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Abstract: The use of conventional contrast media for diagnostic purposes (in particular, Gd-containing
and iodinated agents) causes a large number of complications, the most common of which is contrast-
induced nephropathy. It has been shown that after exposure to contrast agents, oxidative stress
often occurs in patients, especially in people suffering from various diseases. Antioxidants in the
human body can diminish the pathological consequences of the use of contrast media by suppressing
oxidative stress. This review considers the research studies on the role of antioxidants in preventing
the negative consequences of the use of contrast agents in diagnostics (mainly contrast-induced
nephropathy) and the clinical trials of different antioxidant drugs against contrast-induced nephropa-
thy. Composite antioxidant/contrast systems as theranostic agents are also considered.
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1. Introduction

The use of contrast media (CM) has become widespread in magnetic resonance imag-
ing, computed tomography and radiography. The introduction of contrasting media
(contrast agents) is carried out in cases where, during a standard scan, the physician cannot
reliably determine the emerging pathologies. Special CM, which are usually adminis-
tered intravenously to a patient, highlight pathological changes in organs and tissues
in images and give specialists grounds to develop approaches for adopting a particular
treatment. The technology provides physicians with the ability to obtain an accurate and
detailed image of diseased organs, soft tissues and bones, allowing them to make the correct
diagnosis. Among the many contrast agents presented in the literature [1–5], the most
commonly used are iodine-containing CM for radiography and computer tomography and
gadolinium (Gd)-containing CM for magnetic resonance imaging (MRI). These methods
are considered effective for visual diagnostics and are used in the diagnosis of a wide range
of diseases—pathologies of the brain and spinal cord, diseases of the spine and joints, some
diseases of the abdominal cavity and pelvic area, heart, lungs, thyroid gland, etc. However,
the introduction of CM causes side effects in various tissues of the body and entails serious
complications [6–10].

Acute renal failure known as “contrast-induced acute kidney injury” (CI-AKI), also
called “contrast-induced nephropathy” (CIN), is the main side effect of injection of CM
and is still one of the most serious adverse complications, sometimes fatal [11,12]. This
also results in an increase in its associated adverse reactions. All CM have direct cytotoxic
effects on renal tubular epithelial and vascular endothelial cells and renal hemodynamics,
leading to selective reduction in outer medullary blood flow, oxidative stress, apoptosis, im-
mune/inflammation and epigenetic regulation [2,6,13–18]. Three main pathophysiological
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mechanisms of CIN have been proposed: direct tubular toxicity, intrarenal vasoconstriction
and excessive production of reactive oxygen species (ROS), all leading to impaired renal
function [12,19,20].

The exact mechanism of CIN is not fully elucidated. Infusion of contrast agents
increase osmotic load and viscosity and increases hypoxemia of the renal medulla and
renal free radical production through post-ischemic oxidative stress [13,21–23].

The excessive generation of ROS (oxidative stress) is believed to play a major role in
the primary physiological insult and pathogenesis of CIN [19,21,24]; therefore, recently, a
number of studies have focused on the potential role of antioxidants in the prevention of
CIN. Antioxidants can decrease oxidative impairment in organisms directly by reacting
with free radicals and indirectly by suppressing the activity and expression of free radical
generating enzymes and stimulating the activity or expression of intracellular antioxidant
enzymes [25].

Antioxidants are endogenous and exogenous, as part of the diet or a dietary sup-
plement. Endogenous antioxidants are produced by the human body while exogenous
antioxidants come from the human diet. Exogenous antioxidants can be of natural origin
(fruits, vegetables, meat and fish products) or synthesized. Living organisms have devel-
oped a comprehensive set of endogenous antioxidant defenses to prevent the formation
of excess free radicals or limit their damaging effects [26]. Antioxidants (exogenous and
endogenous) in the human body can diminish the pathological consequences of the use of
contrast media by suppressing oxidative stress [27]. But in patients (particularly elderly)
with renal dysfunction and/or diabetes, the use of contrast media are risk factors and, in
some cases, can be fatal [12].

This review considers, in particular, the research devoted to studying the role of an-
tioxidants in preventing the negative consequences of the use of CM in diagnostics (mainly
CIN). We did not aim to describe CM in more detail, since they are quite fully described in
the literature [1–5,9,10,28]. Much attention in the review is given to clinical trials of drugs
with antioxidant properties that can reduce or prevent CIN, as well as the induction of
internal endogenous antioxidants against CIN. Composite antioxidant/contrast systems as
theranostic agents are also considered.

2. Contrast Media

As mentioned above, there are two main types of CM used in clinical practice: iodine-
containing (iodinated) and gadolinium-containing. The iodine-containing CM are divided
into ionic and nonionic, as well as high-osmolar and low-osmolar (including iso-osmolar)
with respect to the osmolarity of serum (about 290 mOsm/kg). Diatrizoate and metrizoate
(ionic) pertain to high-osmolar iodinated CM (about 1500–2000 mOsm/kg); low-osmolar
CM (600–1000 mOsm/kg) include ioxaglate and iothalamate (ionic) as well as iopamidol,
iohexol, ioxilan, iodixanol and ioversol (nonionic) [9]. Hyperosmolality increases the
intrinsic toxicity of iodinated CM. Along with oxidative stress, the administration of iodine-
containing CM leads to other adverse processes, leading mainly to CIN [28]. The detailed
scheme of pathophysiology of renal damage resulting from the administration of iodinated
CM is presented in [16].

In gadolinium-containing CM, Gd3+ ion is complexed with different chelating agents.
Such CM can be linear or cyclic, ionic or nonionic (e.g., Gd-DTPA—ionic, linear; Gd-DTPA-
BMA—nonionic, linear; Gd-DOTA—ionic, cyclic; Gd-HP-DO3A—nonionic, cyclic) [1].
Nonionic complexes with low osmolality were developed to allow the use of higher
doses [1]. The toxicity mechanisms (including CIN) of Gd-containing CM were considered
in the review [29], in which elevation of ROS was noticed among other toxicity mechanisms.
Cytotoxicity (nephrotoxicity) of Gd-containing CM is characterized by increased oxidative
stress and mitochondrial dysfunction followed by cell death via apoptosis and, ultimately,
necrosis [30].
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Apart from Gd3+ chelates, commonly used as CM are manganese-based chelates and
superparamagnetic iron oxide nanoparticles [1]. The use of nanoparticles in theranostics
(as contrast/therapeutic agents) is considered in Section 5.

Recently, novel CM based on the detonation of nanodiamond (DND) particles with
grafted paramagnetic metal cations have been developed [31–34]. Gd-grafted DND exhibit
superior relaxivity properties, exceeding most of those known in the literature [31]. Saline
suspensions of polyvinylpyrrolidone (PVP)-coated Gd-grafted DND used as MRI CM pro-
vide much higher signal intensities than the conventional CM Gd-DOTA, which increases
its potency for a safer application in practice [32]. Mn-grafted DND particles have been
prepared and studied [33,34]; their suspensions (with PVP-coated particles) are promising
as MRI contrast agents [34].

