
Citation: Šafranko, S.; Šubarić, D.;
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Abstract: Citrus fruits processing results in the generation of huge amounts of citrus by-products,
mainly peels, pulp, membranes, and seeds. Although they represent a major concern from both
economical and environmental aspects, it is very important to emphasize that these by-products
contain a rich source of value-added bioactive compounds with a wide spectrum of applications
in the food, cosmetic, and pharmaceutical industries. The primary aim of this review is to high-
light the great potential of isolated phytochemicals and extracts of individual citrus by-products
with bioactive properties (e.g., antitumor, antimicrobial, antiviral, antidiabetic, antioxidant, and
other beneficial activities with health-promoting abilities) and their potential in pharmaceutical,
biomedical, and biological applications. This review on citrus by-products contains the following
parts: structural and chemical characteristics; the utilization of citrus by-products; bioactivities of
the present waxes and carotenoids, essential oils, pectins, and phenolic compounds; and citrus
by-product formulations with enhanced biocactivities. A summary of the recent developments in
applying citrus by-products for the treatment of different diseases and the protection of human
health is also provided, emphasizing innovative methods for bioaccessibility enhancements (e.g., ex-
tract/component encapsulation, synthesis of biomass-derived nanoparticles, nanocarriers, or biofilm
preparation). Based on the representative phytochemical groups, an evaluation of the recent studies
of the past six years (from 2018 to 2023) reporting specific biological and health-promoting activities
of citrus-based by-products is also provided. Finally, this review discusses advanced and modern
approaches in pharmaceutical/biological formulations and drug delivery (e.g., carbon precursors for
the preparation of nanoparticles with promising antimicrobial activity, the production of fluorescent
nanoparticles with potential application as antitumor agents, and in cellular imaging). The recent
studies implementing nanotechnology in food science and biotechnology could bring about new
insights into providing innovative solutions for new pharmaceutical and medical discoveries.

Keywords: citrus by-products; citrus anatomy; health benefits; bioactive compounds

1. Introduction

Citrus fruits—more precisely, the genus Citrus L., which belongs to the subfamily
Aurantioideae in the family Rutaceae—represent the major fruit crops commercially cul-
tivated worldwide [1,2]. These fruits are widely known for their high health-benefiting
properties, which is of great importance, since citrus fruits are the most widely consumed
fruits globally [3–6]. The cultivation of Citrus genus includes the species such as lemon
(C. limon (L.) Osbeck), sweet orange (C. sinensis (L.) Osbeck), mandarin (C. reticulata Blanco),
grapefruit (C. paradisi Macfad.), pomelo (C. maxima (Burm.) Merr.), citron (C. medica L.), lime
(C. aurantiifolia (Christm.) Swingle), and bergamot (C. × bergamia Risso & Poiteau) [4,5,7–9].
Although a significant part of the industrially processed citrus fruits is used to produce
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essential oils and juice, citrus-based candies, jellies, and extracts production also repre-
sent key factors for the food industry [5]. A large quantity of waste and by-products
yearly produced during citrus processing has become a fundamental concern from both
economical and environmental aspects. Citrus processing generates over 15 million tons
of residue, mostly in the form of peels, seeds, and membranes [10,11]. Therefore, citrus
waste valorization and proper industrial waste management are highly encouraged, be-
ing also a high-research priority topic for the scientific community recently. There have
been many scientific reports related to the potential and beneficial utilization of indus-
trial by-products, mainly dealing with innovative extraction methods for obtaining ex-
tracts rich in bioactive compounds [1–4,10–12]. These extracts have shown versatile health
beneficial activities, due to the high content of biologically active compounds naturally
present in the extracts [13,14]. Numerous studies have considered citrus extracts as a
natural source of bioactive components exhibiting beneficial activities, including antioxi-
dant [15–19], antibacterial [16,18–21], antidiabetic [17,22–24], neuroprotective [22,25–27],
and anti-inflammatory [28–31] activities, as well as antitumor [32–35] potential. Also, citrus
by-products are considered a valuable source of phytochemicals (such as d-limonene, essen-
tial oils, phenolic acids, carotenoids, vitamins, minerals, and flavonoids), which, isolated
or in the form of mixtures/extracts, could exhibit versatile biological activities especially
beneficial for the food industry [36–38]. Citrus-based essential oils exhibit significant antimi-
crobial activity against foodborne bacteria and also antioxidant activity to prevent the effects
of oxidation; hence, citrus-based essential oils could act as natural preservatives [39–41].
Furthermore, several studies have reported the high repellent activity [42–44] and fumigant
toxicity [45,46] of citrus-based essential oils against different insects.

It is well known that the presence of phenolic compounds is crucial for the bioactivity
of the extracts; however, the lack of scientific evidence focusing on the challenges regarding
their poor water solubility and the dependence on the temperature and pH environment,
as well as poor bioaccessibility, are still limiting factors for the extract implementation
in the in vivo studies [47,48]. Therefore, new solutions and technologies have emerged
rapidly to promote and improve their bioaccessibility, including extract/component en-
capsulation [49–52], the synthesis of biomass-derived nanoparticles [53–56], nanocarriers,
and biofilm preparation [57–59]. The identification and structural characterization of each
chemical component present in the plant extract is surely beneficial to fully understand the
mechanism for the formulation preparation, as well as to predict the underlying potential
mechanism of action for in vitro and in vivo systems [60,61].

This review article gathers all the relevant evidence on the beneficial effects and
promising health-promoting potential of the pure extracts and isolated phytochemicals
derived from citrus by-products and aims to collect and provide the most recent literature
on the developments and innovations regarding citrus-based by-products’ incorporation
into the pharmaceutical, biomedical, and biological scientific areas. The major focus of this
review will be directed toward providing a comprehensive view of the compositions of
citrus by-products, such as essential oils, carotenoids, pectins, and phenolic compounds,
based on their positions within the citrus fruit tissue, and also highlighting a wide di-
versity of their possible bioactivities and functionalities. Furthermore, the most recent
improvements and developments in citrus by-product utilization, especially regarding
the innovations in the pharmacological and biomedical fields, will be also reported, while
the recent literature is indicative that nanotechnology could play a crucial role toward the
specific drug delivery and bioaccessibility enhancements of versatile plant metabolites and
plant-based formulations.

2. Structural and Chemical Characteristics of Citrus Fruits By-Products

Citrus fruits, like many other agricultural products, are characterized by their agri-
cultural biodiversity [62]. Their physicochemical characteristics, as well as a diversity of
chemical compounds, depend on a variety of factors and environmental conditions, such
as soil, fertilization, age, position on the tree, maturity, and others [62–65]. It is interesting
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that all varieties of citrus fruits, by means of microscopic and macroscopic views, have
similar structural and anatomical characteristics. A schematic view of the anatomical
characteristics and structural compositions of citrus fruits is presented in Figure 1.
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Citrus fruits are widely consumed due to their nutritional qualities and appealing
taste and fragrance, and the products of citrus processing mostly include the production of
food-grade (jellies, jams, candies, flavoring agents, etc.) and aromatic/cosmetic (essential
oils) products [10,66,67]. The generation of significant amounts of waste during citrus fruit
processing is a major concerning issue, as the waste represents almost 50% of the fresh fruit
mass [66]. The generated waste includes by-products such as peels (the highest percentage
of almost 50%), seeds (20–40%), pomace, and wastewater (the residue of spoiled parts of
the fruits) [66–68].

The outer layer of the citrus fruit consists of the peel, which can be roughly divided into
two regions: flavedo (lat. flavus means yellow) and albedo (lat. albus means white) [69,70].
The flavedo region comprises characteristic peel oils and pigments, and the white spongy
part of the peel is referred to as the albedo [71]. Although, it is not uncommon that some
literature reports refer to flavedo as epicarp and albedo as mesocarp [72]. The flavedo
region is covered with a thin layer of cuticle, consisting of natural waxes and continuous
polymerized materials [60,69]. The role of the cuticle is mainly protective against microor-
ganism attacks, limit vapors, and water loss, regulating also the exchange of oxygen and
carbon dioxide [73,74]. From a chemical point of view, natural waxes are characterized by
the presence of long-chain alkanes, fatty acids, aldehydes, and alcohols [68,72], while the
polymerized material originates from hydroxylated fatty acids [75]. Below the cuticle and
within the flavedo region, pigments and essential oils are present. The citrus pigments are
located within the chloroplasts (if green) and in chromoplasts (if yellow, orange, or red
color) [62]. The composition and differences in the carotenoid content determine the color
of citrus fruits [76]. The green or yellowish-green color of immature citrus fruits originates
from the accumulation of lutein and a certain content of chloroplastic carotenoids, such
as β- and α-carotene, neoxanthin, and zeaxanthin [76]. However, the orange color formed
during the natural ripening of citrus fruits is caused by the increase in the content of colored
carotenoids (β,β-xanthophylls) and by a decrease in the lutein concentration [77,78]. The
essential oils are found in the oil glands located in the citrus flavedo layers and are defined
as fragrant compounds present in the peel. The citrus essential oils consist of volatile
compounds in the majority (85–99%) and in lower fractions as non-volatile compounds
(1–15%) [79]. Interestingly, it has been reported that essential oils, although referred to as
oils, are not typically oils in the chemical sense due to the absence of triglycerides, making
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this group of components the mixture of terpenes and terpenoids, which give rise to their
hydrophobic character [62]. The volatile composition of citrus essential oils includes the
highest content of monoterpenes (70–95%); sesquiterpenes; and their oxygenated deriva-
tives (aldehydes, alcohols, esters of carboxylic acids, and ketones) [62,80], with d-limonene
monoterpene as the major constituent of citrus essential oils [79–81]. The non-volatile
fraction consists of carotenoids; fatty acids (oleic, linoleic, linolenic, stearic, palmitic, etc.);
waxes; flavonoids; and sterols [82].

