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Abstract: Bevacizumab (Avastin) is a vascular endothelial growth factor (VEGF) inhibitor that is
widely used for aggressive posterior retinopathy of prematurity (APROP). Its use is associated with
multiple adverse effects. Aflibercept (Eylea) is a VEGFR-1 analogue that is approved for ocular use,
but its efficacy for APROP is less studied. We tested the hypothesis that Eylea is as effective as Avastin
for suppression of intermittent hypoxia (IH)-induced angiogenesis. Human retinal microvascular
endothelial cells (HRECs) were treated with Avastin and low- or high-dose Eylea and exposed to
normoxia, hyperoxia (50% O2), or neonatal IH for 24, 48, or 72 h. Cells were assessed for migration
and tube formation capacities, as well as biomarkers of angiogenesis and oxidative stress. Both doses
of Eylea suppressed migration and tube formation in all oxygen environments, although the effect
was not as robust as Avastin. Furthermore, the lower dose of Eylea appeared to be more effective than
the higher dose. Eylea induced soluble VEGFR-1 (sVEGFR-1) coincident with high IGF-I levels and
decreased Notch/Jagged-1, demonstrating a functional association. Given the role of VEGFR-1 and
Notch as guidance cues for vascular sprouting, these data suggest that Eylea may promote normal
vascular patterning in a dose-dependent manner.

Keywords: angiogenesis; antioxidants; human retinal microvascular endothelial cells; intermittent
hypoxia; Notch signaling; VEGF signaling; Notch

1. Introduction

Vascular endothelial growth factor (VEGF) is a potent endothelial cell mitogen that
plays a major role in normal and pathological angiogenesis. To mediate its actions, VEGF
signals to tyrosine kinase receptors, namely VEGFR-1 and VEGFR-2, which are primarily
expressed in endothelial cells [1], to promote angiogenesis. VEGF also signals to two other
receptors, VEGFR-3 and neuropilin (NP), which are mainly expressed in lymphatic vessels
and neuronal cells, respectively [2]. While VEGF has the highest affinity for binding to
VEGFR-1, VEGFR-2 is the primary receptor that mediates VEGF action during angiogene-
sis [3,4]. NP acts as a co-receptor for VEGFR-2 to enhance the angiogenic potency of the
VEGF [5]. VEGF is highly induced by hypoxia, and its angiogenic activities are rapidly
initiated in response to tissue oxygen deficiency [6]. High levels of VEGF are associated
with hypoxia and a high vascular density seen in tumors and retinopathy. VEGF is a
vascular permeability factor; therefore, newly formed blood vessels within the hypoxic
region are inherently leaky, a feature that likely enhances tumor metastasis [7] and retinal
vascular overgrowth.

Anti-VEGF drugs are used off-label for the treatment of ocular diseases such as mac-
ular degeneration and diabetic retinopathy in adults and, more recently, retinopathy of
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prematurity (ROP) in extremely low gestational age neonates (ELGANs). Bevacizumab
(Avastin) is the first anti-VEGF to be approved by the United States Food and Drug Admin-
istration (FDA) for cancer treatment [8]. It is a recombinant humanized antibody that binds
all forms of VEGF-A. While Avastin is not approved by the FDA for any ocular indication,
it was the first anti-VEGF drug to be used off-label for the treatment of aggressive posterior
ROP (APROP) in 2007 [9] and is now the most widely used drug for the treatment of
APROP [10,11]. The use of Avastin in ELGANs is associated with numerous adverse effects,
including vitreous or pre-retinal hemorrhage [12], delayed bilateral retinal detachments
at 1 month post-treatment [13], and retinal detachment [14]. Safety studies demonstrated
numerous acute and latent retinal adverse effects [15–22]. These adverse effects may be
associated with prolonged serum concentrations of Avastin concurrent with suppressed
systemic VEGF levels lasting up to 60 days post intravitreal administration [23–27]. A
more recent report showed that intravitreal Avastin was associated with a greater risk
for neurodevelopmental impairment [28], confirming its ability to leak into the systemic
circulation. These reports underscore the need for an alternative therapy that is as effective
but with fewer adverse outcomes. Aflibercept (Eylea), a human-soluble VEGF receptor
that acts as a decoy to trap VEGF, was approved for ocular use by the FDA in 2011. Eylea
consists of portions of human VEGF receptor-1 (VEGFR-1) and VEGFR-2 and also binds
all the VEGF isoforms [29,30]. While Eylea is not generally used in ELGANs for ROP, two
clinical trials demonstrated its potential benefits [31,32], and multi-center trials are ongoing.

ROP is a leading cause of childhood blindness [33]. New insights on the mechanism(s)
of ROP demonstrate a direct correlation between the frequency of intermittent hypoxia
(IH) and its severity [34,35]. Therefore, we tested the hypothesis that Eylea is as effective
as Avastin for suppression of IH-induced angiogenesis in human retinal microvascular
endothelial cells (HRECs). Our hypothesis was tested to compare (1) the effects of Avastin
and Eylea on the tube formation capacity of primary human retinal microvascular endothe-
lial cells (HRECs) exposed to normoxia, hyperoxia, and neonatal IH; (2) the suppressive
action of Avastin and Eylea on biomarkers of angiogenesis, oxidative stress, and lipid
peroxidation; and (3) the dose–response effect of Eylea on tube formation, and biomark-
ers of angiogenesis. The primary outcome was endothelial cell function as evidenced by
tube formation capacity, and the secondary outcomes were the pharmacodynamic effects,
including biomarkers of angiogenesis, oxidative stress, and lipid peroxidation.