Hence, novel DND particles with grafted paramagnetic metal cations hold much
promise as CM in MRI and may be related to next-generation contrast agents for medi-
cal imaging.

3. Redox System

Normally, a balance between oxidative and reductive processes (redox system, redox
homeostasis) is maintained in the organism. These processes ensure the integrity and
basic functions of cells and maintain the viability of organs and tissues. The redox system
regulates DNA synthesis, gene expression, enzyme activity, preservation and permeability
of cell membranes and other processes [35–37]. An imbalance between the production
and degradation of free radicals leads to oxidative stress. An excessive increase in ROS is
a factor in cell and tissue damage as a result of destruction of cell membranes, proteins,
nucleic acids, etc. [36–40]. The redox system maintains the equilibrium concentrations
of ROS and antioxidants; it consists of two main arms of the balance: prooxidant and
antioxidant.

The prooxidant system is represented by low molecular weight ROS. ROS include
extremely reactive oxygen-containing free radicals and molecules, which are superoxide
anion (O2

–•), perhydroxyl radical (HO2
•), hydroxyl radical (OH•), singlet oxygen (1O2),

hydrogen peroxide (H2O2), nitric oxide (NO), hypochlorous acid (HOCl) and peroxynitrite
(ONOO–•). They are generated as byproducts in the mitochondrial respiratory chain or
synthesized by specialized enzymes (in particular, NADP oxidase, nitric oxide synthase).
Reactive nitrogen species (RNS) are formed from NO via reaction with O2

–• to form
ONOO–• [25,37,40–42].

The destructive activity of ROS consists of the oxidation of lipids, proteins and
DNA [30]. Oxidized forms of proteins, when accumulated excessively, can aggregate
and cause additional endoplasmic stress and unfolded protein responses [43].

Another important factor in the pathogenesis of CIN is the induction of endothelial
dysfunction and changes in renal microcirculation. ROS play a key role in these phe-
nomena through the production of vasoconstrictors [44]. Increased ROS can reduce the
bioavailability of nitrogen oxide (NO) [45].

On the other hand, ROS, while being unstable, affect the activity of a number of
enzymes (proteinase, phosphatase, phospholipase, etc.) and modulate the expression
of transcription factors, thereby providing global stable changes in gene activity and
cell metabolism. For example, ROS (in particular, hydrogen peroxide), can reversibly
oxidize critical, redox-sensitive cysteine residues on target proteins. These oxidative post-
translational modifications can control the biological activity of numerous enzymes and
transcription factors, as well as their cellular localization or interactions with binding
partners [46]. The molecular pathways of ROS regulatory action are still insufficiently
studied, but their leading role in various physiological processes and signaling pathways is
actively discussed [46].

The antioxidant system includes low molecular weight reducing agents (vitamin C,
glutathione, taurine, uric acid, cysteine, beta-carotene, etc.) and enzymatic systems that
neutralize ROS (superoxide dismutase, catalase, glutathione peroxidase, peroxiredoxins,
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etc.) or reduce oxidized proteins and lipids (e.g., glutathione enzyme system) [47]. En-
dogenous and exogenous antioxidants can work synergistically to maintain or establish
redox balance. ROS and antioxidants interacting with each other are considered func-
tionally related redox-active molecules; they are key components of redox processes in
organisms [48].

Due to the fact that, when CM is administered, oxidative processes increase dramat-
ically and lead to tissue impairment (patients with kidney failure, diabetes and obesity
are especially susceptible), there is an urgent problem in preventing the occurrence of
CIN by using antioxidants for the neutralization of ROS before administration or during
administration of CM. It is also important to choose suitable antioxidant agents for the
treatment of CIN.

4. Antioxidants vs. Contrast-Induced Nephropathy
4.1. N-Acetyl-L-Cystein/Glutathione

N-Acetyl-L-cystein (NAC, Figure 1a) is a thiol-containing exogenous antioxidant that
has been applied clinically for about 70 years, mainly for mucolytic therapy in respiratory
diseases [49]. In an organism, NAC deacetylates with conversion to cysteine, being a
precursor for the endogenous cellular antioxidant—glutathione (GSH) [50]. Administration
of NAC (via orally or intravenously) provides cysteine as a substrate for replenishing
glutathione stores in cells [51].
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Due to its antioxidant ability (possibly indirect [52]), NAC is widely used as a remedy
for CIN with good results (see, e.g., [53–58], meta-analysis [59], with intravenous admin-
istration [60], meta-analysis at high doses of CM [61]). At the same time, there are many
publications that do not confirm the efficacy of NAC in diminishing CIN (see, e.g., [62–67],
meta-analysis for oral NAC administration [68], meta-analysis for intravenous NAC ad-
ministration [69]). This could be in part due to some side effects of NAC, in particular, its
pro-oxidant properties [70]. The meta-analysis of the 61 randomized clinical trials made
in [71] showed that the incidence of CIN in the NAC group of patients compared with that
in the control group revealed a statistically significant difference. In patients undergoing
coronary angiography, the incidence of CIN in the NAC and control groups was also statis-
tically different. For patients undergoing computed tomography, the difference between
the corresponding incidences was about twofold, while no difference was observed for
patients undergoing peripheral angiography [71]. However, the recently completed largest
meta-analysis of 101 randomized control trials has shown that NAC has practically no effect
on CIN prevention [72]. Keeping in mind the data of meta-analyses on the whole, NAC
should be thoroughly examined and recommended mainly as an additional therapy for
CIN [73]. Note that the recent publication focuses on the antioxidant and anti-inflammatory
activity of NAC, which can help not only in CIN but also in chronic kidney disease [74].

Glutathione (GSH, Figure 1b), a cellular antioxidant, is a sulfur-containing tripeptide
synthesized from cysteine, glutamate and glycine mainly within the liver [75]. It performs
various functions in an organism. In particular, it controls gene expression and apoptosis,
detoxifies drug metabolites, affects cell responsiveness to redox changes brought on by
ROS and participates in the transmembrane transport of organic solutes. GSH is a desirable
target for a closer approach to the prevention and treatment of numerous illnesses of
concern to physicians [75]. It participates in a redox equilibrium with its disulfide (oxidized)
form (GSSG). The antioxidant action of GSH consists of oxidation of GSH to GSSG by ROS,
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which leads to their inactivation. GSSG formed is reduced back to GSH by NADPH
catalyzed by glutathione reductase (GSR) (Figure 2).
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GSH directly scavenges diverse oxidants in cells: superoxide anion, hydroxyl radical
and carbon radicals; it catalytically detoxifies hydroperoxides, peroxynitrites and lipid per-
oxides [76]. It also protects cells from oxidants by recycling of other antioxidants—vitamins
C and E [77]. Therefore, it was reasonable to test GSH against oxidative stress caused by
CIN. However, the studies on the influence of reduced GSH (together with hydration) on
preventing CIN in patients gave no distinct results [78–80]. The lack of GSH effects on
CIN in patients found in these studies could be due to insufficiently small sample sizes;
therefore, larger prospective randomized GSH trials are required.

