showed
a significant elevation (p < 0.01) in the scores of pyknosis and microglial cell influx. By
administering topiramate, there was a significant reduction in pyknosis scores (p < 0.05)
and microglial cell influx scores (p < 0.05) by 47.1% and 50%, respectively.
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Figure 2. Topiramate attenuates hippocampal pyknosis and microglial cell influx in cadmium-
intoxicated animals. Hematoxylin-eosin (H-E) staining of hippocampal sagittal sections was examined
by light microscopy. In both the vehicle-treated control (A) and topiramate-treated control (B), intact
subcellular and nuclear structures of the pyramidal neurons were revealed in the hippocampal
region. (C) Cadmium intoxication triggered marked degenerative changes, including the pyknosis
of pyramidal neurons (red arrow) and infiltration of microglial cells (arrowhead). (D) Topiramate
administration to cadmium-intoxicated rats improved the hippocampal histological picture, as seen
by lowered neuronal pyknosis (red arrow) and microglial cell influx (arrowhead) alongside an
enhanced picture of intact neurons. (E,F) Significant lowering of pyknosis and microglial cell influx
scores were observed in response to topiramate administration in cadmium-intoxicated animals. In
each group, n = 6 (graph presenting median and interquartile range). Statistical significance was
denoted by ** p < 0.01, versus the control group. Statistical significance was denoted by # p < 0.05,
versus the cadmium group. TOP, topiramate; Cd, cadmium chloride.

2.4. Topiramate Decreases Hippocampal Neurodegeneration Signals in Cadmium-Intoxicated Rats

To clarify the mechanisms involved in the pathology of cadmium-evoked neuro-
toxicity and Alzheimer-like molecular changes, animal hippocampi were examined to
measure the neuroprotective glucagon-like peptide-1 (GLP-1) alongside the neurotoxic
phosphorylated tau (p-tau) and amyloid-beta1-42 (Aβ42). Ample evidence demonstrated
that elevated hippocampal levels of Aβ42 and p-tau are considered classical markers of the
neuropathology of Alzheimer’s disease [2,14]. Herein, statistical significance was detected
among groups in GLP-1 [F (3, 20) = 16.0, p < 0.0001], Aβ42 [F (3, 20) = 15.92, p < 0.0001], and
p-tau [F (3, 20) = 28.53, p < 0.0001] as shown in Figure 3A–C. In comparison to the vehicle-
treated control group, rats intoxicated with cadmium showed a significantly (p < 0.0001)
lowered hippocampal GLP-1 by 59% alongside significantly (p < 0.0001) elevated levels of
Aβ42 by 132.5% and p-tau by 216.9%. By administering topiramate to cadmium-intoxicated
rats, significant augmentation was detected in hippocampal GLP-1 (p < 0.001) by 113.9%.
Moreover, significant reduction was demonstrated in Aβ42 (p < 0.01) and p-tau (p < 0.01) by
35.9% and 37.8%, respectively. According to these data, topiramate was able to counteract
Alzheimer-like neurotoxic signals by enhancing hippocampal GLP-1 alongside dampening
Aβ42 and p-tau levels in cadmium-intoxicated rats.
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Figure 3. Topiramate increases hippocampal GLP-1 and lowers neurodegeneration signals in
cadmium-intoxicated rats. Topiramate administration replenishes the protein expression levels
of glucagon-like peptide-1 (GLP-1; (A)). Moreover, the neurodegeneration signals amyloid-beta 42
(Aβ42; (B)) and phosphorylated tau (p-tau; (C)) were diminished. In each group, n = 6 (graph
presenting mean ± standard error of the mean). Statistical significance was denoted by * p < 0.05,
or **** p < 0.0001, versus the control group. Statistical significance was denoted by ## p < 0.01, or
### p < 0.001, versus the cadmium group. TOP, topiramate; Cd, cadmium chloride.

2.5. Topiramate Rectifies the Neurotransmitter Changes in the Hippocampi of
Cadmium-Intoxicated Rats

To explore the neurotransmitter changes associated with cadmium-induced neurotoxi-
city, the hippocampal levels of acetylcholine and its degrading acetylcholinesterase enzyme
were measured. In fact, cholinergic transmission in the hippocampus has been tightly
linked to cognitive decline [27]. Meanwhile, the levels of the inhibitory γ-aminobutyric
acid (GABA) and the excitatory glutamate were determined. Herein, statistical significance
was detected among groups in the levels of hippocampal acetylcholine [F (3, 20) = 14.32,
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p < 0.0001], GABA [F (3, 20) = 10.82, p = 0.0002], acetylcholine esterase activity [F (3, 20) = 16.23,
p < 0.0001], and glutamate [F (3, 20) = 13.96, p < 0.0001] as shown in Figure 4A–D. In
comparison to the vehicle-treated control group, hippocampal acetylcholine (p < 0.0001)
and GABA (p < 0.01) were significantly lowered by 60.1% and 45%, respectively. More-
over, acetylcholine esterase activity (p < 0.0001) and glutamate levels (p < 0.001) were
significantly elevated by 107.2% and 90.8%, respectively. By administering topiramate
to cadmium-intoxicated rats, these neurotransmitter changes were reversed, as seen by
a significant (p < 0.001) elevation in acetylcholine by 128.1% and GABA by 103.7%. This
was accompanied by a significant (p < 0.01) reduction in acetylcholine esterase activity by
33.7% and glutamate by 32.7%. According to these data, topiramate’s ability to improve
neurotransmitter changes is, at least partly, engaged in rescuing the cognitive decline
associated with cadmium intoxication.
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2.6. Topiramate Combats Hippocampal Redox Aberrations in Cadmium-Intoxicated Rats