The albedo layer is considered to be a white and relatively porous layer of the citrus
peel, consisting of pectic substances, cellulose, starch, and phenolic compounds [62,83].
The pectins are a complex group of compounds defined as non-starch polysaccharides,
mostly consisting of conjugates of D-galacturonic acid; acid groups (methoxy esters); and
some neutral sugars (rhamnose, glucose, xylose, arabinose, etc.) formed through α-(1-
4)-glycosidic bonds [84,85]. Based on the degree of methylation and acetylation—more
precisely, by the number of methoxyl and acetyl groups substituted by the carboxylic
acid on the D-galacturonic acid chain—high-methoxyl or low-methoxyl pectins can be
formed [84]. Although it is well known that low-methoxyl pectins are used in the food
industry due to their gelation characteristics [86], pectins are also studied for their utilization
in pharmacy and medicine (cholesterol reduction, drug delivery, immune modulation,
etc.) [85]. Organic acids are classified as low molecular weight compounds that play
a crucial role in plant metabolism; however, organic acids also exhibit protective and
health-promoting activities [65,87]. The most commonly detected organic acids in citrus
by-products are citric and malic, while benzoic, oxalic, tartaric, and succinic acids are also
present in citrus by-products [88]. The most abundant vitamin in citrus fruits is ascorbic
acid, most commonly known as vitamin C, while citrus fruits can also be a good source of
folate (vitamin B9) [11,64,89]. Those vitamins have an important role in regulating immune
functions with immune-enhancing potential [89]. Both organic acids and vitamins are
predominantly found in the juice vesicles, located in the endocarp of citrus fruits [65].

Furthermore, phenolic compounds and flavonoids provide several benefits associated
with health-promoting effects [65,90]. The major flavonoids present in citrus peels are
hesperidin, narirutin, naringin, and rutin, while the content of each flavonoid depends on
the physicochemical characteristics of the cultivated fruit and analyzed citrus variety [91].
The abundant chemical components present in Citrus fruits are shown in Figure 2. The
citrus endocarp consists of juice vesicles and seeds, and interestingly, few scientific studies
have reported the superior activity of citrus seed extracts compared to peel extracts [92,93].
The juice mostly consists of water (85–90%), and the soluble solids include carbohydrates;
pigments; vitamins (vitamin C and vitamin B complex); minerals (calcium, potassium,
magnesium, copper, and iron); and organic acids, while the pulp consists of the particles
insoluble in the suspension of the juice [11,62,88].
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The full potential of citrus seed utilization is still an area of interest for the scientific
community, as there have been fewer studies dealing with citrus seed valorization and
utilization [94]. One study reported the utilization of citrus seeds for fixed oil production,
which were enriched with tocopherols, phytosterols, sugars, carotenoids, and minerals [95].
These oils were found to be adequate for soap making.

3. Converting Waste into Treasure—Utilization of Citrus By-Products

Recently, waste management has become one of the great concerns globally, and its
valorization has created more sustainable and smart waste management solutions. Pri-
marily, waste valorization includes employing different technologies toward obtaining
value-added products with a wide spectrum of potential applications. Citrus by-products
have been extensively studied due to their rich-bioactive properties, and their valorization
enables beneficial gains from both economical and environmental points of view [96,97].
The scientific focus has been placed on innovative extraction methods for obtaining high-
quality citrus essential oils [98–101] and enriched extracts in general [11,94,102,103]. Inter-
estingly, the authors Tunç and Odabaş [99] reported a single-step ohmic heating-assisted
extraction/hydrodistillation (OHAE/H) procedure to obtain the simultaneous recovery
of essential oils and pectins from lemon waste. The process was optimized to obtain the
maximum recovery of both components by response surface methodology. The liquid-to-
solid ratio (w:v) and extraction/hydrodistillation time (min and voltage gradient (V/cm)
were determined as independent variables, while the maximum pectin and essential oil
yields were maintained as the dependent variables. The results obtained by the OHAE/H
method were compared to the conventional extraction methods, and it was concluded that
OHAE/H showed superior performance compared to the conventional methods. Moreover,
in the study by Hwang et al. [104], the efficiency of hesperidin and narirutin extraction was
investigated by combining pulsed electric field and subcritical water extraction techniques.
Firstly, the samples were subjected to pulsed electric field treatments at the strength of
3 kV/cm for the times of 60 and 120 s. Subsequently, the subcritical water extraction was
applied under the conditions of temperatures of 110–190 ◦C for 3–15 min. It was shown
that the pulsed electric fields method enhanced the extraction process for obtaining both
narirutin and hesperidin, increasing the yields by 22.1% and 33.6%.

Solid citrus waste can be also utilized for the production of animal food. Due to its good
nutritional composition containing dietary fibers, lipids, flavonoids, enzymes, vitamins, and
carotenoids, citrus waste represents a promising by-product for the production of livestock
feeds [105]. The literature reports that citrus pulp (the main residue after juice extraction),
citrus molasses (produced by concentrating on the press liquor of citrus peel residue with a
high content of sugars), citrus peel liquor (similar to molasses but not as concentrated), and
citrus-activated sludge (produced from liquid waste) could be considered as by-product
feedstuffs [106]. The nutrient content of citrus by-products mainly depends on the source
and variety of citrus fruits, as well as on the type of processing [88]. The main issues in
the utilization of citrus by-products for the production of feedstuffs are the low nitrogen
content and poor storage, which can lead to the development of mycotoxins [88]. Another
valuable utilization of citrus waste is the production of packaging films that meets all the
standards of sustainable and biodegradable forms of biopolymers [10,107]. Conventional
packaging films are considered an environmental concern due to their poor biodegradable
properties, and therefore, new innovative and sustainable solutions are welcomed [107].
An important advantage of using biopolymers derived from plant materials is that those
raw materials naturally contain significant amounts of bioactive components that exhibit
antioxidant and antimicrobial properties. The matrix of the citrus-based package is pectin,
which enables solid support for the production of active packaging films [10]. In the study
by Meydanju et al. [108], biodegradable film was prepared from lemon peel waste. Firstly, a
composite of lemon waste powder, xanthan gum, and TiO2-Ag nanoparticles was produced.
The additives enhanced the physicochemical properties of the prepared packaging; more
precisely, the xanthan gum addition increased the thickness of the film, as well as the
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moisture content, due to the presence of -OH functional groups and the possibility of
the hydrogen bonds forming. Also, both additives improved the thermal stability of the
packaging films, and the antioxidant and antimicrobial properties were enhanced as well.

The application of plant-based and phenolic extracts in the food industry is highly
limited due to their poor bioaccessibility, low water, and liquid solubility, while it is well
known that bioactive phenolic compounds are extremely sensitive to light, oxidants, and
changes in pH conditions and temperatures [47,97,109]. The main challenge presents as
overcoming the limiting incorporation of low water-soluble compounds into aqueous-
based foods, which directly limits the proper gastrointestinal bioaccessibility. In order
to overcome these issues, encapsulation has been employed more frequently to protect
bioactive compounds [47,110,111]. The spray-drying and freeze-drying techniques are
commonly used methods for obtaining stable encapsulated functional substances, while
extrusion methods, coacervation, and emulsification methods have been also applied [110].
In the study by Papoutsis et al. [112], different formulations of lemon by-product extracts
combined with maltodextrin-coating agents (maltodextrin, maltodextrin and soybean pro-
teins, maltodextrin, and ι-carrageenan) were prepared by both the spray- and freeze-drying
methods. As expected, the formulations exhibited different morphological characteristics
and showed an amorphous nature. The highest antioxidant activity was demonstrated with
the sample containing lemon waste extract, maltodextrin, and soybean protein prepared by
the freeze-drying process. In this case, the problem presented was polyphenol degradation
due to freezing and dehydration and grinding the sample after the lyophilization, which
could cause polyphenol oxidation. Moreover, polyphenol degradation occurred in the
samples encapsulated by spray-drying, and exposing them to high inlet temperatures led
to a significant decrease in the contents of the phenolic compounds.