The recent publication suggests the use of GSH sodium salt with another
antioxidant—ascorbic acid, to suppress CI-AKI in patients with contrast-associated ST-
elevation myocardial infarction (STEMI) [81]. It seems to be promising and should be a
matter of further investigations.

4.2. L-Ascorbic Acid (Vitamin C)

An important compound with antioxidant properties is vitamin C (L-ascorbic acid,
Figure 3a). It is a water-soluble organic compound present in living organisms and in food.
Vitamin C at physiological pH mainly exists in the form of ascorbate anions, which can be
oxidized to dehydroascorbic acid (Figure 3b). In humans, vitamin C is not synthesized, but
is supplied exclusively with food [82–84].

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 5 of 29 
 

 

brought on by ROS and participates in the transmembrane transport of organic solutes. 
GSH is a desirable target for a closer approach to the prevention and treatment of nu-
merous illnesses of concern to physicians [75]. It participates in a redox equilibrium with 
its disulfide (oxidized) form (GSSG). The antioxidant action of GSH consists of oxidation 
of GSH to GSSG by ROS, which leads to their inactivation. GSSG formed is reduced back 
to GSH by NADPH catalyzed by glutathione reductase (GSR) (Figure 2). 

 

2GSH GSSG 

 

ox 

red 

ROS 

NADPH 
GSR  

Figure 2. Scheme of redox equilibrium involving GSH. 

GSH directly scavenges diverse oxidants in cells: superoxide anion, hydroxyl radical 
and carbon radicals; it catalytically detoxifies hydroperoxides, peroxynitrites and lipid 
peroxides [76]. It also protects cells from oxidants by recycling of other antioxi-
dants—vitamins C and E [77]. Therefore, it was reasonable to test GSH against oxidative 
stress caused by CIN. However, the studies on the influence of reduced GSH (together 
with hydration) on preventing CIN in patients gave no distinct results [78–80]. The lack 
of GSH effects on CIN in patients found in these studies could be due to insufficiently 
small sample sizes; therefore, larger prospective randomized GSH trials are required. 

The recent publication suggests the use of GSH sodium salt with another antioxi-
dant—ascorbic acid, to suppress CI-AKI in patients with contrast-associated ST-elevation 
myocardial infarction (STEMI) [81]. It seems to be promising and should be a matter of 
further investigations. 

4.2. L-Ascorbic Acid (Vitamin C) 
An important compound with antioxidant properties is vitamin C (L-ascorbic acid, 

Figure 3a). It is a water-soluble organic compound present in living organisms and in 
food. Vitamin C at physiological pH mainly exists in the form of ascorbate anions, which 
can be oxidized to dehydroascorbic acid (Figure 3b). In humans, vitamin C is not syn-
thesized, but is supplied exclusively with food [82–84]. 

 
(a) 

 
(b) 

Figure 3. (a) Structure and (b) acid-base and redox transformations of ascorbic acid. 

In human cells, L-ascorbic acid is transported via sodium-dependent vitamin C 
transporters (SVCT) SVCT1 and SVCT2, whereas the oxidized form of vitamin C, dehy-
dro-L-ascorbic acid (DHAA), via glucose transporter (GLUT). The low affinity trans-
porter SVCT1 is mainly responsible for the uptake of ascorbate by intestinal epithelial 
cells. The high affinity transporter SVCT2 delivers ascorbate to body tissues. After being 

Figure 3. (a) Structure and (b) acid-base and redox transformations of ascorbic acid.

In human cells, L-ascorbic acid is transported via sodium-dependent vitamin C trans-
porters (SVCT) SVCT1 and SVCT2, whereas the oxidized form of vitamin C, dehydro-L-
ascorbic acid (DHAA), via glucose transporter (GLUT). The low affinity transporter SVCT1
is mainly responsible for the uptake of ascorbate by intestinal epithelial cells. The high
affinity transporter SVCT2 delivers ascorbate to body tissues. After being transported
across the cytoplasmic membrane, vitamin C accumulates in cells. After entering a cell,
DHAA is rapidly reduced to L-ascorbic acid [85–87].

Vitamin C at very low concentrations and in the presence of trace amounts of transition
metals (iron, copper) acts as a pro-oxidant, promoting the process of lipid peroxidation
catalyzed by metals. However, at higher contents, in particular, at physiological concen-
trations (about 40–80 µM) in the blood plasma of healthy humans, vitamin C functions as
an antioxidant [83]. It can reduce the oxidized radical form of vitamin E (α-tocopheroxyl
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radicals, α-TO•), thus regenerating and prolonging the life cycle of this antioxidant in the
lipid phase and facilitating the removal of radicals from the lipid to the aqueous phase [88].
Ascorbic acid synergistically interacts with vitamin E and thus protects low density lipopro-
teins from oxidative damage by peroxyl radicals. Vitamin C is extremely important for
maintaining normal vitamin E levels and inhibition of lipid oxidation [89].

Vitamin C can modulate gene expression and is involved in cell differentiation pro-
cesses [87].

Ascorbic acid, due to its antioxidant properties and ability to stimulate collagen
synthesis, inhibits angiogenesis and reduces the permeability of blood vessels [90,91].
Ascorbic acid has also been reported to cause vasodilation. The vasodilatory effects of
ascorbic acid were observed, in particular, in patients with non-insulin-dependent diabetes
mellitus [92] and in essential hypertensive patients [93]. These properties of ascorbic acid
may be useful in preventing CIN risk. Indeed, there is evidence (meta-analyses) that
ascorbic acid reduces the risk of developing CIN [94,95].

It has been shown that vitamin C (given at doses of 1–3 g in combination with hydra-
tion prior to coronary angiogram) can have a significant effect in the prevention of CIN
among high-risk patients and can be recommended to prevent the development of CIN
in patients with renal insufficiency. It is safe, inexpensive and readily available [95–97]. It
is also suggested (in combination with GSH sodium salt) for suppressing CIN in patients
with ST-elevation myocardial infarction (STEMI) [81]. Ascorbic acid has a dose-dependent
protective effect on renal cells, preventing contrast-induced apoptosis [98]. However, there
are some conflicting data on the effectiveness of ascorbic acid in reducing the develop-
ment of CIN. A number of studies have shown the absence of a nephroprotective effect of
ascorbic acid upon administration of contrast agents [99–103]. No effects of ascorbic acid
and NAC on CIN in critical care patients were found in [104]. Such contradictions require
further research.

4.3. Vitamin E (Tocopherols, Tocotrienols)

Vitamin E is the name of eight natural compounds: α, β, γ and δ derivatives of
tocopherol and tocotrienol, which are exogenous lipophilic antioxidants.