Neuronal degeneration and impairment of memory acquisition are tightly linked to
the intensified oxidative events in the hippocampi of rodents [4,5]. Hence, the cytopro-
tective SIRT1 protein expression was examined. Meanwhile, the antioxidant Nrf2/HO-1
pathway and its downstream effector GPx were explored alongside the levels of lipid
peroxides (MDA) [28,29]. Herein, statistical significance was detected among groups in the
hippocampal levels of SIRT1 [F (3, 20) = 8.56, p = 0.0007], nuclear Nrf2 [F (3, 20) = 8.932,
p = 0.0006], HO-1 [F (3, 20) = 12.11, p < 0.0001], GPx, [F (3, 20) = 8.52, p = 0.0008], and MDA
[F (3, 20) = 34.51, p < 0.0001], as shown in Figure 5A–E. In comparison to the vehicle-treated
control group, rats intoxicated with cadmium showed significantly (p < 0.01) reduced levels
of the cytoprotective SIRT1 by 50.9%. Moreover, the hippocampi of cadmium-intoxicated
animals revealed an excessive pro-oxidant response as indicated by a significant decline
in HO-1 (p < 0.001) by 61.7%, nuclear Nrf2 (p < 0.01) by 51.4%, and GPx (p < 0.01) by
59.9% alongside a significant (p < 0.0001) elevation in MDA levels by 148.6%. By ad-
ministering topiramate to cadmium-intoxicated rats, these pro-oxidant changes were
reversed, as seen by a significant elevation in SIRT1 (p < 0.05) by 85.4%, HO-1 (p < 0.01) by
127.9%, Nrf2 (p < 0.001) by 116.1%, and GPx (p < 0.001) by 115.8% alongside a significant
(p < 0.001) decline in MDA by 38.1%. According to these data, topiramate’s ability to
suppress hippocampal oxidative events and stimulate SIRT1/Nrf2 axis is, at least partly,
engaged in rescuing the cognitive decline associated with cadmium intoxication.
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ramate replenishes the antioxidant levels of SIRT1 (A), nuclear Nrf2 (B), HO-1 (C), and GPx (D)
and diminishes the levels of the pro-oxidant malondialdehyde (MDA) (E) and in the hippocampi of
cadmium-intoxicated rats. In each group, n = 6 (graph presenting mean± standard error of the mean).
Statistical significance was denoted by * p < 0.05, ** p < 0.01, *** p < 0.001, or **** p < 0.0001, versus the
control group. Statistical significance was denoted by # p < 0.05, ## p < 0.01, or ### p < 0.001, versus the
cadmium group. Cd, cadmium chloride; TOP, topiramate; HO-1, heme oxygenase-1; GPx, glutathione
peroxidase; Nrf2, nuclear factor erythroid 2-related factor-2; SIRT1, silent information-regulated
transcription factor 1.

2.7. Topiramate Counteracts the Autophagy Impairment and Activates the Hippocampal
AMPK/mTOR Cascade in Cadmium-Intoxicated Animals

There is conflicting evidence regarding how cadmium affects autophagy in neurons
in vitro. While studies have described stimulation of autophagy in hippocampal neuronal
TH22 cells [13], other reports have described an impaired autophagy flux in PC12, primary
murine neurons, and Neuro-2a cells [10,12]. In addition, a few studies have examined the
in vivo impact of cadmium on hippocampal autophagy in rodents. Hence, hippocampal
Beclin1 was examined alongside SQSTM-1/p62 as autophagy markers [14,30]. In addition,
rat hippocampi were investigated for the pro-autophagic AMPK/mTOR pathway [31].
Herein, statistical significance was detected among groups in the levels of hippocam-
pal Beclin 1 [F (3, 20) = 10.71, p = 0.0002], SQSTM-1/p62 [F (3, 20) = 13.69, p < 0.0001],
p-mTOR/total mTOR ratio [F (3, 20) = 16.77, p < 0.0001], and p-AMPK/total AMPK ratio
[F (3, 20) = 17.45, p < 0.0001], as shown in Figure 6A–D. In comparison to the vehicle-treated
control group, a significant elevation was detected in SQSTM-1/p62 (p < 0.001) by 126.9%
while a significant reduction was revealed in Beclin 1 by 60.9% (p < 0.001). Moreover,
a significant increase was demonstrated in the p-mTOR/total mTOR ratio (p < 0.0001)
by 118.4% alongside a significant reduction in p-AMPK/total AMPK ratio (p < 0.0001)
by 65.3%. By administering topiramate to cadmium-intoxicated rats, the pro-autophagy
events were stimulated as indicated by a significantly (p < 0.05) reduced SQSTM-1/p62
accumulation by 31.4% alongside a significantly (p < 0.01) elevated Beclin 1 by 110.6%. The
autophagy-inhibitory signal p-mTOR/total mTOR was significantly (p < 0.05) decreased by
30.5% upon topiramate administration, while the p-AMPK/total AMPK ratio was signif-
icantly (p < 0.001) elevated by 153.2%. Accordingly, topiramate’s ability to stimulate the
hippocampal autophagy events and the associated AMPK/mTOR cascade is, at least partly,
engaged in rescuing the cognitive decline associated with cadmium intoxication.
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Figure 6. Topiramate ameliorates impaired hippocampal autophagy events in cadmium-intoxicated
rats. This was evidenced by reduced SQSTM-1/p62 levels (A) and elevated Beclin1 (B). Moreover,
topiramate administration to cadmium-intoxicated animals stimulated the AMPK/mTOR pathway,
with an elevated p-AMPK/AMPK ratio (C) and lowered p-mTOR/mTOR ratio (D). In each group,
n = 6 (graph presenting mean ± standard error of the mean). Statistical significance was denoted by
*** p < 0.001, or **** p < 0.0001, versus the control group. Statistical significance was denoted by
# p < 0.05, ## p < 0.01, or ### p < 0.001, versus the cadmium group. AMPK, 5′adenosine monophosphate-
activated protein kinase; Cd, cadmium chloride; mTOR, mammalian target of rapamycin;
TOP, topiramate; SQSTM-1/p62, sequestosome-1/protein 62.