2. Results
2.1. Effects on Tube Formation Capacity

The tube formation assay is widely used in in-vitro experiments to evaluate angio-
genesis and the ability of vascular endothelial cells to form tubular structures. The tube
formation capacity of the HRECs after 72 h is presented in Figure 1. Groups A through D
are cells exposed to Nx and treated with saline (A), Avastin (B), low-dose Eylea (Lo-Eylea)
(C), or high-dose Eylea (Hi-Eylea) (D). Groups E through H are cells exposed to Hx, and
groups I through L are cells exposed to IH. Saline controls exposed to Nx showed normal
tube formation capacities. The HRECs underwent proliferation, migration, and differen-
tiation into networks of branching polygons and anastomosis of tubes forming a central
vacuole (Figure 1A). Cells exposed to Avastin in Nx displayed thicker polygons, more
branching points, and smaller vacuoles (Figure 1B). Both doses of Eylea in Nx suppressed
migration and tube formation capacities of HRECs (Figure 1C,D). Exposure to Hx resulted
in fewer branching points and polygons in the saline controls and Avastin-treated groups
(Figure 1E,F). In contrast, Eylea treatment in Hx resulted in more polygons compared to RA
but with larger vacuoles (Figure 1G,H). Neonatal IH resulted in significantly more poly-
gons in the saline controls (Figure 1I). Treatment with Avastin suppressed the formation
of tubes but not cell migration (Figure 1J), while the effects of Eylea treatment in IH on
tube formation did not differ significantly from those in Hx, although significantly fewer
tubes were formed compared to saline controls (Figure 1K,L). Quantitative image analysis
is presented in Table 1.



Pharmaceuticals 2023, 16, 939 3 of 21

Pharmaceuticals 2023, 15, x FOR PEER REVIEW 3 of 22 
 

 

resulted in significantly more polygons in the saline controls (Figure 1I). Treatment with 
Avastin suppressed the formation of tubes but not cell migration (Figure 1J), while the 
effects of Eylea treatment in IH on tube formation did not differ significantly from those 
in Hx, although significantly fewer tubes were formed compared to saline controls (Figure 
1K,L). Quantitative image analysis is presented in Table 1. 

Table 1. Morphometric Analysis of Cell Tube Formation Capacity at 72 h Post Treatment. 

Groups Number Tubes 
Tube Length 
(μm) 

Number 
Branching 
Points 

Thickness of 
Tube Sides 
(μm) 

Central Vacuole 
Diameter (μm2) 

Central Vacuole 
Perimeter (μm) 

Nx: 
Saline 50.3 ± 0.13 222.7 ± 0.33 47.0 ± 0.1 26.0 ± 0.14 40,742.8 ± 6.2 794.6 ± 0.59 
Avastin 55.6 ± 0.55 ** 200.3 ± 0.43 ** 58.9 ± 0.3 ** 45.1 ± 0.22 ** 20,156.9 ± 10.3 ** 556.3 ± 1.2 ** 
Lo-Eylea 10.0 ± 0.1 ** 126.3 ± 0.3 ** 29.0 ± 0.5 ** 11.5 ± 0.07 ** 23,213.7 ± 4.7 ** 645.3 ± 0.56 ** 
Hi-Eylea 31.0 ± 0.2 ** 181.9 ± 0.32 ** 28.0 ± 0.2 ** 20.5 ± 0.13 ** 51,106.8 ± 8.2 ** 882.9 ± 0.73 ** 
50% O2: 
Saline 13.0 ± 0.1 ## 132.1 ± 0.29 ## 30.0 ± 0.3 ## 7.9 ± 0.05 ## 15,422.7 ± 4.6 ## 492.3 ± 0.56 ## 
Avastin 12.0 ± 0.1 **## 118.3 ± 0.28 **## 37.8 ± 0.6 **## 9.2 ± 0.07 **## 25,789.8 ± 4.9 **## 641.2 ± 0.54 **## 
Lo-Eylea 11.0 ± 0.2 **## 215.2 ± 0.42 **## 24.4 ± 0.1 **## 26.4 ± 0.16 **## 69,664.4 ± 9.5 **## 1073.6 ± 0.78 **## 
Hi-Eylea 32.0 ± 0.15 **## 213.9 ± 0.37 **## 43.3 ± 0.6 **## 29.0 ± 0.17 **## 55,495.1 ± 7.3 **## 959.6 ± 0.66 **## 
Neonatal IH: 
Saline 75.9 ± 0.35 ## 149.8 ± 0.29 ## 83.2 ± 0.9 ## 16.2 ± 0.12 ## 35,960.2 ± 6.2 ## 755.9 ± 0.6 
Avastin 0 ± 0 **## 0 ± 0 **## 0 ± 0 **## 0 ± 0 **## 0 ± 0 **## 0 ± 0 **## 
Lo-Eylea 10.0 ± 0.1 ** 223.8 ± 0.43 **## 20.3 ± 0.1 **## 36.7 ± 0.25 **## 915,28.4 ± 10.1 **## 1210.1 ± 0.82 **## 
Hi-Eylea 31.0 ± 0.3 ** 145.2 ± 0.21 **## 62.3 ± 0.4 **## 15.9 ± 0.08 ## 32,956.5 ± 7.5 **## 699.0 ± 0.76 **## 

Data are mean ± SEM (n = 24 wells per group). Nx (normoxia); IH (intermittent hypoxia); Lo-Eylea 
(low-dose Eylea); Hi-Eylea (high-dose Eylea). Data were analyzed using two-way ANOVA. ** p < 
0.01 vs. Saline treatment within each oxygen environment; ## p < 0.01 vs. corresponding 
treatments in RA. 

 

I J K L 

E F G H 

A B C D 

Figure 1. Effect of Avastin and Eylea on migration and tube formation capacities of human retinal
endothelial cells exposed to normoxia (Nx, panels (A–D)), Hx (50% O2, panels (E–H)) or neonatal
intermittent hypoxia (IH, panels (I–L)). Images were captured at 4× magnification. Scale bar is 200 µm.

Table 1. Morphometric Analysis of Cell Tube Formation Capacity at 72 h Post Treatment.