α-Tocopherol (Figure 4) is a more active antioxidant [105], while γ-tocopherol has
higher anti-inflammatory properties [106]. α-Tocopherol operates in the glutathione peroxi-
dase pathway [107] and protects cell membranes from oxidation by reaction with lipid rad-
icals produced in the lipid peroxidation chain reaction [108]. The oxidized α-tocopheroxyl
radicals formed in this process may be recycled back to the active form via reduction by
other antioxidants (ascorbate, retinol or ubiquinol) [109].
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Different forms of vitamin E were proposed to prevent several diseases, especially
arteriosclerotic heart disease and cancer [110,111], primarily due to their antioxidant and
anti-inflammatory properties [106,108,112]. Due to its profound antioxidant properties,
α-tocopherol was often used for prevention or attenuation of CIN. Some meta-analyses of
the studies of its effect on CIN have been performed. In particular, [113] concluded that
α-tocopherol administration (oral or multiple) leads to a reduction in CIN incidence and
should be considered a simple and inexpensive remedy for CIN prevention. In [114], a
meta-analysis showed that vitamin E together with hydration significantly reduced the risk
of CIN in patients with renal impairment. However, no effect of α-tocopherol for prevention
of CIN was found in [115]. No effect of vitamin E on CIN was found in [116] either.
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4.4. Bilirubin

Bilirubin is a bile pigment, i.e., a component of bile in humans and animals, possessing
antioxidant properties [117,118] (Figure 5).
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Bilirubin has been demonstrated to offer renal protection in several models of acute
kidney injury [119,120]. Low serum bilirubin concentrations predict the development of
chronic kidney disease and diabetic nephropathy, whereas higher levels of serum bilirubin
are associated with a decreased risk of diabetic nephropathy [121–123].

A number of works appeared on the relationship between CIN and serum bilirubin
as an endogenous antioxidant molecule. Some studies showed that patients with CIN
had a lower level of total bilirubin compared to control patients [124]. These studies
suggested that a general decrease in bilirubin was associated with the development of CIN
in patients after the administration of radiocontrast agents. Indeed, patients with lower
total serum bilirubin levels had a higher incidence of CIN after the use of CM. Higher serum
bilirubin concentrations were associated with a lower risk of CIN and fewer cardiovascular
complications [124,125]. As a result of these observations, the authors concluded that
further studies are needed to identify the exact mechanisms of bilirubin involvement in
the prevention of CIN in clinical practice [125]. The development of interventions that
increase serum bilirubin levels may be a potential target for the prevention and lowering of
CIN [124].

Analysis of the known properties of bilirubin can lead to an understanding of the
importance of bilirubin in protecting against CIN.

Bilirubin is the end product of the metabolism of heme-containing protein
molecules—hemoglobin, myoglobin and some heme-containing enzymes (cytochrome,
catalase, peroxidase). The main supplier of bilirubin is hemoglobin of erythrocytes. Ery-
throcytes undergo destruction intracellularly (in macrophages) [117,118]. Cleavage of
heme to water-soluble biliverdin occurs through the involvement of the heme oxygenase-1
(HO-1) enzyme. Biliverdin is then reduced by biliverdin reductase (BVR) to water-insoluble
bilirubin (Figure 6).

Normally, most of circulating bilirubin is unconjugated and circulates in plasma bound
to albumin. Unconjugated bilirubin is a powerful endogenous serum antioxidant and is
one of the important protective agents against oxidative stress. Lipid peroxidation by free
oxygen radicals is the most important cause of cell membrane damage and cell destruction.
Bilirubin, being a lipophilic molecule, passes through membranes, is incorporated into
cells and organs and protects cell membranes from lipid peroxidation [126–128]. The
antioxidant activity of bilirubin in the vascular endothelium may be a dynamic factor in
endothelial function and determines the physiological redox homeostasis of the vascular
endothelium [129].

It has also been shown that, along with antioxidant ability, bilirubin has other impor-
tant biological properties, which include anti-inflammatory, immunomodulatory, cytopro-
tective and neuroprotective activities [130–134].
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The scheme of bilirubin production from heme-containing molecules is shown in
Figure 6a. Heme-containing molecules (hemoglobin, myoglobin, etc.) under the influence
of heme oxygenase-1 (HO-1) are converted into biliverdin (in parallel with the formation
of Fe2+ and CO). Biliverdin reductase (BVR) reduces biliverdin to bilirubin—a potent
lipophilic ROS scavenger, which effectively protects cells from various oxidative stresses
and regulates the expression of HO-1, another potent antioxidant. In this scheme, the two
cycles of the ROS scavenging system are interplayed. The first cycle is the redox conversion
of biliverdin to bilirubin by BVR with the reverse conversion of bilirubin to biliverdin
probably by lipophilic oxidants (Figure 6b). The second cycle is the induction of HO-1 by
BVR and the degradation of heme to biliverdin, which is again metabolized to bilirubin by
BVR [135]. HO-1 is an inducible enzyme with anti-apoptotic and antioxidant properties.
Its antioxidant ability is due to participation in the production of the biliverdin–bilirubin
system, which scavenges free radicals, and in the decomposition of hydrogen peroxide
in the biliverdin-to-bilirubin conversion process. In the course of bilirubin production,
carbon monoxide is also formed which possesses anti-inflammatory properties [136]. The
products of heme metabolism (Fe2+, biliverdin, bilirubin, CO), the enzymes HO-1 and BVR
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and the pathways for converting biliverdin to bilirubin and vice versa represent a powerful
antioxidant and anti-inflammatory defense system [137].

Given the remarkable antioxidant and anti-inflammatory properties of bilirubin and
the role of inflammation and oxidative stress in the pathogenesis of CIN and atherosclerosis,
it would be interesting to initiate a clinical intervention that could raise serum bilirubin lev-
els, possibly by inducing HO-1, as a potential strategy to prevent CIN [138]. Indeed, biliru-
bin levels are shown to be associated with CIN [124,125,139]. Studies on rats demonstrated
the efficacy of HO-1 inducer (hemin) for CIN mitigation [140]. Along with hemin and
heme-containing molecules, HO-1 can be induced by various other biomolecules [141,142].
Hence, the development of interferences stimulating bilirubin levels by induction of HO-1
may be a potential target to reduce CIN and future adverse outcomes in patients with
coronary intervention. Note that, along with the beneficial effects of HO-1 induction, some
studies indicate that the increased HO-1 expression may lead to the development of several
diseases, such as neurodegeneration and carcinogenesis [143]. Note also that high levels
of total serum bilirubin are toxic (hyperbilirubinemia) [144]. Therefore, more thorough
studies of HO-1 induction consequences in patients with CIN, as well as the appropriate
experimental studies involving animal models, are needed.

4.5. Melatonin

Melatonin (5-methoxy-N-acetyltryptamine) is an endogenous neurohormone (Figure 7).
The production of melatonin is dependent on the light/dark cycle. It is a secretory product
of the pineal gland and epithelial layer of the entire gastrointestinal tract; it has free radical-
scavenging and strong antioxidant properties.
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It protects tissues against oxidative damage induced by various free radical-generating
agents and processes [145]. Melatonin also takes part not only in antioxidative, but in anti-
inflammatory, antiapoptotic and immune processes [146–149]. Melatonin also stimulates
glutathione peroxidase activity which metabolizes the precursor of the hydroxyl radical,
i.e., hydrogen peroxide, to water [150].