Another interesting case of citrus by-product utilization is bioconversion into biofuels.
It is known that the citrus residue contains significant amounts of carbohydrates and
fermentable sugars; however, also, high contents of bioactive compounds inhibit the
possible fermentation processes [113]. This issue could be overcome by extracting those
bioactive molecules to be further used for biosorbents, biogas, and ethanol production by
biotransformation. For example, the authors Oberoi et al. [114] used Kinnow mandarin
waste to produce and optimize the process of bioethanol production. It has been reported
that mandarin peel contains a high content of sugar, cellulose, and pectins and low content
of lignin, making their citrus waste a promising substrate for bioethanol production. The
process includes enzymatic hydrolysis, where the biomass is digested by enzymes into
pentose and hexose sugars, which are used by microbes in the fermentation process.

4. Bioactivities of the Individual Groups of Compounds Present in Citrus By-Products

There are numerous published overviews dealing with the valorization of citrus by-
products and their potential utilization in the food and cosmetic industries, emphasizing
also their health-promoting properties due to the presence of bioactive
compounds [1–4,11,13,97,105]. The present study uses the recent available scientific litera-
ture linking citrus by-products to their potential biological, pharmacological, and biomedi-
cal applications and includes both the utilization of plant extracts and pure compounds
that can be separated from the citrus by-products. Furthermore, a brief overview of the ap-
plication of nanotechnology in waste management and food science will also be provided.

4.1. Waxes and Carotenoids

Cuticular wax plays an important role in fruit preservation and proper storage, and
it is well known that it acts as a natural barrier that protects plants from biological and
non-biological stress [73,74]. Also, the structural characteristics, content, and composition
of cuticular wax have been found to affect the postharvest storage quality against fruit
water loss and softening and could be responsible for the resistance to fruit diseases, as
summarized in Figure 3. Waxes are comprised of long-chain fatty acids and their derivates,
esters, aldehydes, ketones, primary and secondary alcohols, and triterpenoids [115]. Most
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of the studies related to the topic of citrus cuticular waxes focused on the synthesis and tran-
scriptional regulation of cuticular wax in citrus fruits. However, the authors Zhu et al. [116]
carried out an investigation of the influence of C. reticulata cuticular wax on the colony
expansion of the fungal pathogen Penicillium (P.) digitatum (green mold). The investigation
included in vivo and Formvar®-based in vitro systems. Finally, it was concluded that the
cuticular wax of mandarin fruit impairs P. digitatum colony expansion, acting as a physical
barrier exhibiting antifungal activity. Furthermore, the content of carotenoids and the
phytochemical profile of citrus fruits in general depend on the citrus variety, ripening stage,
and the tissue [117]. It has also been reported that citrus fruits contain approximately
120 different carotenoids, classified as xanthophylls and carotenes [117].
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The investigation of the carotenoid content separated from C. reticulata by-products
and its influence on the immuneoxidative status of broiler chickens was carried out by
Mavrommatis et al. [118]. The carotenoid-rich extract was prepared, and the chickens were
fed a supplemented diet consisting of a freeze-dried formulation containing carotenoid
extract and soluble starch. It was demonstrated that carotenoid-supplemented feed exerted
inhibitory activity against Gram-positive (Staphylococcus (S.) aureus), as well as Gram-
negative (Klebsiella (K.) oxytoca, Escherichia (E.) coli, and Salmonella (S.) typhimurium), bacte-
ria. The implementation of the carotenoid content in the supplementation led to alanine
aminotransferase and breast muscle malondialdehyde, and the activity of superoxide dis-
mutase increased. Also, several parameters were downregulated, such as catalase, NADPH
oxidase 2, interleukin 1β, and tumor necrosis factor. In the study by Barman et al. [119],
β-carotene-loaded nanoemulsion was prepared from C. reticulata peels with the primary
aim of carotenoid bioaccessibility improvement in fruit juice. Firstly, β-carotene was
extracted using a mixture of hexane/acetone/ethanol solvents, and the sample was cen-
trifuged, dried, and filtrated for nanoemulsion preparation. The nanoemulsions were
prepared by suspending C. reticulata extract in hexane, and afterward, surfactants were
added (caprylocaproyl polyoxyl-8-glycerides, polyoxyethylene, sorbitan monolaurate, and
polyoxyethylene). The hexane was removed by rotary vacuum evaporation. The nanoemul-
sions were characterized by means of a physicochemical analysis, while the in vitro studies
included gastrointestinal and gastric digestion. The results demonstrated that prepared
formulations significantly increased the bioaccessibility of β-carotene and retinol activity
equivalent in fruit juice. This study offered an alternative to synthetic color as a natural
food colorant and, at the same time, provided health-promoting benefits to customers.
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4.2. Aromatic Compounds—Essential Oils

Citrus essential oils are known as a fragrant mixture of chemical compounds exhibiting
versatile activities used in the food, cosmetical, and pharmaceutical industries, as well as in
aromatherapy [79]. The involvement of nanotechnology has provided new solutions for
developing essential oil-based nanosystems with the aim of bioaccessibility enhancement.
Interestingly, the formulation of C. lemon essential oil in nanohexosomes was prepared by
the group of authors Sedeek et al. [120] for the purpose of antifungal activity investigation.
Firstly, C. lemon, C. aurantifolia, C. maxima, and C. sinensis essential oils were extracted
using hydrodistillation in a Clevenger’s apparatus from powdered peels. The hexosomal
dispersions loaded with oils were prepared by the hot emulsification method reported by
Abdel-Bar et al. [121]. In addition, the different obtained essential oils were assessed against
phytopathogenic fungi (Rhizoctonia (R.) solani, Sclerotium (S.) rolfsii, Fusarium (F.) solani,
Fusarium (F.) oxysporum, Fusarium (F.) semtectium, Botrytis (B.) cinerea, and Alternaria (A.)
alternata), and it was concluded that all the tested essential oils exhibited strong antifungal
activity, showing dose-dependent behavior. The C. lemon and C. aurantifolia essential oils
exerted superior antifungal activity compared to the other essential oils, demonstrating
the complete inhibition of F. solani, S. rolfsii, and F. oxysporum growth, while the C. lemon
essential oil showed exclusive antifungal activity against A. alternata mycelial growth.
Furthermore, the nanohexosomal formulation was prepared by using the best-performing
sample of C. lemon essential oil, and it was shown that the nanohexosomal formulation
completely inhibited mycelial growth of F. solani fungi at the applied concentration of
600 µL/mL, while the complete inhibition of S. rolfsii, A. alternata, and F. oxysporum was
achieved at the concentration of 800 µL/mL. A moderate inhibitory effect was observed
against R. solani, B. cinerea, and F. semtectium, with determined IC50 values of 416, 549.4,
and 534 µL/mL, respectively. The authors Feng et al. [122] reported the potential hyperc-
holesterolemia and hepatic steatosis preventive effects in male Sprague–Dawley rats on
a high-fat diet. The essential oil of C. reticulata peel was obtained by the subcritical fluid
extraction method, and limonene was determined to be the dominant component present in
the essential oil formulation, followed by γ-terpinene and β-myrcene. The study combined
biochemical analysis, lipidomics, and genes to investigate the hepatic steatosis and choles-
terol improvements in high-fat diet rats. The high-fat diet in rats induced an increase in fat
mass, liver weight, and hepatic lipid deposition with high serum and hepatic triacylglycerol
levels. By introducing citrus essential oil as a food supplement, the total levels of the fatty
acids, triacylglycerol, and cholesteryl ester classes in liver tissue significantly decreased,
while the downregulation of lipogenesis-related genes and upregulation of bile acid-related
genes was observed. The potential physiological stress amelioration and anti-inflammatory
effects of C. depressa Hayata essential oil were reported by Asikin et al. [123]. The essential
oil of C. depressa Hayata was extracted from the citrus pulp by applying hydrodistillation
with a Clevenger-type apparatus. The GC–MS phytochemical profile analysis confirmed
the presence of two dominant aromatic compounds, limonene and γ-terpinene. The influ-
ences of citrus essential oil on the neurological stress levels in nine healthy female panelists
were monitored through electrocardiography (ECG) and electroencephalography (EEG)
measurements, while the anti-inflammatory activity was assessed by nitric oxide (NO)
and interleukin-1β inhibitory assays. By suppressing proinflammatory markers, the citrus
essential oils showed promising anti-inflammatory potential, while the results of the EEG
and ECG showed improvements in mental focus and stress reduction activity upon citrus
essential oil inhalation.

A summary of the literature reporting the bioactivities of citrus-based essential oils is
shown in Table 1.
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Table 1. Summary of the literature reporting bioactivities of citrus-based essential oils of the past six
years (2018–2023).