2.8. Topiramate Curtails Hippocampal Apoptotic Cell Death in Cadmium-Intoxicated Rats

Ample evidence has demonstrated that defective neuronal autophagy is associated
with the instigation of pro-apoptotic events in vitro [12]. Meanwhile, exaggerated hip-
pocampal apoptotic cell death is associated with marked degeneration and behavioral
deficits in cadmium neurotoxicity in rodents [5,6]. Thus, the executioner caspase 3,
Bax, Bcl-2, and the upstream pro-apoptotic kinase GSK-3β were used as tools to exam-
ine hippocampal apoptosis. Herein, statistical significance was detected among groups
in hippocampal p-GSK-3β(Ser9) [F (3, 20) = 8.588, p = 0.0007], Bax [F (3, 20) = 41.84,
p < 0.0001], caspase 3 [F (3, 20) = 17.68, < 0.0001] (illustrated in Figure 7A,C,D), and
Bcl2 [F (3, 20) = 15.40, p < 0.0001], as shown in Figure 8B. In comparison to the vehicle-
treated control group, a significant decrease was demonstrated in the inactive form of
GSK-3β (p-GSK-3β(Ser9); p < 0.01) and the anti-apoptotic Bcl2 (p < 0.05) by 52.8% and
60%, respectively, revealing excessive pro-apoptosis. Moreover, a significant elevation was
shown in caspase 3 activity (p < 0.0001) and Bax protein (p < 0.0001) by 246.6% and 656.2%,
respectively. By administering topiramate to cadmium-intoxicated rats, these pro-apoptotic
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changes were reversed, as seen by a significant elevation in p-GSK-3β(Ser9) (p < 0.05) and
Bcl2 (p < 0.05) by 85.2% and 134.3%, respectively, alongside a significant lowering in Bax
(p < 0.0001) and caspase 3 (p < 0.05) by 56.8% and 36.3%, respectively. According to these
data, topiramate’s ability to suppress hippocampal apoptotic cell death and inactivate
the pro-apoptotic GSK-3β is, at least partly, engaged in rescuing the cognitive decline
associated with cadmium intoxication.
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Figure 7. Topiramate lowers hippocampal apoptosis in cadmium-intoxicated animals. (A) The protein
expression of p-GSK-3β(Ser9)/total GSK-3β. (B) Immunohistochemical staining of hippocampal
Bax in rats (brown staining of the target protein is shown by red arrow; original magnification,
400×). (C) The graph displays Bax quantitative analysis (area %). (D) The activity of caspase 3. In
each group, n = 6 non-overlapping fields (graph presenting mean ± standard error of the mean).
Statistical significance was denoted by * p < 0.05, ** p < 0.01, or **** p < 0.0001, versus the control
group. Statistical significance was denoted by # p < 0.05, or #### p < 0.0001, versus the cadmium group.
Bax, Bcl-2 associated x protein; GSK-3β, glycogen synthase kinase—3 beta; Cd, cadmium chloride;
TOP, topiramate.
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Figure 8. Topiramate increases hippocampal Bcl-2 protein expression in cadmium-intoxicated animals.
(A) Hippocampal Bcl-2 immunohistochemical staining (brown staining of the target protein is shown
by a red arrow; original magnification, 400×). (B) The graph displays Bcl-2 quantitative analysis
(area %). In each group, n = 6 non-overlapping fields (graph presenting mean ± standard error of
the mean). Statistical significance was denoted by * p < 0.05 versus the control group. Statistical
significance was denoted by # p < 0.05 versus the cadmium group. Cd, cadmium chloride; Bcl-2,
B-cell lymphoma-2 protein; TOP, topiramate.

3. Discussion

The current work discloses in vivo evidence for the protective effects of topiramate
against cadmium-triggered cognitive impairment and Alzheimer’s (AD)-like neuropathol-
ogy in rats. At the cellular and molecular levels, topiramate lowered hippocampal Aβ42
and p-tau, suppressing the excitatory glutamate and augmenting neuronal acetylcholine
and GABA. Mechanistically, topiramate activated the hippocampal pro-autophagic events
and dampened the oxidative insult and apoptotic machinery (Figure 9).