Apart from its lipophilic properties, melatonin has some hydrophilic properties [151].
It can diffuse easily into subcellular compartments, thereby providing on-site protection
against free radical-mediated damage and is a protective agent to cells and biomolecules [152].

The melatonin molecule interacts with free radicals to form metabolites that are also
effective as free radical scavengers. Moreover, the antioxidant effects of melatonin are
probably also based on the stimulatory effect on the formation of superoxide dismutase
(SOD), GSH peroxidase, GSH reductase, glucose-6-phosphate dehydrogenase and the
inhibitory effect on the expression of nitric oxide synthase (NOS) [150,152].

Due to the unique properties of melatonin as a powerful endogenous scavenger of free
radicals, as immunomodulator and antioxidant, with anti-inflammatory and anti-apoptotic
properties as well as being non-toxic, melatonin is apparently capable of providing a uni-
versal protective role in organisms and is a promising remedy for ameliorating CIN. From
this viewpoint, melatonin has begun to be studied as a potential remedial agent for CIN.
In experiments on animals (rabbits, rats), melatonin, in combination with hydration, has
been shown to have a protective effect against CIN after exposure to CM [152–154]. It
was shown in a mice model that melatonin mitigates CIN by the activation of Sirtuin-3
(Sirt3), which attenuates tubular epithelial cell apoptosis, oxidative stress and mitochon-
drial dysfunction [146]. Melatonin was shown (in rats) to attenuate oxidative stress, NLRP3
inflammasome and apoptosis induced by CIN [155]. Recently, it was concluded that sup-
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plementation with melatonin can be helpful in almost every type of kidney injury because
inflammation, apoptosis and oxidative stress occur regardless of the mechanism [149].
Thus, the application of melatonin is very promising for the attenuation of CIN. However,
for the successful use of melatonin as a therapeutic agent, the choice of adequate dose is
extremely important. It can no longer be an a priori standard and should depend on the
time of day and the initial endocrine status of the patient. In this regard, a continuation of
experimental studies on the role of preventive melatonin treatment on animal models and
their extension to clinical trials is needed.

4.6. L-Carnitine

L-Carnitine (β-hydroxy-γ-trimethylammonium-n-butyric acid, see Figure 8) plays an
important role in supporting the metabolic activities of organisms.
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In support of energy metabolism, carnitine transports long-chain fatty acids into
mitochondria to be oxidized for free energy production and also participates in removing
the products of metabolism from cells [156–158]. It is biosynthesized mainly in the liver,
kidney and brain from the essential amino acids lysine and methionine [159]. It has been
shown that L-carnitine inhibits free radical generation, preventing the impairment of
fatty acid oxidation in mitochondria and protecting tissues from damage by repairing
oxidized membrane lipids [160,161]. Its antioxidant activity is comparable to that of α-
tocopherol [161].

Many experimental studies have shown that L-carnitine reduces drug-induced nephropathy
via several mechanisms, such as anti-inflammatory effects, antioxidative activity by the
inhibition of ROS generation and lipid peroxidation, inhibition of matrix remodeling and
apoptosis [162,163]. Recent studies showed the efficacy of L-carnitine against CIN in
patients undergoing percutaneous coronary intervention [163–165]. Hence, L-carnitine
can be considered a preventive treatment against CM agents. However, to support this
statement more strongly, further comprehensive well-designed human studies are needed.

4.7. Statins

Statins, also known as 3-hydroxy-3-methylglutarylcoenzyme A reductase inhibitors,
are a potent class of inhibitors of cholesterol biosynthesis and therapy agents for prevention
of cardiovascular diseases. Their multiple effects, such as anti-inflammatory, antioxidant,
antiproliferative and immunomodulatory effects, as well as plaque stability, normalization
of sympathetic outflow and prevention of platelet aggregation are due to reduction in
circulating isoprenoids and hence inactivation of signaling protein diseases [166–168]. The
antioxidative properties of statins play a role in prevention of atherosclerosis [169]. Statins
are also being widely used for the prevention of CIN (see, e.g., [170–173]).

A number of meta-analyses of data available on statin application have been per-
formed [174–177] which show the efficacy of using statins against CIN. The antioxidant
role of statins upon attenuation of CIN, which includes modulation of oxidative stress
and nitric oxide, has been demonstrated on animals [178,179]. However, it was mentioned
in the review [180] that, regarding the efficacy of statins on patients for preventing CIN,
there are also controversial results, most likely due to the marked heterogeneity of patient
characteristics, dosage and administration type of statins, definition of CIN and different
statistical analyses.
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4.8. Probucol

Probucol is an antilipidemic drug initially developed for the treatment of coronary
artery disease (Figure 9).
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It is a lipid-lowering drug with strong anti-lipid peroxidation and anti-inflammatory
properties, i.e., a powerful antioxidant (bisphenol) which inhibits the oxidation of choles-
terol in low-density lipoproteins. It slows the formation of foam cells, which form atheroscle-
rotic plaques. It reduces endogenous nitric oxide synthase inhibitor concentration, im-
proving the renovascular endothelial function. Additionally, it increases the synthesis of
prostacyclins, suppresses the expression of different adhesion molecules and helps prolif-
eration of endothelial cells, preventing their apoptosis due to oxidative injury [181,182].
Probucol is often used in clinical practice to prevent and treat atherosclerosis and diabetic
nephropathy. In addition, some studies have shown that probucol can be used as a prophy-
lactic in developing CI-AKI. [183] The antioxidative stress and anti-inflammatory effects
of probucol may help to prevent the occurrence of CI-AKI in patients older than 18 years
with coronary heart disease undergoing coronary percutaneous intervention [181]. Some
meta-analyses were performed on the efficacy of probucol in the incidence of CIN. In [184],
it was shown that probucol did not reduce the incidence of CIN. However, another meta-
analyses [183,185] showed that probucol with hydration decreased CIN incidence when
compared to hydration in patients undergoing coronary angiography or percutaneous
coronary intervention. It was concluded that more high-quality, large-sample, multicenter
randomized trials are necessary to support this finding.