Groups Number Tubes Tube Length (µm) Number
Branching Points

Thickness of
Tube Sides (µm)

Central Vacuole
Diameter (µm2)

Central Vacuole
Perimeter (µm)

Nx:

Saline 50.3 ± 0.13 222.7 ± 0.33 47.0 ± 0.1 26.0 ± 0.14 40,742.8 ± 6.2 794.6 ± 0.59
Avastin 55.6 ± 0.55 ** 200.3 ± 0.43 ** 58.9 ± 0.3 ** 45.1 ± 0.22 ** 20,156.9 ± 10.3 ** 556.3 ± 1.2 **
Lo-Eylea 10.0 ± 0.1 ** 126.3 ± 0.3 ** 29.0 ± 0.5 ** 11.5 ± 0.07 ** 23,213.7 ± 4.7 ** 645.3 ± 0.56 **
Hi-Eylea 31.0 ± 0.2 ** 181.9 ± 0.32 ** 28.0 ± 0.2 ** 20.5 ± 0.13 ** 51,106.8 ± 8.2 ** 882.9 ± 0.73 **

50% O2:

Saline 13.0 ± 0.1 ## 132.1 ± 0.29 ## 30.0 ± 0.3 ## 7.9 ± 0.05 ## 15,422.7 ± 4.6 ## 492.3 ± 0.56 ##
Avastin 12.0 ± 0.1 **## 118.3 ± 0.28 **## 37.8 ± 0.6 **## 9.2 ± 0.07 **## 25,789.8 ± 4.9 **## 641.2 ± 0.54 **##
Lo-Eylea 11.0 ± 0.2 **## 215.2 ± 0.42 **## 24.4 ± 0.1 **## 26.4 ± 0.16 **## 69,664.4 ± 9.5 **## 1073.6 ± 0.78 **##
Hi-Eylea 32.0 ± 0.15 **## 213.9 ± 0.37 **## 43.3 ± 0.6 **## 29.0 ± 0.17 **## 55,495.1 ± 7.3 **## 959.6 ± 0.66 **##

Neonatal IH:

Saline 75.9 ± 0.35 ## 149.8 ± 0.29 ## 83.2 ± 0.9 ## 16.2 ± 0.12 ## 35,960.2 ± 6.2 ## 755.9 ± 0.6
Avastin 0 ± 0 **## 0 ± 0 **## 0 ± 0 **## 0 ± 0 **## 0 ± 0 **## 0 ± 0 **##
Lo-Eylea 10.0 ± 0.1 ** 223.8 ± 0.43 **## 20.3 ± 0.1 **## 36.7 ± 0.25 **## 915,28.4 ± 10.1 **## 1210.1 ± 0.82 **##
Hi-Eylea 31.0 ± 0.3 ** 145.2 ± 0.21 **## 62.3 ± 0.4 **## 15.9 ± 0.08 ## 32,956.5 ± 7.5 **## 699.0 ± 0.76 **##

Data are mean ± SEM (n = 24 wells per group). Nx (normoxia); IH (intermittent hypoxia); Lo-Eylea (low-dose
Eylea); Hi-Eylea (high-dose Eylea). Data were analyzed using two-way ANOVA. ** p < 0.01 vs. Saline treatment
within each oxygen environment; ## p < 0.01 vs. corresponding treatments in RA.

2.2. Effect on VEGF and sVEGFR-1 Media Levels

VEGF levels in the media at 24 h, 48 h, and 72 h post-treatment are presented in
Figure 2. Cells exposed to normoxia are represented by the white bar; cells exposed to
hyperoxia (50% O2) are represented by the lined bar; and cells exposed to neonatal IH
are represented by the black bar. Treatment groups are listed on the x-axis. At 24 h, there
was no substantive difference between the media VEGF levels from the saline controls
and Avastin-treated groups, except for the groups exposed to IH, which had lower media
VEGF levels. In contrast, media VEGF levels were low to undetectable in the groups
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treated with both Eylea doses in all oxygen conditions (Figure 2A). These similar responses
persisted at 48 h (Figure 2B) and 72 h (Figure 2C). At 72 h, there was an overall increase in
media VEGF levels in the saline and Avastin groups. Levels of sVEGFR-1 in the media are
presented in Figure 3. Soluble VEGFR-1 is a splice variant of the membrane type VEGFR-1
that acts as a VEGF trap. It binds VEGF and reduces VEGF signaling to its membrane
receptor, and thereby functions as an anti-angiogenic factor. Since Eylea is a fusion protein
of human VEGFR-1 and VEGFR-2, levels in the media were notably higher than Avastin,
as expected, in a dose-dependent manner, in all oxygen environments. Eylea increased
sVEGFR-1 in a dose-dependent manner. At 72 h, IH exposure caused a significant elevation
in sVEGFR-1 levels in the saline controls and Avastin groups (Figure 3C). The media levels
of sVEGFR-1 with Eylea treatment remained consistently higher at all time points. This
surge in sVEGFR-1 in the saline and Avastin groups may be due to increased cell numbers
over time.
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Figure 2. Effect of Avastin and Eylea on VEGF levels in the media of human retinal endothelial
cells exposed to normoxia (Nx), Hyperoxia (Hx, 50% O2,), or intermittent hypoxia (IH) at 24 (A),
48 (B), and 72 (C) hours. Levels were normalized by cell number. Data are presented as mean ± SEM
(n = 8 samples/group).

2.3. Effect on IGF-I Media Levels

IGF-1 is a permissive factor for VEGF, and low levels have been shown to be associated
with the development of ROP [33]. Media levels of IGF-1 at 24 h, 48 h, and 72 h are
presented in Figure 4. At 24 h, media levels of IGF-I were higher in the saline controls
exposed to hyperoxia and neonatal IH. Similarly, media IGF-I levels increased in the
Avastin-treated group exposed to IH and in all Eylea-treated groups regardless of oxygen
exposure (Figure 4A). At 48 h, there was a latent increase in IGF-I levels in the Avastin-
treated group exposed to hyperoxia, while IGF-I media remained consistently higher with
Avastin treatment in IH, as did groups treated with Eylea (Figure 4B). At 72 h, media IGF-I
levels remained elevated only in the group treated with Avastin in IH and in all Eylea-
treated groups (Figure 4C). The effect of Eylea on IGF-1 corresponded with sVEGFR-1,
suggesting a functional link that may be associated with cell proliferation.
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and 72 (C) hours. Levels were normalized by cell number. Data are presented as mean ± SEM
(n = 8 samples/group).