Ample evidence has characterized the cognitive deficits and AD-like neuropathol-
ogy associated with repeated cadmium exposure [3]. In human epidemiological studies,
higher cadmium levels were detected in postmortem specimens of AD patients relative
to healthy controls [2]. In this context, cadmium can cross the BBB, resulting in notable
accumulation in the brain hippocampus, the brain region that principally controls learn-
ing/memory tasks [4,5]. Keeping up with these data, the current work demonstrated that
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cadmium instigated deficits in spatial learning and recognition memory in animals, as seen
in MWM, Y-maze, and NORT. This was accompanied by marked hippocampal accumula-
tion of Aβ42 and p-tau neurotoxic signals, hallmark molecular manifestations of neuronal
degeneration [4–6]. These events are reported to trigger neuronal death and synaptic
disruption, culminating in memory impairment [5,14]. Moreover, these perturbations were
accompanied by hippocampal activation of the neurotoxic signal GSK-3β, as seen by the
lowered levels of the inactive p-GSK-3 (Ser9). The later signal contributes to AD pathogene-
sis by augmenting tau phosphorylation and Aβ42 production and suppressing acetylcholine
production [32,33]. Herein, cadmium instigated hippocampal neurotransmitter aberrations,
including a spike in the excitatory glutamate and a reduction in acetylcholine and GABA. In
fact, excessive glutamate levels and associated activation of NMDA/AMPA receptors are in-
volved in the pathogenesis of several neurodegenerative disorders [23], including AD [34].
Meanwhile, a decline in hippocampal cholinergic neurotransmission and cholinergic cell
death have been previously reported in response to cadmium exposure [2,14].
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Figure 9. The mechanisms by which topiramate protected against cadmium-induced cognitive
deficits. Herein, topiramate ameliorated cadmium-evoked memory and learning deficits by dampen-
ing hippocampal neurotoxic signals, including Aβ42 and p-tau and counteracting the neurtranmitter
aberrations. These events were mediated by (A) activation of the hippocampal SIRT1/Nrf2/HO-1
cascade and attenuation of neuronal pro-oxidative events. (B) AMPK/mTOR pathway stimulation
with an enhancement of the autophagy response. (C) Dampening of hippocampal apoptotic cell
death. In the figure, solid arrows represent activation, whereas blunt arrows represent inhibition.

Multiple lines of evidence have indicated that the modalities that can dampen hip-
pocampal Aβ42 and p-tau neurotoxic signals and curb glutaminergic neurotransmission
are associated with favorable attenuation of AD and associated behavioral deficits [27,35].
The present study demonstrated topiramate’s ability to mitigate cadmium-induced cogni-
tive disruption that was revealed by lowering hippocampal Aβ42 and p-tau, suppressing
glutamate levels, and the augmentation of acetylcholine and GABA content. Consistent
with these findings, previous studies revealed that topiramate elicited marked neuropro-
tection against 3-nitropropionic-evoked striatal neurodegeneration and Huntington-like
manifestations [23] and methylphenidate-triggered hippocampal neurodegeneration in
the CA1 region and dentate gyrus of rats [24]. Notably, topiramate has been previously
reported to lower Aβ42 production, tau phosphorylation, and GSK-3β activation [22].

In neurons, autophagy is involved in cellular homeostasis and synaptic plasticity,
which is essential for memory acquisition and learning [10]. Impaired autophagy has been
described in cadmium-induced neurotoxicity in vitro in rat primary cortical neurons [11],
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pheochromocytoma (PC12) [12], and Neuro-2a cells [10]. Likewise, defective autophagy
has been described in preclinical animal models and postmortem brain samples of AD [36].
In this context, the impaired clearance of autophagic vacuoles in AD neurons leads to
precipitation of amyloid aggregates [37]. Coinciding with these studies, the current find-
ings revealed defective hippocampal autophagy in cadmium-induced cognitive deficit as
manifested by a spike of SQSTM-1/p62 [14]. This event was corroborated with Beclin 1
decline, a marker for autophagosome synthesis at the level of sequestration step, affiriming
autophagy impairment [36]. Indeed, the autophagy flux describes the sequential events of
autophagosome production, delivery of the protein aggregates/damaged mitochondria to
the lysosome, and finally, their destruction/recycling by lysosomal enzymes [36]. Notably,
the observed impaired hippocampal autophagy may be paradoxical to an in vivo report
that characterized autophagy activation in a cadmium-induced neurotoxicity model [13].
The contrast may be related to the difference in the length of cadmium exposure, animal
species (rat vs. mouse), and the severity of hippocampal/cognitive damage [6,13].

Stimulation of autophagy has been proven as a key clearance pathway that removes
neuronal aberrant Aβ aggregates [13] and p-tau/neurofibrillary tangles in AD [38]. In
a preclinical model of AD, pharmacological activation of autophagy by rapamycin has
been demonstrated to rescue behavioral deficits and tau neuropathology [13,14]. In the
current experiments, topiramate instigated hippocampal SQSTM-1/p621 clearance, Beclin1
upregulation, and AMPK/mTOR pathway stimulation, pointing to notable autophagy
activation. Indeed, topiramate’s pro-autophagic actions were previously characterized
in transgenic mice [22] and metal-induced testicular deficits [39]. In neurodegenerative
diseases, AMPK/mTOR pathway stimulation is associated with curbing the cognitive
deficit and AD neuropathology by the removal of amyloid aggregates and p-tau [14]. In
this context, the low-energy sensor AMPK can activate the autophagy flux by lowering
the mTOR negative autophagy signal [4,14]. In several preclinical models of cognitive
dysfunction, mTOR inhibition has been linked to marked neuroprotection. In the same
regard, AMPK activators, such as resveratrol and quercetin, have been reported to enhance
Aβ clearance, culminating in counteracting the neurotoxicity in rodents [14].