4.9. MESNA

MESNA (2-mercaptoethane sulfonate, Figure 10) is a medication used to reduce
the incidence of hemorrhagic cystitis and hematuria when a patient receives ifosfamide
or cyclophosphamide for cancer chemotherapy. It is a small molecule containing an
antioxidant SH group that has the potential to scavenge ROS and prevent glutathione
depletion through thiol group formation [186–189]. Experiments in vitro have shown
that the antioxidant MESNA reduces tissue damage caused by free oxygen radicals in
the proximal kidney tubules [190]. Studies with animal models of acute renal failure
have shown that MESNA pretreatment scavenges ROS and diminishes renal injury [191].
Intravenous administration of MESNA by patients before or after administration of a
contrast agent had a protective effect on the kidneys. The studies suggested that MESNA is
able to prevent CIN [190,192]. Further investigations on MESNA application for preventing
CIN are necessary.
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Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a natural polyphenol, possessing an-
tioxidant properties (Figure 11). It occurs in berries, such as redcurrants, cranberries,
lingonberries, etc. [193].
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Resveratrol possesses a wide range of biological properties, among them antioxidant,
cardioprotective, neuroprotective, anti-inflammatory and anticancer activities [194]. Resver-
atrol activity against CIN was studied on a number of model systems. It was shown on
mice that resveratrol attenuated CIN by modulating renal oxidative stress and apopto-
sis through activation of SIRT1-PGC-1α- FoxO1 signaling [195]; it was found on rabbits
that resveratrol reduced renal hypoxia, mitochondrial dysfunction and renal tubular cell
apoptosis by activating SIRT1–PGC–1α–HIF-1α signaling pathways in CIN with diabetic
nephropathy [196]. Using a human renal proximal tubule epithelial cell line (HK-2 cells), it
was shown that resveratrol may prove to be an effective add-on therapy for the prevention
of CIN [197,198]. A rat CIN model showed that resveratrol treatment attenuated both injury
processes and apoptosis and inhibited the inflammasome pathway in CIN [199]. The effects
of resveratrol and lycopene (carotenoid) on CIN in rabbits were studied. It was shown
that both resveratrol and lycopene ameliorated CIN by modulating oxidant/antioxidant
balance in blood/renal tissue and by inhibiting vasoconstriction/blood cytotoxicity [200].
This medication needs further study.

4.11. Carotenoids

Carotenoids are a class of naturally occurring yellow, orange and red pigments syn-
thesized by plants, algae and photosynthetic bacteria. Carotenoids from the diet are stored
in the fatty tissues of animals [201]. Carotenoids possess antioxidant properties: they
are efficient antioxidants scavenging singlet oxygen and peroxyl radicals. In the human
organism, carotenoids are part of the antioxidant defense system [202].

Astaxanthin is a xanthophyll carotenoid (Figure 12) with potent antioxidant and
anti-apoptosis effects demonstrated in both experimental and human studies.
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The antioxidant activity of astaxanthin toward peroxyl radicals in liposomes was
shown to be higher than that of α-tocopherol, β-carotene, lutein and lycopene [203].
Many studies have proven that astaxanthin has a preventive effect on various kidney
diseases [204–206]. The review in [207] summarizes the available evidence demonstrating
that astaxanthin may be of therapeutic value in CIN.

Lycopene is a carotenoid with antioxidant properties (Figure 13) found in tomato and
other red fruits and vegetables [208].
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Lycopene was shown to be protective in oxidation of lipids, proteins and DNA in vivo
and to exhibit protective effects against different nephrotoxic agents [209,210]. Lycopene ex-
hibited anti-inflammatory, antiautophagic and antiapoptotic properties in an experimental
model of CIN in rats [211]. The effects of lycopene and resveratrol on CIN in rabbits were
studied (see above). It was found that both compounds attenuated CIN by modulating oxi-
dant/antioxidant balance in blood/renal tissue and by inhibiting vasoconstriction/blood
cytotoxicity [200].

4.12. Plant Antioxidants

Plant extracts with antioxidant properties have been widely applied as remedies. Some
of them are used for the prevention, relief and treatment of CIN (mostly in animal models).
They are thoroughly considered in the recent reviews [212,213], so below we present only
some representative examples.

4.12.1. Green Tea Extract

Green tea (Camellia sinensis) is a popular herbal remedy worldwide. Polyphenols
in green tea have attracted much attention as potential compounds for the maintenance
of human health due to their biological activities and low toxicities. In recent years, the
remedial effects of green tea on injury caused by oxidative stress have been the focus of
research [214–217]. Green tea has antioxidant and anti-inflammatory properties which are
due to its polyphenolic compounds and flavonols, such as catechins, gallic acid (epigal-
locatechin gallate, epicatechin gallate) and phenolic acids [218]. Studies on Wistar rats
showed the efficacy of green tea extract against CIN [219,220]. The data presented evidence
that green tea has sufficient antioxidant potential to protect tubular renal cells from CIN. In
this regard, extensive experimental and clinical trials are necessary to study this remedy in
more detail.

4.12.2. Grape Seed Proanthocyanidin Extract

Grape seed proanthocyanidin extract (GSPE) is derived from grape seeds. In vivo
and in vitro studies have shown that GSPE has a stronger antioxidant effect than vitamins
C and E [221]. GSPE is a combination of biologically active polyphenolic flavonoids, in-
cluding oligomeric proanthocyanidin, which are found in vegetables, fruits and various
flowers [222]. In addition to its lipid peroxidation, thrombocyte aggregation and capillary
permeability-reducing effects, GSPE also has antibacterial, antiviral and anti-inflammatory
properties. GSPE exhibits these effects by modulating various enzymes, including cyclooxy-
genase and lipoxygenase [222,223]. It has been shown on rats that GSPE effectively prevents
CIN [224]. In preventing CIN, GSPE was shown to be superior to NAC, which may be
due to a decrease in calpain 1 levels [225]. This improvement was associated with the
decrease in oxidative damage and apoptosis. The vasodilator, antiallergic, cardioprotective
and immunomodulator characteristics of GSPE have been shown in various experimental
studies in addition to its ROS scavenging and antioxidant features [222–224]. Further
comprehensive and detailed experimental and clinical studies are needed to investigate the
preventive effects of GSPE on CIN.

4.12.3. Curcumin

Curcumin is a compound produced by plants of the Curcuma longa species. It is
the principal curcuminoid of turmeric and a food additive. Chemically, curcumin is a
diarylheptanoid, belonging to the group of curcuminoids—phenolic pigments responsible
for the yellow color of turmeric (Figure 14).
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The properties of curcumin include antioxidant, anti-inflammatory, antiviral, anti-
fungal and protective effects against chemical toxicities. Curcumin directly exhibited the
antioxidant ability by free radical scavenging and indirectly by inducing an antioxidant
response [226]. The nephroprotective effect of curcumin was evaluated in experimen-
tal models including nephrotoxic drugs, chronic renal failure, diabetic nephropathy and
ischemic nephrotoxicity [227].

It has been found that curcumin can attenuate CIN by upregulating HO-1 expression
(shown in rats) [228]. Furthermore, it increases GSH, superoxide dismutase, catalase and
GSH peroxidase levels [229]. Since curcumin is safe and does not have major toxicity [230],
it has the potential to be used against CIN.