2.4. Effect on GSH/GSSG

The GSH/GSSG ratio is a reliable marker for redox status [36]. Randomized control
blinded studies show that reduced-oxidized glutathione ratio (GSH/GSSH) was signif-
icantly lower in asphyxiated infants receiving oxygen therapy [37]. Figure 5 shows the
levels of total GSH, oxidized and reduced GSH, and GSH/GSSG ratios. GSH/GSSG ratios
were elevated in the saline group exposed to hyperoxia. Avastin induced GSH/GSSG ratios
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in neonatal IH, while both doses of Eylea suppressed GSH/GSSG ratios in hyperoxia and
neonatal IH. This was correlated with the induction of lipid peroxidation.
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Figure 5. Effect of Avastin and Eylea on total GSH (A), oxidized GSH (B), reduced GSH (C), and 
GSH/GSSG ratios (D) in the media of human retinal endothelial cells exposed to normoxia (Nx), 
Hyperoxia (Hx, 50% O2,), or intermittent hypoxia (IH) at 72 h. Levels were normalized by cell 
number. Data are presented as mean ± SEM (n = 8 samples/group). 
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Figure 5. Effect of Avastin and Eylea on total GSH (A), oxidized GSH (B), reduced GSH (C), and
GSH/GSSG ratios (D) in the media of human retinal endothelial cells exposed to normoxia (Nx),
Hyperoxia (Hx, 50% O2,), or intermittent hypoxia (IH) at 72 h. Levels were normalized by cell number.
Data are presented as mean ± SEM (n = 8 samples/group).

2.5. Effect on HIF1α

HIF1α immunoreactivity in the HRECs at 72 h is presented in Figure 6. In the saline
controls, HIF1α decreased in hyperoxia (Figure 6E) and increased in IH (Figure 6I). Avastin
treatment caused a reduction in HIF1α in all oxygen environments (Figure 6B,F,J). Expo-
sure to Hi-Eylea in Nx caused an increased expression of HIF1α in HRECs (Figure 6D)
compared to Lo-Eylea (Figure 6C). Overall, an increased number of cells were noted with
Avastin compared to Eylea, which appeared smaller in size. Quantitative image analysis is
presented in Table 2.

Table 2. Quantitative Analysis of Immunofluorescence Stains at 72 h Post Treatment.

Groups HIF1α VEGF-A VEGFR-1 VEGFR-2 Notch-1 Notch-4 DLL-4 Jagged-1 Lipid Peroxidation

Nx:

Saline 276.3 ± 0.5 591.8 ± 0.7 160.7 ± 0.5 371.0 ± 0.2 184.0 ± 0.5 211.7 ± 0.5 419.0 ± 0.3 657.7 ± 0.7 126.6 ± 0.2
Avastin 243.0 ± 0.4 ** 449.5 ± 0.5 ** 145.0 ± 0.7 ** 106.0 ± 0.4 ** 400.0 ± 0.2 ** 253.3 ± 0.3 ** 104.5 ± 0.3 ** 270.0 ± 0.5 ** 158.2 ± 0.3 **

Lo-Eylea 171.3 ± 0.4 ** 440.7 ± 0.5 ** 223.7 ± 0.5 ** 267.3 ± 0.4 ** 330.3 ± 0.5 ** 133.0 ± 0.7 ** 484.7 ± 1.0 ** 495.3 ± 0.6 ** 167.7 ± 0.3 **
Hi-Eylea 290.7 ± 0.1 ** 369.3 ± 0.5 ** 245.0 ± 0.7 ** 322.0 ± 0.5 ** 428.3 ± 0.7 ** 122.3 ± 0.3 ** 327.8 ± 0.7 ** 459.0 ± 1.1 ** 185.6 ± 0.2 **

50% O2 :

Saline 232.3 ± 0.2 196.3 ± 0.3 392.3 ± 0.4 145.3 ± 0.1 167.7 ± 0.9 166.7 ± 0.2 252.3 ± 0.3 351.7 ± 0.6 132.6 ± 0.2
Avastin 109.3 ± 0.4 ** 146.3 ± 0.3 ** 144.0 ± 0.5 ** 97.7 ± 0.3 ** 466.0 ± 0.4 ** 491.7 ± 0.4 ** 202.0 ± 0.3 ** 233.3 ± 0.5 ** 192.5 ± 0.3 **

Lo-Eylea 184.0 ± 0.2 ** 170.7 ± 0.2 ** 147.3 ± 0.2 ** 201.3 ± 0.4 ** 166.3 ± 0.3 ** 154.3 ± 0.2 ** 305.0 ± 0.6 *# 376.7 ± 0.3 ** 247.0 ± 0.2 **
Hi-Eylea 181.3 ± 03 ** 219.7 ± 0.5 ** 154.0 ± 0.3 ** 197.7 ± 0.4 ** 208.7 ± 0.4 ** 182.0 ± 0.2 ** 328.3 ± 0.4 ** 352.3 ± 0.5 ** 325.0 ± 0.5 **
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Table 2. Cont.