Upon exposure to increased levels of cadmium, neurons undergo apoptotic cell death
mainly through the mitochondrial pathway [5,6]. Notably, the impairment of neuronal
autophagy and buildup of autophagosomes instigates neuronal cell death in response
to cadmium [40]. In this regard, a sequence of molecular events has been character-
ized when neurons are subjected to cadmium as a cell stressor. Initially, the autophagic
events take place, then, apoptosis prevails when neuronal stress exceeds a critical dura-
tion/threshold [12,40]. Multiple lines of evidence revealed that cadmium-evoked cognitive
decline is associated with enhanced hippocampal apoptosis with an increased Bax/Bcl-2
ratio [5,6,8]. The present findings supported earlier studies that cadmium-evoked cognitive
deficit was linked to elevated hippocampal Bax, decreased Bcl-2, and activated GSK-3β.
These apoptotic molecular derangements were counteracted by topiramate, culminating in
a higher number of surviving neurons in the hippocampus and amelioration of memory
deficits. Virtually, topiramate displayed marked anti-apoptotic features in preclinical mod-
els of 3-nitropropionic-induced Huntington-like disease [23] and methylphenidate-induced
hippocampal damage [24]. These data were supported by the observed inactivation of
GSK-3β, which advocates the anti-apoptotic features of topiramate. Indeed, GSK-3β in-
activation exerts anti-apoptotic effects by upregulating Bcl-2 protein expression [33], an
event that enhances the production of BDNF, a crucial signal for neuronal survival, differ-
entiation, and protection [32]. Since neuronal oxidative stress is one of the major triggers
for apoptosis, topiramate’s activation of the antioxidant SIRT1/Nrf2/HO-1 pathway can
contribute to its anti-apoptotic actions [5,8]. Likewise, the observed and the reported [22]
activation of autophagy events by topiramate also advocates the pro-survival signals by
the removal of damaged mitochondria and ROS and associated clearance of aberrant Aβ

aggregates [13] and p-tau/neurofibrillary tangles [38].
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In response to glutamate flooding, excessive calcium influx takes place at the synaptic
cleft culminating in superfluous ROS production and neuronal oxidative stress [23]. In the
present study, cadmium augmented hippocampal glutamate, an event that was associated
with SIRT1/Nrf2/HO-1 pathway inhibition and antioxidant depletion. These noxious
events were reversed by topiramate administration. Consistently, marked antioxidant
effects of topiramate have been characterized in 3-nitropropionic-evoked Huntington’s
disease [23], where it boosted GSH and SOD and lowered MDA levels. Likewise, coun-
teracting neuronal oxidative stress has mediated topiramate’s neuroprotective features in
preclinical models of spinal cord damage [41] and methylphenidate-triggered hippocampal
neurodegeneration [24]. In this regard, the antioxidant actions of topiramate have been
ascribed to scavenging ROS, such as hydroxyl radicals and superoxide anions [42]. No-
tably, the observed hippocampal upregulation of SIRT1 by topiramate has been reported to
counteract AD manifestations [7]. In perspective, upregulation of SIRT1 has been linked to
dampened plaque precipitation and tau phosphorylation, culminating in the attenuated
AD behavioral phenotype [7,43]. Moreover, SIRT1 augments Nrf2 transcriptional activity
and the associated production of HO-1 and GPx antioxidant enzymes [6]. There is evidence
that Nrf2 activation can ameliorate cadmium-evoked neurotoxicity in rodents and PC12
neuronal cells [44]. Notably, research has identified the crosstalk between SIRT1 and au-
tophagy stimulation where SIRT1 activates the AMPK/mTOR pathway via dampening
mTOR levels, affording neuroprotection in senile mice [45]. Likewise, the crosslink between
cytoprotective Nrf2 and autophagy has been identified, where Nrf2 transcribes several
autophagy genes, e.g., LAMP2A and SQSTM-1/p62 [46].

The current study examined the neurochemical changes in the hippocampi of rats,
the brain region that principally controls learning/memory tasks [4–6]. Consistent with
this approach, rodents’ hippocampi have been examined in several studies to delineate the
noxious effects of cadmium on cognition [5,13,27,47,48]. Of note, the memory function is
also related to the nucleus basalis Mynert (NBM) in the basal forebrain, which provides
cholinergic innervation to the cortex [49]. Previous studies have revealed that neuronal
loss in NBM is associated with the loss of cortical cholinergic markers in AD. Interestingly,
electrical stimulation of NBS elicits favorable outcomes on cognition by enhancing acetyl-
choline release, releasing multiple neuroprotective factors, promoting cerebral blood flow,
and facilitating the cortical and subcortical receptive fields [50]. Regarding the effect of cad-
mium on NBM, the literature demonstrated that cholinergic neuron toxicity plays a crucial
role in cadmium-induced deleterious effects on the brain. In this regard, cadmium exposure
is associated with cholinergic neuron death in the basal forebrain [51]. An in vitro model
of the basal forebrain using an SN56 cholinergic murine neuroblastoma cell line revealed
that cadmium prompts apoptosis of basal forebrain cells, an event that was interceded
by overexpression of Aβ and tau neurotoxic cues [2]. Recently, Sola and co-workers [52]
reported that cadmium triggers neurodegeneration in rat basal forebrain—including the
medial septal nucleus (MSN), the horizontal and vertical regions of the diagonal band
of Broca (DBB), and NBM—by prompting thyroid hormone disruption. Another point
to mention is that no positive control was used in the current study. This is due to the
lack of specific FDA-approved drugs for combating the neurotoxic effects of cadmium. In
the same regard, no previously shown agents—with comparable mechanism of action to
topiramate—were demonstrated to dampen cadmium-induced cognitive decline in vivo.
However, future studies using a positive control would be valuable in comparing the
efficacy of the tested agent.

4. Materials and Methods
4.1. Drugs and Chemicals

Topiramate was received as a gift from Janssen-Cilag Pharmaceuticals (Raritan, NJ, USA).
Sigma-Aldrich provided Cadmium chloride (Cat. # 202908; St. Louis, MO, USA). Under
each determination, the reagent source is declared. All other chemicals were purchased at
the highest purity possible.
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4.2. Animals and Ethics

The directions of the Laboratory Animal Guide for Care and Use (US- NIH, Publication
# 85-23, revised 1996, Bethesda, MD, USA) were applied regarding animal handling in the
current protocol. An approval code NODCAR/I/7/2022 was issued by the Egyptian Drug
Authority (EDA)’s Research Ethical Committee.