Source Formulation/Chemical
Analyte Bioactivity Testing Subjects References

C. aurantifolia peel

The essential oil
isolated by

hydrodistillation using
a Clevenger apparatus

Antimicrobial activity
In vitro on multi-drug

resistant bacterial
isolates

[124]

C. reticulata Blanco, C.
aurantifolia (Christm.)

Swingle
peel

Essential oils prepared
by hydrodistillation Antimicrobial activity

In vitro against S.
aureus, including MSSA
1, MRSA 2, and MDR 3

phenotypes, and
clinically isolated
MRSA and MSSA

[125]

C. aurantium
“Changshan-huyou” peel

Essential oils isolated
by steam distillation Antimicrobial activity In vitro against L.

monocytogenes [126]

C. lemon, C. aurantifolia, C.
maxima, and C. sinensis

peels

Nano-hexosomal
dispersions of citrus

essential oils
Antifungal activity

In vitro against
phytopathogenic fungi

(R. solani, S. rolfsii, F.
solani, F. oxysporum, F.
semtectium, B. cinerea,

and A. alternata)

[120]

C. bergamia
Risso, C. aurantium L., C.
sinensis (L.) Osbeck., C.

deliciosa Ten., and C. limon
(L.) Burm. f. peels

Cold-pressed essential
oils Antifungal activity In vitro against

aflatoxin B1 (AFB1) [127]

C. bergamia, C. sinensis, C.
limon, C. reticulata, and C.

paradisi peel

Essential oils obtained
by distillation Antiparasitic activity In vitro against Varroa

destructor [128]

C. sinensis peel

The essential oil
isolated by

hydrodistillation using
Clevenger apparatus

Insecticidal activity

In vitro against
Callosobrunchus

maculatus and Sitophilus
zeamais; studies on the
inhibitory effects on
acetylcholinesterase

(AChE),
Na+/K+-ATPase and

glutathione-S-
transferase (GST)

activity

[129]

C. maxima peel Essential oils prepared
by hydrodistillation

Insecticidal (larvicidal)
activity

In vitro against Culex
tritaeniorhynchus and

Aedes aegypti species of
mosquitoes

[130]

C. aurantium peel Essential oils prepared
by solvent extraction Antiviral activity

In vitro against
influenza A virus

H1N1
[131]

C. clementine peel Essential oil prepared
by solvent extraction Antiviral activity

In vitro on Vero-E6 cell
lines; SARS-CoV-2

propagated in tested
cell line

[132]

Orange, lemon, mandarin,
and

grapefruit peels 4

Commercially
purchased essential

oils; prepared
nanoemulsions

Antioxidant activity
Lipid and fatty acid

methyl ester analysis;
trout

[133]
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Table 1. Cont.

Source Formulation/Chemical
Analyte Bioactivity Testing Subjects References

C. reticulata peel
Essential oil prepared
by continuous phase
transition extraction

Prevention of
hypercholesterolemia
and hepatic steatosis

In vivo on male
Sprague-Dawley rats

on a high-fat diet
[122]

Orange, lemon, mandarin,
and

grapefruit peels 4

Commercially
purchased essential

oils; prepared
nanoemulsions

Suppressive effect on
the biogenic amine

formation
Trout fillets [134]

C. aurantifolia (Christm.)
Swingle peel

Essential oils prepared
by steam distillation

Antioxidant capacity
and hypolipidemic

effect

DPPH•, ABTS•+ assay;
lipid-induced

hyperlipidemia in a rat
model

[135]

C. sinensis (L.) Osbeck

The essential oil
isolated by

hydrodistillation using
a Clevenger apparatus

Antifungal and
antitumor activity

Antifungal: Aspergillus
carbonarius and

Aspergillus
flavus/antitumor:

Tumor cells (A549, lung
adenocarcinoma;

MCF-7, breast
adenocarcinoma;

and HT-144, melanoma)
and normal cells

(fibroblasts derived
from normal human
skin, CCD-1059Sk)

[136]

C. depressa Hayata pulp

The essential oil
isolated by

hydrodistillation using
a Clevenger apparatus

Stress reduction activity
and anti-inflammatory

potential

In vivo on nine healthy
female panelists (ECG
and EEG monitoring);
nitric oxide (NO) and

interleukin-1β markers

[123]

C. limon (L.) Burm f. peel Commercially
purchased essential oil

Anxiolytic and sedative
properties

In vivo on Swiss mice
model [137]

C. reticulata Blanco peels

The essential oil
obtained by

supercritical CO2
extraction

Mood
disorder/relaxing

agent

In vivo on adult male
Wistar rats; inhalation [138]

C. sinensis, C. bergamia, C.
paradisi, C. grandis, C.

reticulata Blanco, C. japonica,
C. limon, C. aurantifolia, and

immature C. aurantium L.
peels

Essential oils prepared
by hydrodistillation

Treatment of
dysmenorrhea

In vivo on female
Sprague Dawley

rats/in vitro on the
RL95-2 (human

endometrial carcinoma)
cells

[139]

C. limon peel Essential oil prepared
by steam distillation

The healing effect of
traumatic ulcers

induced by diabetes

In vivo on diabetic
Wistar rats [140]

1 Methicillin-susceptible S. aureus; 2 methicillin-resistant S. aureus; 3 multidrug-resistant; 4 species not specified.

Furthermore, the antimicrobial efficacy of citrus-based essential oils against food-
borne pathogen Listeria monocytogenes (L. monocytogenes) was demonstrated in the study
by Guo et al. [126]. Gram-positive bacteria L. monocytogenes is a highly adaptable pathogen
that causes listeriosis, a life-threatening infection, and it is especially dangerous if the
central nervous system is affected [141]. The essential oil from the C. Changshan-huyou
Y.B. Chang (Huyou) species was extracted from peels by the steam distillation procedure
using water as the solvent. The antimicrobial and antibiofilm ability of citrus essential
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oil was investigated against the L. monocytogenes pathogen, while the antilisterial mech-
anism was studied at the microscopic (SEM and TEM) (Figure 4) and molecular levels
(RNA-seq analysis).
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were labeled as “∗∗”, and p < 0.05 were labeled as “∗”. Reprinted with permission from ref. [126].
Copyright 2019 Elsevier.

The results of the antimicrobial activity of Huyou essential oil against L. monocytogenes
showed dose-dependant antimicrobial activity when comparing treatments of pathogens
with the 1xMIC (minimum inhibitory concentration), 0.25xMIC, and 0.125 MIC. The study
also discussed the changes in the physical morphology of L. monocytogenes biofilms when
treated with 1xMIC for 8, 16, and 24 h by using scanning electron microscopy (SEM) and
confocal laser scanning microscopy (CLSM) analyses. As shown in Figure 4, the control
sample demonstrated intact and complex structures, and upon the addition of Huyou
essential oil, the destruction of the biofilms was observed. The most significant differences
were observed after 16 and 24 h of treatment, where lysis and the death of the cells in the
biofilms of L. monocytogenes were observed. When comparing the results of three different
methods, such as SEM, CLSM, and COMSTAT, the authors concluded that, in the early
stage of treatment (8 h), the predominant effect of rapid detachment of the biofilm was
more likely to occur, while, in late stages (16 and 24 h), cell death might be the major effect
to eradicate the rest of the biofilm. This study showed the great potential of citrus-based
essential oils to be used as a natural food preservative for shelf life extension.
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4.3. Pectins

The importance of pectins in the food industry is widely known; however, this group
of polysaccharides has found their place in a variety of human applications, such as in
the pharmaceuticals, cosmetics, drug delivery, and biomedical fields [86,141,142]. The
versatile application of pectic biopolymers is enabled due to their structural diversity and
chemical complexities, as well as the possibility of structural modifications [143]. The
recent literature reports dealing with the bioactivities of citrus-based pectins are listed
in Table 2. Recently, there has been an increase in interest in pectic biopolymers, mainly
for their wide spectrum of bioactivities, and recently, pectic oligosaccharides have been
evaluated for their promising prebiotic activity [144]. In addition, Zhang et al. [145]
obtained pectin oligosaccharide fractions by the controlled degradation of citrus peel
pectin. Three different oligosaccharides were prepared by adjusting the concentration of
trifluoroacetic acid or H2O2 at the appropriate pH value, producing pectin oligosaccharides
of variable molecular weight ranging from <2000 Da, 2000 to 3000 Da, and 3000 to 4000 Da.
The results demonstrated a high prebiotic activity (pectic oligosaccharides obtained by
H2O2 oxidation; 3543 Da) for Bifidobacterium (B.) bifidum and moderate activity against
the Lactobacillus (L.) paracasei bacterial species. This study showed the enormous prebiotic
potential of citrus-based pectic oligosaccharides; however, the greatest challenge remains to
be overcome, as the human gastrointestinal tract includes complex pH-dependent processes
and the presence of different enzymes that could affect in vivo digestion and bioaccessibility.
Another interesting application of pectic biopolymers is their utilization as a carrier for drug
delivery systems. The authors Lee and Chang [146] prepared quercetin-loaded hydrogel
beads for the colon target, produced by deesterified pectin from yuzu (C. junos) peel and
oligochitosan. A schematic illustration presenting the quercetin-loaded hydrogel beads
preparation procedure and potential application in targeted therapy for colon cancer is
shown in Figure 5.
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For the purpose of the study, low-methoxyl pectin (DEYPP) was produced by deesteri-
fication with pectin methylesterase treatment, which is used for quercetin-DEYPP prepa-
ration. The hydrogel beads were prepared by dropping quercetin-DEYPP solution into a
calcium chloride solution (1% w/w; pH = 6) containing oligosaccharide (1% w/w). Previ-
ously, cumulative quercetin release exposed to the simulated gastric fluid and intestinal
fluid was very low (below 1%), and quercetin-loaded hydrogel beads significantly im-
proved the bioaccessibility of quercetin in simulated colonic fluid (65.37–99.54%), which
demonstrated the great efficiency of the developed quercetin drug delivery system for
colon targeting. Furthermore, an example of citrus pectin-based drug delivery was reported
by Jacob et al. [147], introducing pectin nanoparticles fabricated by ionotropic gelation
using Mg2+ as a divalent cross-linker with the affinity of linking to the reactive carboxyl



Pharmaceuticals 2023, 16, 1081 13 of 33

groups. Three different samples of nanoparticles were prepared as follows: high-methoxyl,
low-methoxyl, and amidated low-methoxyl pectins. The cell viability on THP-1 (human
leukemia monocytic cell lines) confirmed their excellent biocompatibility and potential
application as a nanocarrier for oral drug delivery.