Groups HIF1α VEGF-A VEGFR-1 VEGFR-2 Notch-1 Notch-4 DLL-4 Jagged-1 Lipid Peroxidation

Neonatal IH:

Saline 528.0 ± 0.6 661.3 ± 0.6 676.0 ± 0.6 958.7 ± 1.0 211.3 ± 1.1 237.3 ± 0.6 563.0 ± 0.7 490.3 ± 0.4 230.0 ± 0.2
Avastin 282.0 ± 0.1 ** 363.5 ± 0.3 ** 165.5 ± 0.3 ** 102.5 ± 0.2 ** 384.5 ± 0.2 ** 404.0 ± 0.4 ** 528.5 ± 0.6 ** 451.0 ± 0.3 ** 201.5 ± 0.2 **

Lo-Eylea 251.3 ± 0.3 ** 282.7 ± 0.5 ** 127.3 ± 0.2 ** 312.7 ± 0.5 ** 365.3 ± 0.7 ** 265.0 ± 0.4 ** 590.7 ± 0.8 ** 326.3 ± 0.5 293.0 ± 0.2 **
Hi-Eylea 164.0 ± 0.2 ** 332.0 ± 0.2 ** 154.7 ± 0.2 ** 275.7 ± 0.3 ** 319.3 ± 0.3 ** 183.0 ± 0.4 ** 499.3 ± 0.5 ** 389.7 ± 0.3 ** 400.8 ± 0.5 **

Data are mean ± SEM (n = 8 measurements per group). Nx (normoxia); IH (intermittent hypoxia); Lo-Eylea
(low-dose Eylea); Hi-Eylea (high-dose Eylea). Data were analyzed using two-way ANOVA. * p < 0.05; ** p < 0.01
vs. Saline treatment within each oxygen environment. # p < 0.05 vs. Lo-Eylea RA. All groups differed significantly
from their RA counterparts (p < 0.01).
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Figure 6. Effect of Avastin and Eylea on HIF1α immunoreactivity in human retinal endothelial cells 
exposed to normoxia (panels (A–D)), hyperoxia (50% O2, panels (E–H)), or intermittent hypoxia 
(panels (I–L)). HIF1α was determined using immunofluorescence staining (red), counterstained with 
DAPI (blue). Images were captured at 20× magnification. Scale bar is 100 µm. 
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Hx and neonatal IH, Avastin was most effective for the suppression of VEGF (Figure 7F 
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controls, VEGFR-1 was not appreciably expressed (Figure 8A) and was induced with Hx 
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Figure 6. Effect of Avastin and Eylea on HIF1α immunoreactivity in human retinal endothelial cells
exposed to normoxia (panels (A–D)), hyperoxia (50% O2, panels (E–H)), or intermittent hypoxia
(panels (I–L)). HIF1α was determined using immunofluorescence staining (red), counterstained with
DAPI (blue). Images were captured at 20× magnification. Scale bar is 100 µm.

2.6. Effect on VEGF Signaling

VEGF-A immunoreactivity at 72 h is presented in Figure 7. Of the RA groups, Hi-Eylea
resulted in the least expression of VEGF-A (Figure 7D). Of the groups exposed to Hx and
neonatal IH, Avastin was most effective for the suppression of VEGF (Figure 7F and 7J, re-
spectively). VEGFR-1 expression is presented in Figure 8. In the saline RA controls, VEGFR-
1 was not appreciably expressed (Figure 8A) and was induced with Hx (Figure 8E) and
IH (Figure 8I). Compared to Eylea, Avastin suppressed VEGFR-1 expression in all oxygen
conditions (Figure 8A,F,J). Both doses of Eylea decreased VEGFR-1 in Hx (Figure 8H) and
IH (Figure 8L) compared to RA (Figure 8D). VEGFR-2 expression is presented in Figure 9.
VEGFR-2 expression declined in the saline controls exposed to hyperoxia (Figure 9E)
and increased in IH (Figure 9I). VEGFR-2 was mildly expressed with Avastin treatment
(Figure 9B,F,J) but not with Eylea. Similar response patterns were noted for VEGFR-3 and
Neuropilin-1 (to reduce the number of images, the data are not shown for VEGFR-3 and
Neuropilin-1 due to similarities, or non-significant effects). Quantitative image analysis is
presented in Table 2.
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Figure 7. Effect of Avastin and Eylea on VEGF-A immunoreactivity in human retinal endothelial
cells exposed to normoxia (panels (A–D)), hyperoxia (50% O2, panels (E–H)), or intermittent hypoxia
(panels (I–L)). VEGF-A was determined using immunofluorescence staining (red), counterstained
with DAPI (blue). Images were captured at 20× magnification. Scale bar is 100 µm.
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Figure 8. Effect of Avastin and Eylea on VEGFR-1 immunoreactivity in human retinal endothelial
cells exposed to normoxia (panels (A–D)), hyperoxia (50% O2, panels (E–H)), or intermittent hypoxia
(panels (I–L)). VEGFR-1 was determined using immunofluorescence staining (red), counterstained
with DAPI (blue). Images were captured at 20× magnification. Scale bar is 100 µm.
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Figure 9. Effect of Avastin and Eylea on VEGFR-2 immunoreactivity in human retinal endothelial
cells exposed to normoxia (panels (A–D)), hyperoxia (50% O2, panels (E–H)), or intermittent hypoxia
(panels (I–L)). VEGFR-2 was determined using immunofluorescence staining (red), counterstained
with DAPI (blue). Images were captured at 20× magnification. Scale bar is 100 µm.