Forty Wistar albino rats (10-week-old, weighing 160–190 g) were utilized for the
present study (The Breeding Unit of EDA, Giza, Egypt). Acclimatization was applied for
two weeks, and during the whole study period, the animals were allowed free access to
drinking water and laboratory food. Polycarbonate cages were used at the animal facility
to house the animals at 21–24 ◦C, 50% humidity, and a 12 h darkness/light cycle.

4.3. Preclinical Animal Model

Rats were handled with care to reduce suffering and stress. Four experimental groups
were used to carry out the experimental study (each group comprised 10 rats). With the aid
of a blinded technician, the animals were randomly distributed, as shown in Table 1.

Table 1. Experimental design.

Group N Received

Control 10
Normal saline vehicle was orally received (10 mL/kg/day) by gavage. Two hours after normal saline
administration, 0.5% carboxymethyl cellulose was given by oral gavage (10 mL/kg/day). A 2 h gap
separated the administration of the two vehicles. The treatments lasted for eight weeks.

Control + TOP 10
Normal saline vehicle was orally received (10 mL/kg/day) by gavage. Two hours after normal saline
administration, topiramate was given by oral gavage (50 mg/kg/day in CMC, delivered as 10 mL/kg/day).
A 2 h gap separated the administration of the two doses. The treatments lasted for eight weeks.

Cd 10
Cadmium chloride solution (in normal saline; 5 mg/kg/day delivered as 10 mL/kg/day) was given by
oral gavage. Two hours later, CMC was given by oral gavage (10 mL/kg/day). A 2 h gap separated the
administration of the two doses. The treatments lasted for eight weeks.

Cd + TOP 10

Cadmium chloride solution (in normal saline; 5 mg/kg/day delivered as 10 mL/kg/day) was given by
oral gavage. Then, topiramate (50 mg/kg/day suspended in CMC, delivered as 10 mL/kg/day) was
also given by oral gavage 2 h after normal saline. A 2 h gap separated the administration of the two
doses to avoid possible interaction. The treatments lasted for eight weeks.

In the current study, the dose of cadmium chloride was selected on the basis of the
previous literature [27,47,48]. In this context, a rat model of cadmium-evoked memory
loss was successfully established using the 5 mg/kg/day dose of cadmium chloride.
This was revealed by the declined spatial learning/memory function of animals in the
Morris water maze in addition to the hippocampal neurodegenerative aberrations in
histopathology [47]. The same dose was proven effective for incurring memory disruption
and depleting acetylcholine in the hippocampi of rats [48]. Moreover, topiramate’s dose
selection was established in accordance with earlier studies that showed it as beneficial
for attenuation of 3-nitropropionic-induced striatal neurodegeneration and Huntington-
like disease [23], methylphenidate-triggered hippocampal neurodegeneration [24], and
pentylenetetrazol-induced epilepsy [53] in rodents.

This study demonstrated successful establishment of the animal model of cadmium-
induced cognitive decline. This was revealed by the deterioration of spatial learning/retention
memory in rats in the MWM and the impaired recognition memory as seen in the Y-maze
and novel object recognition test (Figure 1B–D). Moreover, the histopathological find-
ings further demonstrated the successful establishment of cadmium-induced neurotoxi-
city, which showed marked degenerative changes in the hippocampi of animals. These
histopathological changes were quantified by the scores of neuronal pyknosis and mi-
croglial cell influx (Figure 2E,F). At the molecular levels, the observed cognitive decline was
marked by increased hippocampal Aβ42 and p-tau neurotoxic signals (Figure 3) and aber-
rant neurotransmitter levels, including diminished hippocampal acetylcholine and GABA
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and elevated glutamate (Figure 4). Moreover, enhanced hippocampal oxidative stress
(Figure 5) and apoptosis (Figures 7 and 8), together with impaired autophagy (Figure 6),
were detected in cadmium-intoxicated rats.

4.4. Morris Water Maze (MWM)

In this study, the MWM paradigm was used to study animals’ spatial learning and
memory retention, as described earlier in [25]. A circular water tank (1.5 m diameter pool
with 0.6 m height) was filled with water to 0.4 m depth. A 10 cm diameter platform was
placed at the midpoint of the southeastern quadrant. The rats were trained for three days
(four training sessions per day; 1 min each) to find the hidden platform, and the time spent
locating the hidden platform was known as the escape latency time. A probe test (retrieval
trial) was conducted on the fourth day after the platform was removed. In that test, the
rat was allowed to explore the pool for 1 min. Measurement of memory consolidation was
based on the time spent by the rat in the target quadrant to locate the hidden platform.

4.5. Y-Maze Test

Three identical arms were arranged at equal angles on the Y-maze, designated as A,
B, and C. In terms of height and length, each arm measured 20 cm in height and 37 cm in
length [32]. For the training session, one arm of the Y-maze was closed, and the session was
applied for 10 min. Training in the apparatus involved positioning the animals in the center
and allowing them to freely move through the open arms of the maze. The arm entries
of each rat were visually observed. The test session was applied 1 h post-training, and
the closed arm was opened. Herein, the recognition memory was examined in the short
term (1 h post-training). In this context, good recognition memory is indicated by the more
frequent entrance of the animal to the unexplored arm. During the study, the time spent in
each arm was recorded, and the term “complete arm entry” refers to the animal entering
the arm with all four paws. In the next step, we calculated the ratio of time spent in the
new arm compared to the old arm. To avoid potential bias of animals due to olfactory cues,
cleaning with 70% alcohol was applied after each trial/test.