4.13. Novel Antioxidant—Xylose–Pyrogallol Conjugate

Xylose–pyrogallol conjugate (XP; chemical name 1-Deoxy-1,1-bis(2,3,4-trihydroxyphenyl)-
D-xylitol) was synthesized as a new antioxidant exerting a protective effect on CIN through
the regulation of mitochondrial function, oxidative stress and apoptosis [231]. XP was
studied on a CIN model on rats. The study indicated that XP played a nephroprotective role
probably via antiapoptotic and antioxidant mechanisms. Furthermore, XP may regulate
the mitochondrial pathway. It has been concluded that XP as an efficient antioxidant may
have the potential to prevent CIN [231].

4.14. Summary

Qualitative results of clinical trials and research studies of antioxidant remedies used
for prevention and attenuation of CIN are summarized in Table 1.

Table 1. Qualitative results of clinical trials and research studies of antioxidant remedies for preven-
tion and attenuation of CIN.

Antioxidant Results of Using
against CIN Clinical Trials (Studies)

NAC
positive on humans [53–58,60], meta-analyses [59,61,71]

no results on humans [62–67], meta-analyses [68,69,72]

Glutathione no results on humans [78–80]

Vitamin C
positive on humans [96–98], meta-analyses [94,95]

no results on humans [99–104]

Vitamin E
positive on humans, meta-analyses [113,114]

no results on humans [115,116]

Bilirubin/HO-1 positive (expected)
Association of bilirubin level with CIN was

found in [124,125,139]; induction of HO-1 (on
animals) [140]

Melatonin positive on animal models [146,149,152–155]

L-carnitine positive on humans [162–165]

Statins
positive on humans [170–173], meta-analyses [174–177],

on animals [178,179]

controversial on humans [180]

Probucol
positive on humans [181,182], meta-analyses [183,185]

no results on humans, meta-analysis [184]

MESNA positive on humans [190,192]

Resveratrol positive on animal models [195,196], in vitro [197–200]

Astaxanthin positive on animal models [204–207]
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Table 1. Cont.

Antioxidant Results of Using
against CIN Clinical Trials (Studies)

Lycopene positive on animal models [200,209–211]

Green tea extract positive on animal models [219,220]

GSPE positive on animal models [224,225]

Curcumin positive on animal models [228,229]

Xylose-pyrogallol
conjugate positive on animal models [231]

5. Hybrid Contrast/Antioxidant Media as Theranostic Agents

A new approach for obtaining antioxidants for the prevention of CIN is to develop
hybrid contrast/antioxidant complex systems possessing theranostic properties, that is,
being both CM (for diagnostic purposes) and antioxidants (for therapy). Such systems
often have improved contrast properties in comparison with conventional CM (e.g., lower
toxicity) and, along with suppressing CIN, have a rather wide range of therapeutic abilities
(e.g., anti-inflammatory, anti-cancer activities). Some such systems are presented below.

5.1. Gd Complex/Rosmarinic Acid Conjugate

Rosmarinic acid (RosA) is a polyphenol known for its antioxidant and anti-inflammatory
properties [232]. To join in one molecule antioxidant and contrast properties, a conjugate
containing Gd–DOTA complex and RosA was synthesized (Gd–DOTA–RosA) and studied
on mice [233]. This conjugate combined an MRI agent (Gd–DOTA complex) with an antiox-
idant and anti-inflammatory drug (RosA) and enabled the diagnosis of inflamed tissues via
MRI. Its relaxivity is higher than that of Gd-BT-DO3A, and its kinetic stability is similar to
that of structurally related Gd chelates. The antioxidant and anti-inflammatory activities of
this agent exploited the radical-scavenging effects, the inhibition of COX-2 production and
suppression of the proinflammatory cytokine TNF-α [233]. This conjugate is promising as
an anti-inflammatory diagnostic and therapy agent and deserves further investigation.

5.2. Nitroxyl Radicals

Stable nitroxyl radicals demonstrate high biological activities due to their ability to
diminish the effects of oxidative stress. This is, in particular, due to their reaction with
peroxyl radicals, in which nitroxyls act as catalytic radical-trapping antioxidants [234]. The
paramagnetic properties of nitroxyl radicals permit using them also as contrast agents
for MRI. Therefore, nitroxyl radicals, being less toxic than gadolinium and manganese
complexes, can act as both CM for MRI and antioxidants [235]. A significant biomedical
application of nitroxyl radicals is imaging of a redox status (and redox imbalance) in
different tissues, which is important, for example, in cancer diagnostics and treatment [235].

Nitroxyl–drug conjugates can be used for various theranostic applications. In par-
ticular, a nitroxyl-labeled analogue of the conventional anticancer drug Lomustine was
synthesized and used as a low toxic spin label for noninvasive MRI of blood–brain barrier
permeability and a drug for cancer therapeutics [236].

To increase the intensity of MRI signals, multispin molecular systems are synthesized
(with several nitroxyl radical residues in one molecule) [237]. For theranostic purposes,
heparin–polynitroxyl structures were synthesized in which a number of nitroxyl residues
were bound to a heparin macromolecule; their antioxidant and magnetic (electron param-
agnetic resonance (EPR) and MR) properties were studied [238]. Chitosan–polynitroxyl
systems were synthesized and studied as well [239].
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5.3. Theranostic Antioxidant Nanomaterials

At present, nanomaterials are becoming more and more widespread in various biomed-
ical applications (see, e.g., the recent review [240]). A small group of nanomaterials that
can be used as theranostic agents (more detailed consideration was beyond the scope of
this review) is considered below.

5.3.1. Cerium Oxide Nanoparticles

Cerium oxide nanoparticles have attracted interest for their regenerative, multi-
enzymatic scavenging of ROS, possessing unique antioxidant/catalytic properties [241–243].
For theranostic purposes, cerium oxide nanoparticles with fractions of Gd (up to 50%)
have been prepared. In these structures, Gd was incorporated into the crystal structure of
cerium oxide nanoparticles. Such nanoparticles have both properties of a contrast agent in
MRI investigations (due to Gd content) and antioxidant properties (due to Ce) [244]. The
nanoparticles exhibited high T1 relaxivity and the potential to act as scavengers of ROS. The
presence of Ce3+ sites and oxygen vacancies at the surface plays a crucial role in providing
the antioxidant properties [245]. Such nanoparticles, coated with dextran, demonstrated
dose-dependent selective cytotoxicity to cancer cells [246] and have a potential for future
theranostic applications.

Cerium oxide nanoparticles (as such or doped/functionalized) are extensively used in
different theranostic systems [247].

5.3.2. Iron Oxide Nanoparticles

Iron oxide (Fe3O4, magnetite) nanoparticles possess magnetic properties and can be
used as contrast agents in MRI [248]. The ease of functionalization of their surfaces with
different types of biomolecules (antibodies, peptides, sugars, etc.) creates the possibility
of using them for various theranostic applications [249,250]. Magnetite nanoparticles
functionalized with quercetin exhibit antioxidant, anti-inflammatory and antimicrobial
activities [251]. Magnetite nanoparticles were also functionalized with poly(ethylene glycol)
+ D-glucosamine to specifically target breast cancer cells. The nanoparticles exhibited very
slight cytotoxicity on normal human kidney cells [252].