2.7. Effect on Notch Signaling

Notch signaling (Notch-1, Notch-2, DLL-4, and Jagged-1) at 72 h is presented in
Figures 10–13. Avastin induced Notch-1 similarly in all oxygen conditions. Both doses of
Eylea similarly induced Notch-1 in the cells but to a lesser degree than Avastin (Figure 10).
Notch-4 is presented in Figure 11. In RA, both doses of Eylea suppressed Notch-4 to a
similar degree (Figure 11C,D). In Hx and IH, Notch-4 was decreased in the saline con-
trols (Figures 11E and 11I, respectively) and induced with Avastin (Figures 11F and 11J,
respectively). Notch-4 was increased with Hi-Elyea in Hx and with both doses in IH
(Figure 11K,L). DLL-4 expression is presented in Figure 12. DLL-4 was highly expressed
in the RA saline controls (Figure 12A). Expression levels declined with Hx exposure
(Figure 12E) and resumed with IH (Figure 12I). Treatment with Avastin in RA suppressed
DLL-4 (Figure 12B), but the levels increased in Hx (Figure 12F) and IH (Figure 12J). Com-
pared to Avastin, Eylea treatment did not alter the expression of DLL-4, except for the low
dose in Hx. The jagged-1 expression is presented in Figure 13. Jagged-1 was highly ex-
pressed in the RA saline controls (Figure 13A), but its expression declined in Hx (Figure 13E)
and IH (Figure 13I). Avastin treatment in RA (Figure 13B) and Hx (Figure 13F) suppressed
Jagged-1 compared to controls, but exposure to IH reversed the effect (Figure 13J). There
were no major differences in the levels of expression of Jagged-1 among the groups treated
with Eylea. Quantitative image analysis is presented in Table 2.
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Figure 10. Effect of Avastin and Eylea on Notch-1 immunoreactivity in human retinal endothelial 
cells exposed to normoxia (panels (A–D)), hyperoxia (50% O2, panels (E–H)), or intermittent hypoxia 
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(blue). Images were captured at 20× magnification. Scale bar is 100 µm. 
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Figure 10. Effect of Avastin and Eylea on Notch-1 immunoreactivity in human retinal endothelial
cells exposed to normoxia (panels (A–D)), hyperoxia (50% O2, panels (E–H)), or intermittent hypoxia
(panels (I–L)). Notch-1 was determined using immunofluorescence staining. Saline and Avastin
groups are stained green, and Eylea groups are stained red. Cells were counterstained with DAPI
(blue). Images were captured at 20× magnification. Scale bar is 100 µm.
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Figure 11. Effect of Avastin and Eylea on Notch-4 immunoreactivity in human retinal endothelial
cells exposed to normoxia (panels (A–D)), hyperoxia (50% O2, panels (E–H)), or intermittent hypoxia
(panels (I–L)). Notch-4 was determined using immunofluorescence staining. Saline and Avastin
groups are stained green, and Eylea groups are stained red. Cells were counterstained with DAPI
(blue). Images were captured at 20× magnification. Scale bar is 100 µm.
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Figure 12. Effect of Avastin and Eylea on DLL-4 immunoreactivity in human retinal endothelial cells
exposed to normoxia (panels (A–D)), hyperoxia (50% O2, panels (E–H)), or intermittent hypoxia
(panels (I–L)). DLL-4 was determined using immunofluorescence. Saline and Avastin groups are
stained green, and Eylea groups are stained red. Cells were counterstained with DAPI (blue). Images
were captured at 20× magnification. Scale bar is 100 µm.
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Figure 13. Effect of Avastin and Eylea on Jagged-1 immunoreactivity in human retinal endothelial
cells exposed to normoxia (panels (A–D)), hyperoxia (50% O2, panels (E–H)), or intermittent hypoxia
(panels (I–L)). Jagged-1 was determined using immunofluorescence. Saline and Avastin groups are
stained green, and Eylea groups are stained red. Cells were counterstained with DAPI (blue). Images
were captured at 20× magnification. Scale bar is 100 µm.
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2.8. Effects on Lipid Peroxidation

Lipid peroxidation is the peroxidation of unsaturated lipids of cell membranes. Lipid
peroxidation causes a shift from red to green and, when superimposed, appears orange.
Lipid peroxidation in the cells exposed for 72 h is presented in Figure 14. In RA, the
groups exposed to Avastin and Eylea, and to a greater extent, Hi-Eylea, mildly induced
lipid peroxidation of HRECs at 72 h. Lipid peroxidation increased with exposure to Hx
(Figure 14E,F) and IH (Figure 14I,J) in the saline controls and Avastin-treated groups,
respectively. The highest levels of lipid peroxidation were noted with both doses of Eylea
in Hx (Figure 14G,H), and IH (Figure 14K,L), with the highest level seen with Hi-Eylea in
IH (Figure 14L, orange color). Quantitative image analysis is presented in Table 2.
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Figure 14. Effect of Avastin and Eylea on lipid peroxidation in human retinal endothelial cells exposed
to normoxia (panels (A–D)), hyperoxia (50% O2, panels (E–H)), or intermittent hypoxia (panels (I–L)).
Lipid peroxidation in the cells were determined using Image-iT lipid peroxidation kit. A shift from
red to green indicates lipid peroxidation. Images are a combination of red, green, and blue (DAPI).
Images were captured at 20× magnification. Scale bar is 100 µm.

3. Discussion

The numerous reported ocular adverse outcomes associated with the use of intravitreal
Avastin in ELGANs have now extended systemically with the recent report of an increased
risk for neurological disabilities [25], demonstrating that in the preterm infant, intravitreal
Avastin penetrates the blood–ocular barrier and enters into the systemic circulation, with
possibly devastating effects. Using the rat model exposed to neonatal IH, we showed
significant retinal [38] and lung [39,40] damage with intravitreous Avastin treatment at
doses similar to that being used in preterm infants. As part of our ongoing investigations,
with the overarching goal of preventing severe ROP, we embarked on a series of experiments
to compare and contrast the effects of Avastin with Eylea, an anti-VEGF drug that is
approved for ocular use. Because ELGANs who are at the highest risk for developing
severe ROP often experience frequent IH during oxygen therapy [34,35], our targets were
angiogenesis, oxidative stress, and lipid peroxidation. For angiogenesis, we examined
HREC functions via tube formation capacity and biomarkers that regulate and control
angiogenesis. In doing so, we examined the two major pathways involved in angiogenesis,
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VEGF and Notch signaling pathways, to determine whether suppression of the VEGF
signaling pathway results in a compensatory increase in the Notch signaling pathway, or
whether the two pathways are linked and affected by anti-VEGF drugs. To establish the
effects on oxidative stress and lipid peroxidation, we examined the GSH/GSSG ratios and
oxidative degradation of lipids using the Image-It lipid peroxidation assay, respectively.
The main findings of these novel experiments are the following: (1) Compared to saline
controls, Eylea was effective for reducing the ability of HRECs to form tubes, although
to a lesser degree than Avastin which did not prevent cell migration but significantly
reduced tube formation capacity of the cells, particularly in IH; (2) There was a lack of
dose–response effects with Eylea, with the high dose being less robust than the low dose
in its ability to form tubes. However, as expected, there was a dose–response effect of
increasing levels of sVEGFR-1. Given that Eylea is a VEGFR-1 analogue, higher doses
induced higher sVEGFR-1 levels. (3) Eylea was most effective for decreasing the levels of
VEGF in the media compared to saline and Avastin. This was most likely due to increased
levels of sVEGFR-1, which acts as a VEGF trap. (4) Both doses of Eylea similarly induced
IGF-I secretion by HRECs, suggesting a functional relationship, given that both sVEGFR-1
and IGF-I are produced in high amounts by ECs in culture [41–44]. Elegant studies by
Lakatos D et al. [45] suggest that sVEGFR-1 is crucial for guiding blood vessel patterning.
(5) Avastin was more effective than Eylea for suppressing VEGFR-2, while Eylea was more
effective for suppressing Jagged-1. (6) Eylea resulted in significant lipid peroxidation and
oxidative stress in the HRECs. Collectively, these data show that the low dose of Eylea
is as effective as Avastin for suppression of IH-induced angiogenesis in HRECs, but the
high dose, although suppressed angiogenesis compared to controls, appears to promote
the normal vascular formation and patterning in a dose-dependent manner.