4.6. Novel Object Recognition Test (NORT)

Using NORT, the recognition memory was evaluated in terms of the animal’s propen-
sity for examining novel items. NORT’s arena measured 80 × 80 × 40 cm with a white
background and black grid lines to act as a marking for the arena. The box was lighted
in the experiment room, and no shadows were reflected on it. The NORT included three
stages, namely (1) habituation, (2) familiarization (training), and (3) testing. During the
habituation stage, animals were given 10 min to freely explore the empty box during the
habituation process. After 24 h, the animals underwent a training (familiarization) stage.
To this end, five minutes were given to the animal to explore two identical non-toxic objects
(A1 and A2) placed in a fixed location. Exploration is reaching out with an animal’s nose
for a distance less than or equal to 2 cm from an object. During the training session, animals
that failed to investigate the objects were eliminated. After each session, 70% ethanol was
used to clean the box and the items in order to eliminate any potential bias brought on by
odor cues. In the testing process (24 h after the training), a novel object (B) with a similar
material and color, but a different shape, was added instead of one of the well-known
objects. Animals were then given 5 min to explore the novel object at their leisure. A
video camera was right above the arena for the best view of the investigation. By dividing
the amount of time spent examining a novel object by the sum of its time exploring both
familiar and unfamiliar objects, the discrimination ratio was calculated [54].

4.7. Harvesting Brain Tissue

The animals were euthanized 24 h after the cognitive tests, and the blood was col-
lected for serum separation. Immediately, brains were harvested for the isolation of hip-
pocampi. The ELISA assays were performed using hippocampus homogenates prepared in
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protease/phosphatase-complemented lysis buffer (200 mM NaCl, 5 mM EDTA, 10 mM Tris,
10% glycerol). The homogenate supernatant was stored immediately at −80 ◦C for further
processing after centrifugation. For histology and immunohistochemistry, four brains from
each group were stored in 10% formalin-buffered saline.

4.8. Evaluation of Hippocampal Neurotransmitters, GLP-1, Aβ42, and p-tau

Hippocampal γ-aminobutyric acid (GABA) was measured with a specific ELISA kit
(Cat. # E4457-100; BioVision Incorporated, Milpitas, CA, USA), and the hippocampal
glutamate content was examined with an AFG Bioscience ELISA kit (Cat. # EK721805; AFG
Bioscience, Northbrook, IL, USA). Concerning the acetylcholine/acetylcholine esterase axis,
the activity of hippocampal acetylcholine esterase was determined with a specific ELISA kit
(Cat. # KT-708; Kamiya Biomedical, Seattle, WA, USA) while the hippocampal acetylcholine
content was measured using a Cloud-Clone Corp. ELISA kit (Cat. # CEA912Ge; Cloud-
Clone Corp., Houston, TX, USA). A wavelength of 450 nm was used to determine the
optical density.

A commercial ELISA kit was provided by SunLong Biotech Company in order to
determine the concentration of glucagon-like peptide-1 in the hippocampus (GLP-1;
Cat. # SL0304Ra; SunLong Biotech. Company, Ltd., Hangzhou, Zhejiang, China). The
neurotoxic signals phosphorylated tau (p-tau) was determined with specific ELISA kit from
Fine Test (Cat. #; ER1304; Fine Test, Wuhan Fine Biotech Co., Ltd., Wuhan, China) while the
amyloid-β (Aβ42) was measured with a specific ELISA kit (Cat. # E-EL-R1402; Elabscience,
Wuhan, China). A wavelength of 450 nm was used to determine the optical density.

4.9. Determination of the Pro-oxidant Markers

To quantify hippocampal lipid peroxides, the assay of thiobarbituric acid-reactive
substance [55] was employed. A wavelength of 535 nm was used to determine the optical
density. Under the instructions of the provider, a Sigma-Aldrich glutathione peroxidase
(GPx) cellular activity test kit was used to detect GPx activity. This was achieved by
monitoring the decline in absorbance at 340 nm using kinetic software. Regarding the
SIRT1/Nrf2/HO-1 axis, the AFG Bioscience ELISA kit was used for the measurement of
SIRT1 content (Cat. # EK720561; AFG Bioscience, Northbrook, IL, USA). Moreover, kits from
AFG Bioscience (Cat. # EK720003; AFG Bioscience, Northbrook, IL, USA) and Elabscience
(Cat. # E-EL-R0488; Elabscience, Wuhan, China) were used to quantify hippocampal Nrf2
and HO-1 target proteins, respectively. A wavelength of 450 nm was used to determine
the optical density. Of note, the nuclear fraction extracts were analyzed for Nrf2 protein
expression. This was achieved using a Cayman nuclear extraction kit (Cat. # MBS012148;
Cayman Chemical, Ann Arbor, MA, USA), as guided by the provider.

4.10. Measurement of Apoptotic Events

In the study, we used commercially available ELISA kits to measure the ratio of
p-GSK-3β(Ser9))/total GSK-3β. To this end, the total content of GSK-3β was quantified
with a specific ELISA kit (Cat. #7265C) and the content of p-GSK-3β(Ser9) was assayed
using a specific ELISA kit procured from Cell Signaling (Cat. # 7311C for GSK-3β(Ser9), Cell
Signaling Technology, Danvers, MA, USA). An assay of hippocampal caspase 3 activity was
performed with Sigma-Aldrich’s CASP-3-C colorimetric kit according to the manufacturer’s
instructions (Sigma-Aldrich, St. Louis, MO, USA). A wavelength of 405 nm was used to
determine the optical density.