Table 2. Summary of the literature reporting bioactivities of pectins extracted from citrus by-products
of the past six years (2018–2023).

Source Formulation/Chemical
Analyte Bioactivity Testing Subjects References

C. unshiu peel
Extracted pectin (pH = 3;
precipitation using 95%

ethanol)
Antioxidant activity

Total phenolic content
(TPC), DPPH•, ABTS•+,
FRAP assay, ferrous ion

chelating activity

[148]

Citrus peel 1

Commercially purchased
pectins; pectin-capped

copper
sulfide nanoparticles (pCuS

NPs)

Antifungal activity In vitro on Candida
albicans [149]

Citrus peel 1

Pectin oligosaccharide
fraction obtained by
controlled chemical

degradation of citrus peel
pectin (commercial)

Prebiotic activity

In vitro on probiotic
strains Bifidobacterium
spp. and Lactobacillus

spp./

[145]

C. unshiu Marc. waste
(remains from the
canning processes)

Depolymerized
RG-I-enriched pectin Prebiotic activity

In vivo on male mice;
Total serum cholesterol

and triacylglycerol
concentrations;

Bacteroide
thetaiotaomicron,

Bifidobacterium Longum

[150]

Citrus (lime/lemon)
peel 1

High methoxylated citrus
pectin nanoparticles

(HMP-NPs), low
methoxylated citrus pectin
nanoparticles (LMP-NPs),

and low methoxyamidated
citrus pectin

nanoparticles (AMP-NPs)

Oral drug delivery

In vitro cell viability
tests on THP-1 (human

leukemia monocytic
cell line) cell line

[147]

Yuzu (C. junos) peel

Extracted pectin (pH = 3.5;
precipitation using 95%

ethanol)/de-esterification of
pectin/oligochitosan/quercetin
hydrogel beads preparation

Drug
delivery/quercetin

delivery system for the
colon target

In vitro release study
using simulated gastric,

intestinal,
and colonic fluids

[146]

C. reticulata peels

Extracted pectin (UAE 2;
ammonium oxalate-oxalic

acid—pH = 3.4; precipitation
using 96% ethanol)

Potential antitumor
activity

In vitro on the normal
human embryonic

kidney (HEK293) cells
and colon

cancer (HT29) cells

[151]

Lemon and lime peel 1 Commercially purchased
pectins

Anti-colitis
activity/anti-
inflammatory

effect

In vivo on male
C57BL/6 mice [152]
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Table 2. Cont.

Source Formulation/Chemical
Analyte Bioactivity Testing Subjects References

C. sinensis peel
(IntegroPectin)

Commercially purchased
pectins/hesperidin-rich

citrus pectin

Prevention and therapy
of COVID-19

Computational studies:
molecular model of the

3-chymotrypsin-like
protease (3CLpro)

structure of the
SARSCoV-2

[153]

Citrus peel 1
Citrus pectin

oligosaccharides obtained by
H2O2 degradation

Hypocholesterolemic
effects

In vivo on male
C57BL/6 mice [154]

Grapefruit peel
(IntegroPectin) 1

IntegroPectin isolated by
freeze-drying of water-based

extract
Cardioprotective effects In vivo on male Wistar

rats [155]

1 Species not specified; 2 UAE—ultrasound-assisted extraction.

4.4. Phenolic Compounds

Natural phenolic compounds have been studied extensively for their essential role
in plant protection, as well as for their beneficial effects on human health. It is well
known that citrus by-products contain substantial contents of different phenolic compounds
in the forms of acids and flavonoids, which have recently become the great subject of
studies as natural antioxidants [156,157]. The representative bioactive compounds for the
citrus family are flavanone aglycones (hesperetin, naringenin, and eriodictyol); flavone
and flavonol aglycones (kaempferol, quercetin, apigenin, and diosmetin); flavanone-7-
O-glycosides (eriocitrin, hesperidin, naringin, narirutin, poncirin, and didymin); and
polymethoxyflavones (PMFs; nobiletin, tangeretin, and sinensetin) [62,91,158]. A summary
of their bioactivities is listed in Table 3.

The great potential of citrus-based extracts lies in their health-promoting ability, ex-
hibiting a wide spectrum of bioactivities, such as antioxidant, anti-inflammatory, and
antiproliferative activity, against cancer. Interestingly, Shimamura et al. [159] studied the
protective effects of hesperidin-rich extract obtained from C. unshiu (Chenpi) peel and
commercially supplied hesperidin on aspirin-induced oxidative damage in rats. One of
the major possible side effects of aspirin prescription and consumption is the possibility of
peptic ulcer formation, which represents a serious gastrointestinal disease [160]. The citrus
extract was obtained by reflux extraction, and a HPLC analysis confirmed the abundant
presence of hesperidin in the extract sample. In order to evaluate the inhibitory effects of
citrus extract and hesperidin on DNA oxidative damage in the stomach, kidney, and liver,
the formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay was applied. Also,
the in vivo studies included five-week-old male ddY mice for evaluating analgesic activity
and nine-week-old male Wistar rats for assessing oxidative damage. As demonstrated in
Figure 6, the inhibitory effects of citrus extract and hesperidin were obvious by studying
the aspirin-induced oxidative gastric mucosal injuries and by the reduction of the 8-oxoG
content (content increases by oxidative stress) when the combined drug was administered.



Pharmaceuticals 2023, 16, 1081 15 of 33

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 15 of 35 
 

 

Grapefruit peel 
(IntegroPectin) 1 

IntegroPectin isolated by 
freeze-drying of water-based 

extract 

Cardioprotective 
effects In vivo on male Wistar rats [155] 

1 Species not specified; 2 UAE—ultrasound-assisted extraction. 

4.4. Phenolic Compounds 
Natural phenolic compounds have been studied extensively for their essential role in 

plant protection, as well as for their beneficial effects on human health. It is well known 
that citrus by-products contain substantial contents of different phenolic compounds in 
the forms of acids and flavonoids, which have recently become the great subject of studies 
as natural antioxidants [156,157]. The representative bioactive compounds for the citrus 
family are flavanone aglycones (hesperetin, naringenin, and eriodictyol); flavone and 
flavonol aglycones (kaempferol, quercetin, apigenin, and diosmetin); flavanone-7-O-
glycosides (eriocitrin, hesperidin, naringin, narirutin, poncirin, and didymin); and 
polymethoxyflavones (PMFs; nobiletin, tangeretin, and sinensetin) [62,91,158]. A 
summary of their bioactivities is listed in Table 3. 

The great potential of citrus-based extracts lies in their health-promoting ability, 
exhibiting a wide spectrum of bioactivities, such as antioxidant, anti-inflammatory, and 
antiproliferative activity, against cancer. Interestingly, Shimamura et al. [159] studied the 
protective effects of hesperidin-rich extract obtained from C. unshiu (Chenpi) peel and 
commercially supplied hesperidin on aspirin-induced oxidative damage in rats. One of 
the major possible side effects of aspirin prescription and consumption is the possibility 
of peptic ulcer formation, which represents a serious gastrointestinal disease [160]. The 
citrus extract was obtained by reflux extraction, and a HPLC analysis confirmed the 
abundant presence of hesperidin in the extract sample. In order to evaluate the inhibitory 
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Figure 6. (A) Effects of citrus extract and hesperidin on the gastric mucosa in aspirin-induced lesions
in rats. (B) Photomicrographs showing the macroscopic appearance of the stomach. (C) Gastric
bleeding score in rats by applying different formulations. The data represent the mean ± SD (n = 5,
per group). Statistical analysis was carried out with the Steel–Dwass test; * p < 0.05. Reprinted from
ref. [159].