It is well documented that hypoxia induction of hypoxia-inducible factor (HIF)1α
and VEGF results in increased migration, proliferation, and invasion of retinal ECs in
ocular diseases [36–48]. In our experiments, HRECs were not exposed to hypoxia alone.
Instead, to simulate brief hypoxia experienced by ELGANs, requiring oxygen therapy for
chronic lung disease, we exposed the cells to brief IH episodes with recovery in hyperoxia
between each episode. Matrigel-coated wells are widely used to study the tube formation
capacity of HRECs. Matrigel provides an extracellular matrix for the HRECs to migrate
and form tubes and mimic angiogenesis. We noted that the saline-treated cells exposed
to Hx were still capable of forming tubes, although the number of tubes was significantly
reduced. An opposite effect was seen with IH exposure. Comparing the effects of Avastin
and Eylea, cells exposed to Avastin produced abundant tubulogenesis, although many
were pathologic and tumorigenic, appearing with thick connections and smaller central
vacuoles. This effect was almost obliterated in hyperoxia. In IH, Avastin did not prevent
the cells from migrating through the matrigel but completely prevented tube formation.
On the other hand, while both doses of Eylea reduced tube formation capacity in all
oxygen conditions compared to controls, the effect was not dose-dependent, and the high
dose increased EC normal patterning, despite the reduction in tubes. VEGF signaling
involves multiple VEGF ligand-receptor interactions, which include VEGF-A signaling to
the VEGFR-2 and neuropilin (NP) for potent angiogenesis and vascular permeability. In
our study, Avastin treatment suppressed HIF1α expression in HRECs more effectively than
Eylea, which had a minimal effect on HIF1α, although its expression was lower than the
saline controls in IH. Similar suppressive effects of Avastin were seen with VEGF, VEGFR-1,
and VEGFR-2. However, treatment with Eylea resulted in a significant decrease in VEGFR-
1 expression. These findings provide further evidence that Avastin acts directly on the
HIF/VEGF system, whereas Eylea acts via VEGFR-1, the VEGF decoy. Overall, Avastin
was superior to Eylea for complete suppression of tube formation in neonatal IH, and in
this context, our hypothesis of equivalent efficacy between the two drugs was not proven.

Eylea and Avastin exhibit differential VEGF binding geometry. Eylea is a VEGF “trap”.
It comprises a fusion of the second and third domains of human VEGFR-1 and VEGFR-
2, respectively. The main difference between Avastin and Eylea is that Eylea uniquely
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traps VEGF by forming a monomeric (1:1) complex that does not bind to the surface of
endothelial cells. It not only blocks the amino acids necessary for VEGFR1/R2 binding but
also occludes the heparin-binding site on VEGF [49]. Therefore, by trapping VEGF, Eylea
makes VEGF unavailable to its receptor. In contrast, Avastin forms a large, multimeric
complex that exhibits enhanced binding when complexed with heparin and NP present
on the cell surface and does not block heparin binding to VEGF [49]. In our experiments,
we noted very low levels of VEGF in the media, which was corrected by the number of
cells. In the retina, VEGF is generally produced by astrocytes and Müller cells. However,
hypoxia is known to increase the production and secretion of VEGF in many cells via the
stabilization of the transcription factor HIF1α. We found that VEGF levels in the media were
induced in a time-dependent manner in all saline-treated and Avastin-treated groups. This
effect was completely abolished with Eylea. Concurrently, media levels of sVEGFR-1 and
IGF-I remained low with saline and Avastin but increased in a dose- and time-dependent
manner with Eylea. This finding was interesting, considering that IGF-I is a permissive
factor for VEGF [33] and a promoter of cell proliferation [50,51]. The addition of Eylea, a
fusion protein complex of VEGFR-1/VEGFR-2, to the media may have resulted in elevated
sVEGFR-1, the soluble, diffused form of VEGFR-1, and, working together with IGF-I,
promoted normal vascular patterning.

VEGFR-1 (also known as Flt-1) is alternatively spliced to produce both a membrane-
localized form (mFlt-1) and a soluble form (sFlt-1) that is secreted by endothelial cells [42,43].
In contrast to VEGF levels, the levels of sVEGFR-1 were several times higher, confirming
that HRECs predominantly secrete sVEGFR-1. Studies by Saito T et al. [52] showed that
VEGF induces sVEGFR-1 in ECs by regulating the alternative splicing of the VEGFR-1 gene,
indicating an interaction between VEGF and its negative regulator, sVEGFR-1. Secreted
sVEGFR-1 acts as a VEGF trap but also acts as guidance cues for ECs [43], is critical for
vessel morphogenesis [53,54], and VEGF-Notch crosstalk [55]. Therefore, it is reasonable to
assume that the addition of Eylea to the media promoted the induction of sVEGFR-1 by the
HRECs. IGF-I is a potent angiogenic factor [56] that induces VEGF mRNA in endothelial
cells [57]. The concurrent induction of IGF-I and sVEGFR-1 suggests a strong positive
correlation. This association has been previously reported [44,58], thus validating our
findings. The exact mechanism of Eylea induction of IGF-I, coincident with sVEGFR-1,
remains unknown. However, it is likely that Eylea, being a VEGFR-1 analogue, induces
sVEGFR-1 in a dose-dependent manner, acting as a guidance cue for tube formation, as
previously demonstrated [42,53], an effect that may be influenced by IGF-I. In this regard,
it is possible, though not proven, that sVEGFR-1 and IGF-I work in tandem, as previously
shown [45,58,59], to maintain and modulate EC sprouting and patterning, as demonstrated
in Figure 1. This could explain the maintenance of tube formation capacity with both
Eylea doses.