4.11. Autophagy Events

Specific ELISA kits from AFG Bioscience (Cat. # EK720982; AFG Bioscience,
Northbrook, IL, USA) and SunLong Biotech. (Cat. # SL1363Ra; SunLong Biotech. Company,
Ltd., Hangzhou, Zhejiang, China) were procured to quantify Beclin1 and SQSTM-1/p62
protein expression, respectively, according to the manufacturer’s instructions. A wave-
length of 450 nm was used to determine the optical density. Regarding the AMPK/mTOR
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pathway, the levels of p-AMPK(Ser487))/total AMPK and p-mTOR(Ser2448)/total mTOR
were assayed using the commercially available kits. To this end, the RayBiotech ELISA
kit was used to quantify the protein expression of p-AMPK(Ser487))/total AMPK
(Cat. # PEL-AMPKA-S487-T; Norcross, GA, USA). In addition, the p-mTOR(Ser2448)/total
mTOR ratio was investigated using the corresponding Cell Signaling Technology ELISA
kit. In perspective, Cat. # 7974C was procured for total mTOR determination while Cat.
# 7976C was utilized for p-mTOR(Ser2448) assay (Cell Signaling Technology, MA, USA)
under the provider’s instructions. A wavelength of 450 nm was used to determine the
optical density.

4.12. Histopathological Evaluation

To preclude bias, a technician/observer unaware of specimen identity performed
the histology protocol. Prior to paraffin embedding in Paraplast embedding media, the
formalin-fixed brain sections were washed, dehydrated with alcohol, and cleared in xy-
lene [35]. Hematoxylin and eosin (H-E) staining of sections (5 µm thick) was performed for
pathological evaluation. A light microscope was used to inspect the slides (Leica Microsys-
tems GmbH, Wetzlar, Germany). In this study, four random specimens from each group
were examined, and a total of six non-overlapping fields were captured for analysis [56].

Using the previously reported 0–4 scoring, the neuropathological damage for pyknosis
and microglial cell infiltration was evaluated [57,58]. In the absence of specific lesions,
a score of zero was assigned. On the other hand, in accordance with the affected area,
neuropathological lesions were evaluated on a scale of 1 to 4 depending on the affected
area: <10% (score of 1), 10–40%, (score of 2), 40–60% (score of 3), or >60% (score of 4).

4.13. Immunohistochemical Evaluation

Using immunohistochemistry, the hippocampal protein expression of Bcl-2 and Bax
was evaluated as characterized [36]. The de-paraffinized sections were processed for anti-
gen retrieval, and a 3% H2O2 solution was used to block the endogenous tissue peroxidase.
For tissue blockade, 5% bovine serum albumin was applied to the sections in a humidi-
fied chamber. For primary antibody incubation, sections of tissue were incubated at 4 ◦C
overnight with anti-Bax (1:100 dilution; Cat. # 33-6600; Thermo Fisher Scientific, Fremont,
CA, USA), or anti-Bcl-2 (1:100 dilution; Cat. # PA1-30411). The tissue slices were rinsed
in PBS and treated for 20 min with an HRP-labeled secondary antibody (EnVision kit,
Dako, Copenhagen, Denmark). Hematoxylin was applied for section counterstaining, and
the target protein was immunostained with 3,3′-diaminobenzidine chromogen for 15 min.
Light microscopy was applied to evaluate the immunohistochemical staining, and the total
immunohistochemical staining area was calculated using the Leica Application module
software (Leica Microsystems, GmbH, Wetzlar, Germany). Of note, the shown expression
of Bax and Bcl2 target proteins has been validated for optimal staining as a routine process
in the histopathology lab. Bias was precluded by keeping specimen identity confidential.

4.14. Statistical Analysis and Data Presentation

SPSS 17.0 software was applied to conduct statistical analysis (IBM, Chicago, IL, USA).
The normal distribution of values was checked by the Shapiro–Wilk (parametric data). A
one-way ANOVA test was used to compare parametric values, and multiple comparisons
were conducted among all experimental groups using the Bonferroni test (at p < 0.05). On
the other hand, the neuropathological damage scores (non-parametric) were processed
by Kruskal–Wallis test and Dunn’s multi-comparisons. Plotting of figures was conducted
using SigmaPlot (Systat Software, Inc., San Jose, CA, USA; version 12.0).

5. Conclusions

The cognitive deficits and AD-like neuropathology associated with cadmium were
suppressed by topiramate in the present study. In perspective, topiramate curtailed hip-
pocampal Aβ42 and p-tau neurotoxic signals, suppressed the excitatory glutamate, and
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augmented acetylcholine and GABA, culminating in behavioral recovery. Hence, the
potential use of topiramate as an adjunct therapy to ameliorate cadmium-induced neu-
rotoxicity seems promising. Virtually, this work serves as a proof-of-concept study that
demonstrated the ability of topiramate to dampen cadmium-induced cognitive deficits
in vivo in rats. Herein, the study mainly focused on the efficacy of topiramate to improve
behavioral outcomes, including memory/learning deficits and histopathological aberra-
tions, alongside some molecular events pertaining to hippocampal perturbations of redox
milieu, apoptosis, and autophagy. However, further exploration of the detailed molecular
mechanisms of topiramate is required using in vitro studies with an examination of the
voltage-gated sodium channels and functional analysis of neurotransmitters as key targets
for topiramate. Moreover, detailed quantification of the protein expression using Western
blotting and double immunostaining is needed to elucidate topiramate’s molecular events.
In addition, the effects of different doses of cadmium on behavioral tests in rats need to be
further investigated.
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