Finally, the study indicated the protective effects of citrus extract and hesperidin in
aspirin-induced damage, while the pharmacological action of aspirin did not change sig-
nificantly. The important role of hesperidin in gastrointestinal health was also reported
by Sharaf et al. [161]. Hesperidin was extracted from C. uranium peel by Soxhlet extrac-
tion with petroleum ether and methanol, while the crystallization of pure hesperidin was
done with 6% glacial acetic acid (pH = 3–4). The isolated hesperidin was investigated for
anti-Helicobacter (H.) pylori activity, which is also the main contributor to the occurrence of
chronic gastritis and peptic ulcers, also increasing the risk of gastric adenocarcinoma [162].
The progressive reduction in urease activity by hesperidin and urease inhibition kinetic
analyses indicated the anti-Helicobacter pylori activity of hesperidin by competitive mode
in a time-dependent manner. Also, the in situ visualization of antimicrobial activity by
laser scanning confocal microscopy (LSCM) demonstrated that hesperidin administration
led to amino acid leakage from bacterial cells, while scanning electron microscopy (SEM)
demonstrated the interaction of hesperidin and bacterial cells causing cell disruption and
leakage of the cytoplasmic content. Furthermore, the molecular docking and simulation of
the inhibitory effect of hesperidin (urease–ligand) on HpUre enzyme through slow-binding
inhibition indicated the possible formation of hydrogen bonding, van der Waals, and alkyl
interactions with important residues on enzyme HpUre-active sites. The bioavailability
assays indicated the high potential of hesperidin for oral usage. The beneficial effects on
the gastrointestinal system were also reported by applying the Ougan peel extract enriched
with nobiletin, tangeretin, and 5-demethylnobiletin compounds exhibiting antitumor activ-
ity against gastric cancer cell lines [163], while protective and enhanced anticancer effects
of orange peel extract and naringin in the doxorubicin treatment of esophageal cancer cells
in a mice model were reported by Tajaldini et al. [164]. The anti-inflammatory effects of
citrus-based phenolic compounds are also reported in Table 3. The combination of naringin
obtained from C. maxima (Burm.) extract and sericin from Bombyx mori was investigated
for the potential treatment of psoriasis by Deenonpoe et al. [165]. With the assumption
that skin inflammation via proinflammatory cytokines is associated with the pathogenesis
and clinical manifestation of psoriasis, the inhibitory effect of naringin/sericin drugs on
the production of proinflammatory cytokines (TNF-α, IL-6, IL-23, and IL-12p40) and the
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expression of mRNA of the human peripheral blood mononuclear cells from psoriasis
patients were investigated. The study demonstrated the successful dose-dependent formu-
lation of naringin/sericin for downregulating the proinflammatory cytokines related to the
inflammation mechanism in psoriasis pathogenesis.

Table 3. Summary of the literature reporting bioactivities of different (poly)phenolic compounds
extractable from citrus by-products (2018–2023).

Source Chemical Analytes Bioactivity Testing Subjects References

Citrus by-products

Finger lime peels 1

Dominant phenolic acids:
malic, citric, and quinic

acid/phenolic compounds:
neohesperidin, α-glucosyl
hesperidin, (7S,8S)-4,7,9,9′-

tetrahydroxy-3,3′-
dimethoxy-

8-4′-oxyneolignan-9′-O-D-
glucopyranoside,

lyoniresinol
9′-O-glucoside and

poncirin

Antioxidant,
anti-inflammatory

effect, neuronal cell
protection

Antioxidant: DPPH•,
ABTS•+, FRAP,

ORAC/anti-
inflammatory: in vitro

on BV-2 (mouse
microglial) cells and
NO release analysis

[166]

Citrus
(C. lumia Risso) albedo
extract (peel and pulp)

Dominant phenolic acids:
chlorogenic and ferulic

acids/flavonoids:
hesperidin and eriocitrin

Antioxidant and
cytoprotective activity

Antioxidant: FRAP,
TEAC, DPPH•, ORAC,

β-Carotene
bleaching/cell viability
on lymphocytes (lactate
dehydrogenase (LDH)

activity)

[167]

C. unshiu (Chenpi) peel
Dominant flavonoid:

hesperidin/Hesperidin
(commercial product)

Analgesic activity and
gastroprotective effect

In vitro on gastric
tissue/in vivo on male

ddY mice
[159]

C. amblycarpa peels and
leaves

Phenolics: quercetin, rutin,
and G-aminobutyric acid

(GABA)

Antihypertensive
effects

ACE Inhibitory
Activity Assay [168]

Ougan peel extracts 1
Flavonoids: nobiletin,

tangeretin, and
5-demethylnobiletin

Antitumor activity

In vitro on gastric
cancer cell line AGS,

BGC-823 and
SGC-7901/in vivo

BALB/c nude mice

[163]

C. reticulata Cv.
Suavissima peel extract

Flavonoids: nobiletin,
tangeretin, and

5-demethylnobiletin

Anti-inflammatory
effect

In vitro on BV-2
(mouse microglial) cells

and NO release
analysis, JAK2 inhibitor

Ruxolitinib and the
STAT3 inhibitor Stattic

[169]

C. reticulata Blanco, C.
grandis, C. reticulata c.v.
Kinnow, C. limetta, and
C. sinensis peel extracts

Dominant flavonoids:
hesperidin, naringin,

quercetin, rutin, apigenin,
nobiletin, tangeretin

Antioxidant activity,
anti-inflammatory

effect, neuroprotective
effect

Antioxidant: DPPH•

and ABTS•+

assay/Anti-
inflammatory: protein

denaturation assay
(bovine serum albumin

protein denatura-
tion)/neuroprotective:
Acetylcholinesterase

inhibition assay

[96]
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Table 3. Cont.

Source Chemical Analytes Bioactivity Testing Subjects References

C. japonica var.
Margarita peel

Detected phenolic acids:
p-hydroxybenzoic acid,

vanillic acid,
protocatechuic acid,

chlorogenic acid, sinapic
acid, gallic acid, ferulic

acid, caffeic acid

Antioxidant and
antimicrobial activity

Antioxidant:
DPPH•/Antimicrobial:

E. coli, Salmonella (S.)
typhimurium, S. aureus
and Pseudomonas (P.)

aeruginosa

[170]

C. sinensis (navel
orange)

Hydroethanolic extract,
naringin, naringenin

Hepatopreventive
activity

In vivo on male Wistar
rats; histopathological

investigation and
immunohistochemical
detection of p53, Bax,
Caspase-3, and Bcl-2

[171]

C. reticulata peel

Extract (major
components): hesperidin,

nobiletin, narirutin,
tangeretin, and sinensetin

Antiobesity-
related effects.

In vitro on 3T3-L1
mouse preadipocytes [172]

Ten citrus samples

Detected components:
nobiletin, quercetin,
diosmin, naringenin,

hesperidin, hesperetin,
rutin

Anti-estrogenic and
anti-aromatase

activity/antitumor
activity

In vivo on immature
female Swiss albino

mice/in vitro on
MCF-7 and T47D

(breast cancer lines), as
well as the normal
human HFB4 cells

[33]

C. unshiu peel
Detected components:

rutin, naringin, hesperidin,
poncirin

Anti-inflammatory and
antioxidant activity

In vitro on RAW 264.7
macrophages

(originating from
Abelson leukemia

virus)

[173]

14 Chinese cultivars
(mandarins, oranges,
pummelos, hybrids,
citrons, kumquats)

Detected components:
eriocitrin, naringin,

hesperidin, didymin,
poncirin, naringenin,
hesperetin, sinensetin,

nobiletin, tangeretin, and
5-O-demethylnobiletin

Antioxidant activity,
and effects on intestinal

microbiota

Antioxidant: DPPH•,
ABTS•+, FRAP,

CUPRAC/a-
Glucosidase inhibition
assay/bile salt binding
capacity determination
assay/investigation on
fecal samples/in vitro
on simulated intestinal

fermentation

[13]

Sour orange, sweet
orange, and lemon

peels 1

Dominant phenolic acids:
o-coumaric acid, benzoic

acid, ellagic acid,
p-Hydroxybenzoic

acid/flavonoids: myricetin,
naringin, quercetin

Probiotic and symbiotic
activity (Acidophilus-
bifidus-thermophilus

(ABT)-Type Synbiotic
Yoghurt)

Antioxidant:
DPPH•/antibacterial:
S. aureus, Bacillus (B.)

subtilis, and E. coli

[174]

C. limetta peel Hesperidin-rich ethanol
extract

Management of the
rheumatoid arthritis

In vivo on Charles
foster rats and Swiss

albino mice
[175]

Individual components

C. sinensis L. Osbeck
peel and pulp Hesperidin-rich extract Antioxidant and

antidiabetic activity

Antioxidant: DPPH•,
ABTS•+, iron chelating

activity/in vitro
α-Amylase inhibition

assay

[176]
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Table 3. Cont.