Therefore, functionalized iron oxide nanoparticles have a high potential for the devel-
opment of new theranostic agents. The properties and biomedical applications of magnetic
nanoparticles are summarized in recent reviews [253,254].

5.4. Summary

Table 2 summarizes the types of hybrid contrast/antioxidant media having a potential
for theranostics.

Table 2. Types of hybrid contrast/antioxidant media having a potential for theranostics and their studies.

Hybrid Medium Studies

Gd complex/RosA conjugate in vitro and on animal model (antioxidant and MRI) [233]

Nitroxyl radicals MRI, EPR, redox properties [235,237]

Nitroxyl–Lomustine (anticancer) MRI, blood–brain barrier permeability [236]

Nitroxyl radicals–heparin in vitro and on animal model (antioxidant and MR properties) [238]

Nitroxyl radicals–chitosan in vitro (antioxidant properties, EPR) [239]

Cerium oxide nanoparticles doped with Gd

dynamic light scattering, Zeta potential measurement, X-ray diffraction,
high-resolution transmission electron microscopy, near edge X-ray absorption fine

structure, MRI properties, antioxidant properties in vitro [244,245]
For the nanoparticles coated with dextran—cancer cytotoxicity [246]

Functionalized by quercetin magnetite
nanoparticles

antioxidant and antibacterial properties in vitro, FTIR, Raman, TEM, X-ray
spectroscopies, magnetic properties [251]

Functionalized
by PEG + D(+) glucosamine magnetite

nanoparticles

XRD, VSM, FESEM, and FTIR analyses; MRI properties, particle size, zeta
potential, biodistribution analysis, very slight kidney cytotoxicity [252]
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6. Discussion

Considering the large amount of research and clinical data on the use of antioxidants
for the prevention or reduction in contrast-induced injuries (mostly CIN), one can notice
the controversial character of some of these data, which is emphasized in a number of
reviews and meta-analyses (see, e.g., [11,19]). For example, although NAC began to be
used as a remedy against CIN more than 20 years ago, the different meta-analyses of
clinical applications of NAC against CIN exhibited controversial results (see Table 1). The
same situation is observed for vitamins C and E and statins (Table 1). In spite of the high
antioxidant activity of glutathione, the use of GSH for the prevention of CIN in elderly
patients did not yield distinct (positive) results [79,80] (see also Table 1). Some researchers
do not recommend the use of antioxidants to prevent CIN but recommend the use of
hydration instead [17]. This may be due to some shortcomings in the statistical processing
of the results. But more likely, it could be the complex nature of the diseases in patients
(especially elderly), who, along with the main disease, often have a whole gamut of other
diseases. Therefore, the improvement of CIN after administration of an antioxidant drug
may not be seen against the background of other diseases. In addition, for an effective
action against CIN, a drug, along with an antioxidant, should also have a range of other
properties: anti-inflammatory, antiapoptotic and immunomodulatory; this may not always
be the case. Furthermore, the mode of administration (oral or intravenous), doses, timing
(before taking CM or with CM) and frequency of drug administration (single or multiple)
are also important for the effective action of the drug. All these factors should be considered
and require comprehensive research for the efficient use of known and the development of
new drugs against CIN.

Along with the external administration of antioxidants (both exogenous and endoge-
nous), which does not always yield the expected effect, it is important to pay more attention
to the stimulation (induction) of internal endogenous antioxidants in the patient with CIN.
Such endogenous antioxidants, in particular, include bilirubin. It has been noticed that
higher serum bilirubin levels corresponded to a lower risk of CIN and fewer cardiovascular
complications [124,125]. As considered before, the “heme–biliverdin–bilirubin” series in-
volving the enzyme HO-1 can serve as an effective antioxidant system protecting from CIN.
Hence, stimulation of bilirubin levels by induction of HO-1 may lead to reducing CIN. Since
there are a large number of HO-1 inducers (including naturally derived ones) [141,142],
induction of HO-1 may be a promising method for combating CIN and deserves detailed
study. However, it is necessary to consider that very increased HO-1 expression may lead
to the development of serious diseases [143] and that total serum bilirubin at high levels is
toxic [144].

Apart from the use of individual antioxidants against CIN, it is promising to create
universal systems that combine antioxidant and contrast properties, which can be used both
for the diagnosis of diseases and for their therapy (theranostics). Especially promising is
the use of nanomaterials, which are now becoming more widespread. In particular, recently
created novel CM based on DND particles with grafted paramagnetic metal cations [31–34],
the use of cerium oxide nanoparticles doped with Gd [244–246] or the creation of magnetic
nanoparticles (magnetite and others) functionalized with antioxidant ligands [249–252] for
the purposes of MRI and therapy can give a new impetus to the development of novel
contrast and theranostic systems.

7. Conclusions

Experimental and clinical studies have shown that ROS play a crucial role in the
pathogenesis of CIN. The controversial character of some of the research and clinical data
on the use of antioxidants for the prevention or reduction of CIN could be due to the
complex nature of the diseases in patients, who usually experience other diseases along
with the main disease. Furthermore, a drug effective against CIN, along with antioxidant
ability, should also have other important properties: anti-inflammatory, antiapoptotic and
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immunomodulatory. All these factors, together with some others, should be considered for
the effective use of known and the development of new drugs against CIN.

Promising is the stimulation of internal endogenous antioxidant systems in patients
with CIN, in particular, the “heme–biliverdin–bilirubin” series involving the enzyme HO-1,
which may be a potent method for combating CIN and needs further research.

Also promising is the creation of universal systems that combine antioxidant and
contrast properties which can be used in theranostics. Especially potent is the use of
nanomaterials as contrast and theranostic agents. In particular, recently created novel
CM based on DND particles with grafted paramagnetic cations, the use of cerium oxide
nanoparticles doped with Gd or the creation of magnetic nanoparticles functionalized with
antioxidant ligands can provide a new stimulus to the development of novel contrast and
theranostic systems.
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renal damage. East. J. Med. 1998, 3, 48–50.

146. Zhang, C.; Suo, M.; Liu, L.; Qi, Y.; Zhang, C.; Xie, L.; Zheng, X.; Ma, C.; Li, J.; Yang, J.; et al. Melatonin alleviates contrast-induced
acute kidney injury by activation of Sirt3. Oxid. Med. Cell. Longev. 2021, 2021, 6668887. [CrossRef]

147. Reiter, R.J.; Tan, D.X.; Gitto, E.; Sainz, R.M.; Mayo, J.C.; Leon, J.; Manchester, L.C.; Vijayalaxmi, A.; Kilic, E.; Kilic, Ü. Pharmacolog-
ical utility of melatonin in reducing oxidative cellular and molecular damage. Pol. J. Pharmacol. 2004, 56, 159–170.

148. Bocheva, G.; Slominski, R.M.; Janjetovic, Z.; Kim, T.K.; Böhm, M.; Steinbrink, K.; Reiter, R.J.; Kleszczyński, K.; Slominski, A.T.
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