Source Chemical Analytes Bioactivity Testing Subjects References

C. japonica var.
Margarita peel

Detected phenolic acids:
p-hydroxybenzoic acid,

vanillic acid,
protocatechuic acid,

chlorogenic acid, sinapic
acid, gallic acid, ferulic

acid, caffeic acid

Antioxidant and
antimicrobial activity

Antioxidant:
DPPH•/Antimicrobial:

E. coli, Salmonella (S.)
typhimurium, S. aureus
and Pseudomonas (P.)

aeruginosa

[170]

Commercial product Hesperetin and quercetin Drug delivery

In vitro on MDCK II
(Madin-Darby canine

kidney cells) cell
viability

[177]

C. uranium
peel Hesperidin Anti-Helicobacter pylori

activity

In vitro on human H.
pylori strains/urease

inhibition
assay/molecular

docking

[161]

C. reticulata peel Hesperidin
Antihyperglycemic,
antihyperlipidemic,

and antioxidant activity

In vivo on male Wistar
rats/biochemical assay

and histological
investigation

[17]

Commercial product Hesperetin
Treatment and
prevention of

cardiovascular diseases

Ex vivo on porcine
coronary arteries and

human coronary artery
smooth muscle cells

[178]

Commercial product Hesperidin Antitumor activity

In vivo on
male-specified
pathogen-free

C57BL/6N
mice/in vitro on Lewis
lung carcinoma (LLC)

cells

[179]

Commercial products A mixture of hesperidin
and naringenin

Treatment and
prevention of

cardiovascular diseases

In vivo and ex vivo on
male Wistar rats and

aortic rings
[180]

Commercial product Hesperidin Antitumor activity

In vitro on PC3 and
DU145 (human

prostate cancer) cell
lines

[181]

Commercial product Hesperetin and naringenin Antitumor activity

In vitro on MIA PaCa-2,
PANC-1, SNU-213

(pancreatic cancer cell
lines), Detroit 551 (skin
fibroblast), and human

umbilical vein
endothelial cells

(HUVECs)

[182]

C. sinensis var. Valencia
peel Naringenin Hepato- and

renoprotective effects

In vivo on male Wistar
rats/histological

investigation of the
liver and kidney tissues

[183]

Commercial product Naringenin Anti-proliferative
effect., wound healing

In vitro on human
A549 lung cancer cells [184]
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Table 3. Cont.

Source Chemical Analytes Bioactivity Testing Subjects References

C. japonica var.
Margarita peel

Detected phenolic acids:
p-hydroxybenzoic acid,

vanillic acid,
protocatechuic acid,

chlorogenic acid, sinapic
acid, gallic acid, ferulic

acid, caffeic acid

Antioxidant and
antimicrobial activity

Antioxidant:
DPPH•/Antimicrobial:

E. coli, Salmonella (S.)
typhimurium, S. aureus
and Pseudomonas (P.)

aeruginosa

[170]

Commercial product Naringenin, nobiletin, and
hesperidin

Treatment of optic
nerve injury,

neuroprotective

In vivo on 6-weeks-old
C57BL/6J

mice/in vitro on
HEK293T (human

embryonic kidney cells)
cells

[185]

Combination of
commercial products

(naringin and
doxorubicin), orange

peel 1

Combination of naringin,
doxorubicin, and orange

peel extract
Antitumor activity

In vivo on mice
models/in vitro on

YM1 (human
esophageal squamous

cancer cell line)/

[164]

C. junos Tanaka peel Naringin Preventive effect on
pulmonary damage

In vivo on male
7-week-old BALB/c

mice/in vitro on
NCI-H460 (the human

lung carcinoma cell
lines)

[186]

C. maxima (Burm.) Merr
peel Naringin crystals + sericin Treatment of psoriasis

In vitro on isolated
human peripheral

blood mononuclear
cells, investigation on

proinflammatory
cytokines (TNF-α, IL-6,

IL-12p40, and IL-23)

[165]

Commercial product Narirutin Antitumor activity

In vitro on PC-3
(prostate carcinoma

and HEK-293
(embryonic kidney) cell

lines

[187]

Grapefruit 1 peel Narirutin-rich fractions

Neuroprotective effect
(cerebral

ischemia/reperfusion
injury)

In vivo on male Wistar
rats [188]

Commercial product Poncirin Antidiabetic activity

PTP1B inhibitory assay,
α-Glucosidase

inhibitory assay, HRAR
inhibition

assay/in vitro on
C2C12 cell (skeletal

muscle cells) line

[189]

Commercial product Poncirin and
isosakuranetin

Beneficial effects on gut
microbiota

In vivo on thirty
C57Bl/6J male

mice/fecal microbiota
[190]

C. sinensis peel Rutin Antimicrobial activity In vitro on Aeromonas
(A.) hydrophila strains [191]
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Table 3. Cont.

Source Chemical Analytes Bioactivity Testing Subjects References

C. japonica var.
Margarita peel

Detected phenolic acids:
p-hydroxybenzoic acid,

vanillic acid,
protocatechuic acid,

chlorogenic acid, sinapic
acid, gallic acid, ferulic

acid, caffeic acid

Antioxidant and
antimicrobial activity

Antioxidant:
DPPH•/Antimicrobial:

E. coli, Salmonella (S.)
typhimurium, S. aureus
and Pseudomonas (P.)

aeruginosa

[170]

Citrus peel 1 Tangeretin Antitumor activity
In vitro on MCF-7 and
MDA-MB-231 (breast

cancer) cell lines
[34]

Commercial product Diosmetin Antihypertensive
effects

In vivo on adult
Sprague–Dawley

rats/in vitro: vascular
pathway inhibitors

[192]

Commercial product Diosmetin and diosmin
Anti-inflammatory

effect on atopic
dermatitis

In vivo on six-week-old
female SKH-1 hairless

mice/in vitro:
RBL-2H3 (basophilic

leukemia) cell line

[193]

1 Species not specified.

5. Citrus By-Products Formulations with Enhanced Bioactivities

The biomass-derived compounds are known for their health-promoting properties,
and there is a rising trend in waste and by-product valorization to obtain value-added
products with a wide spectrum of applications [2,11,194,195]. As it was already demon-
strated in Tables 1–3, the beneficial effects of different citrus by-products on human health
are not disputable; however, poor bioaccessibility is a crucial and limiting factor for suc-
cessful in vivo applications. Therefore, new and innovative ideas with the implementation
of nanotechnology brought about some new solutions in bioaccessibility and bioactiv-
ity enhancements (Table 4). The preparation of silver nanoparticles (AgNPs) from citrus
(C. tangerina, C. sinensis, and C. limon) peel extract was reported by Niluxsshun et al. [196].
Firstly, citrus peel extracts were prepared by boiling peels in hot water, and afterward, a
solution of AgNO3 was added to the flask when a golden colloidal suspension was formed.
The structural and morphological analyses confirmed the presence of AgNPs in sizes of
10–70 nm, containing different morphological characteristics of nanoparticles. The presence
of natural antioxidants, flavonoids, phenolic acids, and other phenolic compounds could
act as a reducing agent, leading to the formation of silver nanoparticles. The AgNPs were
investigated for antimicrobial activity against the Gram-negative bacteria E. coli and the
Gram-positive bacteria S. aureus, and the results showed the superior antimicrobial activity
of orange-based AgNPs on both bacteria strains. Also, it is expected that the bioactivity of
nanoparticles is dose- and size-dependent [197], and it is assumed that silver potentially
interacts with thiol groups of proteins on cell membranes, causing respiration blocking,
which leads to cell death. Another example of AgNP synthesis by using citrus by-products
for the purposes of antimicrobial investigation was reported by Alkhulaifi et al. [198]. In
this study, C. limon peels were used for the synthesis of AgNPs, which were formed by
the addition of a AgNO3 solution. Again, a possible explanation for the AgNPs forma-
tion was the reduction of Ag+ ions to silver nanoparticles in the presence of phenolic
compounds, and the AgNPs demonstrated spherical- and rod-like-shaped morphologies.
The antimicrobial activity investigation was carried out on Acinetobacter (A.) baumannii, S.
typhimurium, E. coli, Pseudomonas (P.) aeruginosa, S. aureus, and Proteus (P.) vulgaris human
pathogenic bacteria. The results indicated the good performance of AgNPs against the
Gram-negative (E. coli, S. typhimurium, and P. aeruginosa) and Gram-positive (S. aureus)
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bacteria. Also, the cell viability on the MCF-7 (human breast cancer) and HCT-116 (hu-
man colon carcinoma) cell lines was evaluated, showing dose-dependent behavior. The
good antimicrobial performance was potentially explained by four possible mechanisms:
(1) the interactions of AgNPs with the cell membrane, altering the membrane permeabil-
ity and perturbation of respiratory chain enzymes; (2) the gradual diffusion of AgNPs
into the cells, leading to the conjugation of nanoparticles to DNA and causing adverse
effects on the enzyme activity and the transcription processes; (3) the leakage of subcel-
lular components as the interaction of AgNPs and plasma membrane were formed; and
(4) the generation of free radicals [199,200]. Recently, biomass-derived carbon quantum
dots (CQDs) are gaining attention due to their biocompatibility and versatile physicochem-
ical and optical properties. By definition, CQDs are fluorescent carbon (zero-dimensional)
nanoparticles possessing small size, low toxicity, controllable solubility, and tunable light-
emitting properties. Therefore, all of these properties allow CQDs a wide spectrum of
applications in bioimaging, biosensing, catalysis, and theranostics [201,202]. The authors
Gudimella et al. [203] reported a green synthetic procedure for obtaining CQDs from citrus
peel and the conjugation of CQDs with folic acid. A structural analysis confirmed the pres-
ence of nanoparticles of sizes 4.6 ± 0.28 nm, while fluorescence spectroscopy indicated that
CQDs exhibited multiple colors at different excitation wavelengths. The biocompatibility of
the CQDs was assessed on the L929 (mice fibroblasts) cell lines, and the CQDs conjugated
with folic acid exhibited low cytotoxicity, showing good biocompatibility. The bioimaging
of cancer cell lines was successfully studied on breast cancer (MCF-7) cell lines, as shown
in Figure 7. The CQDs were introduced to MCF-7 cell lines and were illuminated by bright
light, UV light (330–385 nm), blue (450–480 nm) light, and green (510–550 nm) light. It was
demonstrated that MCF-7 cell lines treated with CQDs conjugated with folic acid exhibited
brighter fluorescence emission compared to pure CQDs. It was reported that folic acid
conjugation could produce a stronger fluorescent signal, which was probably caused by
the enhanced cellular uptake of CQDs conjugated with folic acid in the cancer cell lines.

Table 4. Literature reporting the preparation of different (nano)formulations by using citrus by-
products as precursors (2018–2023).

Source Formulation Application/Bioactivity Testing Subjects References

Citrus peel 1
Carbon quantum dots
conjugated with folic

acid

Bioimaging in MCF-7
cell lines, antiradical

activity

In vitro on MCF-7 (human
breast carcinoma), L929

(mice fibroblasts)
[203]

C. clementina peel
Amino

acid-functionalized
carbon quantum dots

Antiradical activity,
bioimaging in MCF-7
cell lines, antitumor
activity in pancreatic

cancer cell lines

Antiradical activity:
DPPH•/in vitro on HepG2
(hepatocellular carcinoma),

MCF-7 (breast
adenocarcinoma, metastatic),

HCT-116 (colorectal
carcinoma), CFPAC-1 (cystic

fibrosis pancreatic
adenocarcinoma, metastatic),
and HFF-1 (human foreskin

fibroblasts)

[204]

Commercial product Hesperetin cocrystals
with piperine Drug delivery In vivo bioavailability on

Sprague–Dawley rats [205]

C. sinensis peel Hesperidin
nanocrystals Cosmetics In vitro on artificial skin [206]
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Table 4. Cont.

Source Formulation Application/Bioactivity Testing Subjects References

C. sinensis L. Osbeck
var. Valencia peel

Hesperidin hexosomal
loaded nanodispersion

Antimycobacterial,
cytotoxic, and

anti-HCov activity

Antimycobacterial:
Mycobacterium (M.)

tuberculosis (MTB)/cytotoxic:
against A-549 (human

pulmonary adenocarcinoma)
cell lines/antiviral: human

coronavirus 229E

[207]

C. reticulata peel

Hesperidin
encapsulated in

magnetic
casein-CaFe2O4

nanohybrid carrier

Drug delivery,
antitumor activity

In vitro drug release/in vitro
on SKOV-3 (human ovarian

cancer cell line) and
MDA-MB-231 TNBC (human

breast cancer cell line)

[56]

C. sinensis var. Valencia
peel

Gold nanoparticles
(AuNPs)

Anti-inflammatory
activity

Nitric oxide inhibitory
activity, qRT-PCR 2, Western

blot
[208]

Orange peel 1
Hesperidin gold

nanoparticles
(Hes-AuNPs)

Neuroprotective and
antioxidant effects

In vivo on Wistar
rats/antioxidant: DPPH•

and in vivo studies
[209]

C. tangerina, C. sinensis,
and C. limon peel

Silver nanoparticles
(AgNPs) Antimicrobial activity Antimicrobial: E. coli and S.

aureus [196]

C. limon peel Silver nanoparticles
(AgNPs) Antimicrobial activity

Antimicrobial: A. baumannii,
S. typhimurium, E. coli, P.

aeruginosa, S. aureus, and P.
vulgaris

[198]

Lemon, tangerine, and
orange peel 1

Copper oxide
nanoparticles

(CuONPs)
Antimicrobial activity

Antimicrobial: five
strains of Gram-positive

(Enterococcus (E.) faecalis, S.
aureus, L. monocytogenes, S.
pneumonia and Clostridium
(C.) perfringens) and five

strains
of Gram-negative (E. coli,
Moraxella (M.) catarrhalis,

Salmonella (S.) enterica subsp.
diarizonae, Campylobacter (C.)

coli, and P. aeruginosa)
bacteria

[210]

C. hystrix peel
Encapsulated essential

oil into chitosan
nanoparticle

Antimicrobial activity Antimicrobial:
Propionilbacterium (P.) Acnes [211]

C. clementine vesicles Exosome-like
nano-sized vesicles Molecular delivery Proteomic and bioinformatic

studies [212]

C. sinensis, C. limon, C.
paradise, C. aurantium

isolated vesicles

Micro- and nano-sized
vesicles Antitumor activity

In vitro on breast
adenocarcinoma (MCF7),
human melanoma (A375),

lung adenocarcinoma (A549),
and human normal skin

keratinocyte (HaCat) cells

[213]

1 Species not specified; 2 real-time quantitative reverse transcription PCR.
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Figure 7. Bioimaging of pure CQDs (designated as CD in the figure) and CQDs conjugated with folic
acid (designated as FA-CD) in MCF-7 cell lines. Reprinted with permission from ref. [203]. Copyright
2020 Elsevier.

Similar results were obtained in the study by Šafranko et al. [204], where cellular imag-
ing was investigated for the MCF-7 cell lines; however, specific antitumor activity against
CFPAC-1 (ductal pancreatic adenocarcinoma) was determined. The CQD nanoparticles
were prepared by a hydrothermal procedure from C. clementina peels and amino acids (Gly
and Arg), and their application in Fe3+ ion sensing and bioimaging was determined, also
exhibiting specific antitumor and antioxidant activities. A literature overview of innovative
synthetic approaches for obtaining citrus by-product-based formulations is listed in Table 4.

6. Conclusions and Final Remarks

The enormous amount of waste and by-products generated during citrus processing
is of great concern from both economical and environmental points of view. There are
many valuable contributions dealing with the valorization of these by-products, converting
them into value-added products with potential applications in the food, cosmetic, and
pharmaceutical industries. The major focus has been on the promising bioactivities of
different citrus by-products and their beneficial effects on human health, and this discovery
offers new alternatives for safer, healthier, and sustainable product development. Although
citrus by-products can be considered a valuable and natural source of bioactive compounds,
the limiting factors for in vivo applicability are the poor bioaccessibility and solubility
of different phenolic compounds and antioxidants, as well as sensitivity to light, pH,
humidity, and heat. This challenge can be overcome by forming stable nanoemulsions
and different formulations on a nanoscale that enhances the bioactivity, as well as the
bioaccessibility, of the active substances. Furthermore, one of the major concerns is the
lack of evidence for efficient citrus-by-product utilization/extraction at a larger industrial
scale, as, currently, the available literature reports the extraction procedures on a laboratory
scale and, in limited cases, on a pilot scale. Also, the extraction of bioactive compounds
has limitations by means of low extraction yields of individual compounds or groups of
bioactive compounds, and it is certainly questionable that these amounts can satisfy the
demands of the different industries.

As was discussed in this review article, different citrus-based by-products show enor-
mous potential in pharmaceutical and biomedical fields. The individual citrus-based
compounds, mixtures such as essential oils, and extracts exhibit a diversity of bioactivities,
including antitumor, antimicrobial, antiviral, antidiabetic, antioxidant, and other beneficial
activities with health-promoting abilities. The investigation of the antitumor ability of
different citrus-based by-products is an indisputably emerging trend in the pharmaco-
logical and biomedical domains; however, the major limiting factor for applying these
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formulations is often a lack of knowledge regarding the antitumor mechanisms of these by-
products. In order for these by-products to be applied as an alternative to synthetic drugs
in chemotherapy or in cancer target therapy, future studies should be more focused on the
mechanisms of action to fully understand their antitumor activity, as well as on increasing
their specific targeting properties for tumor cells. Furthermore, citrus-based by-products
have enormous potential as antimicrobial agents in the food, agriculture, and pharmaceu-
tical industries. Due to the serious threat to human health, the antimicrobial resistance
topic has been widely discussed within the scientific community. In this review article,
an overview of the recent literature related to the application of citrus-based by-products
as antimicrobial agents has been provided. Although it is well known that plant-based
by-products exhibit antimicrobial properties under laboratory conditions, more extensive
investigations regarding the isolation of specific bioactive compounds, mechanisms of
action, in vivo studies, and structure–activity relationship (SAR) analysis are welcomed in
the future.

As shown in this review article, citrus by-products can be used as carbon precursors
for the preparation of nanoparticles with promising antimicrobial activity, as well as for the
production of fluorescent nanoparticles with potential applications as antitumor agents and
in cellular imaging. Nowadays, nanoparticles are successfully overcoming the limitations of
nonspecific drug delivery and offer multiple benefits in treating human diseases. However,
more advanced solutions are needed regarding optimized drug delivery, improvements in
their accumulation at the sites of interest, and minimizing unwanted toxicity to ovaerall
improve patient outcomes. As plant-based products are generally less toxic in normal cells
compared to synthetic compounds, those products show a promising future in medicine,
especially with a multidisciplinary collaborative approach of plant science and nanotechnol-
ogy. With the technological advances, and by applying an interdisciplinary approach, citrus
by-products can be a valuable source of compounds with effective antitumor, antioxidant,
and protective effects used as health-promoting agents.
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