EC sprouting also involves a special type of cell–cell interaction [60] and involves
the Notch signaling pathway and a dynamic interplay with sVEGFR-1 guidance sys-
tems [42,43,60]. There are three phenotypes of ECs, tip, stalk, and phalanx cells, which are
all dependent on the binding of VEGF to its cell membrane receptors [61]. The sprouting of
ECs is a highly dynamic process of switching between the tip and stalk phenotypes and
involves the Notch signaling pathway [62–65]. In humans, there are four Notch receptors
(Notch-1, -2, -3, and -4) and ligands (delta-like ligand, DLL-4, and Jagged-1) and five
Notch ligands, including delta-like ligand (DLL)-1, -3 -4), Jagged-1, and Jagged-2. Stud-
ies show that the sprouting of EC tip cells is inhibited by Notch/DLL-4 signaling, while
Notch/Jagged-1 signaling promotes potent angiogenesis and antagonizes Notch/DLL-
4 [64]. Here, we show that both Avastin and Eylea induced Notch-1, while Notch-4 was
induced only with Avastin in Hx and IH and with Eylea in IH. DLL-4 was highly expressed
in the saline controls exposed to RA and IH but not in Hx. Although Avastin induced
DLL-4 in Hx and IH, both doses of Eylea resulted in a greater DLL-4 induction in all oxygen
environments. This suggests that the action of Eylea favors the Notch/DLL signaling.
Induction of Notch-4/DLL-4 and suppression of Jagged-1 coincident higher sVEGFR-1
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may suppress tip cell phenotype and EC sprouting. Compared to saline controls, Jagged-
1 was suppressed with both Avastin and Eylea. This was reflected by the reduction in
tube formation.

Another key finding was the effect of Eylea on the development of lipid peroxidation
and oxidative stress in HRECs. In recent years, new information emerging from our
laboratory [66] and others [67], as well as clinical studies [68–70], have shown that IH
and oxidative stress play key roles in the development of ROP. This is due to the high
susceptibility of ELGANs and their immature retinas to ROS-mediated oxidative injury
caused by immature antioxidant defenses [71–73]. The retina is especially sensitive to
oxidative stress because it is one of the highest oxygen-consuming tissues of the body,
exceeding even that of the brain [74–76]. Our data showed that lipid peroxidation and
oxidative stress (evidenced by GSH/GSSG ratios) were induced in all groups exposed
to Hx and IH, but the highest induction was noted with Eylea. An association between
VEGFR-1 and oxidative stress has been previously shown [77,78]. Together with those
previous findings, these data suggest that Eylea suppression of EC angiogenesis may, in
part, involve the induction of oxidative stress and lipid peroxidation.

4. Materials and Methods
4.1. Cells

HRECs (ACBRI-181) were purchased (Cell Systems, Kirkland, WA, USA) at 80%
confluence (1.5 × 106 cells) and acclimatized for 2–3 h in an incubator at 37 ◦C prior
to plating in specialized medium of P75 flasks. Cells were activated with culture boost
containing growth factors, antibiotics (Bac-Off), and 5% amphotericin B. Cell media was
changed every 2 days, and the cells were passaged at 80% confluence. After 4 passages, the
cells were seeded onto 24-well plates (4 × 104 cells in 0.5 mL media/well) coated with an
ECM product that promotes cell attachment and incubated at 37 ◦C, 100% humidity. The
number of cells was determined with TC20 automatic cell counter (BioRad Life Sciences,
Hercules, CA, USA) and were similar in each treatment and exposure group at the start of
the experiment.

4.2. Experimental Design

Twenty-four-well plates were placed in (1) normoxia (21% O2; 5% CO2), (2) hyperoxia
(Hx; 50% O2; 5% CO2), or (3) intermittent hypoxia (IH, 50% O2 with brief, clustered episodes
of 5% O2; 5% CO2). In each oxygen environment, 3 plates (24, 48, and 72 h) were treated
with either (1) bevacizumab (0.2 mg/mL), (2) low-dose Eylea (Lo-Eylea; 0.2 mg/mL), or
(3) high-dose Eylea (Hi-Eylea, 0.4 mg/mL). The doses were based on a previous report of
Avastin treatment in HRECs [79]. On the day of the experiment, the media was replaced
with fresh media containing drug or placebo saline, and the cells were randomly assigned
to the various oxygen environments. Media and cells were harvested at 24 h, 48 h, and
72 h post-treatment and frozen at −80 ◦C until assay. For media samples, 3 wells in each
group were pooled for a total of 8 samples per group. For tube formation assays and
immunofluorescence (IF) staining, cells from 6 wells per group were pooled prior to plating.
Media was analyzed for VEGF, soluble VEGFR-1 (sVEGFR-1), and IGF-I levels. Cells were
analyzed for tube formation capacity, lipid peroxidation, and expression of biomarkers of
angiogenesis (HIF1α, VEGF, VEGF receptors, Notch-1, Notch-4, DLL-4, and Jagged-1).

4.3. Hx and Intermittent Hypoxia Profiles

Cells exposed to Hx and IH were placed into specialized dual subchambers (PROOX
model 110 oxygen regulator, Biospherix, Redfield, NY, USA) attached to a C42 oxycycler
(BioSpherix). The oxycycler supplied O2, N2, and CO2 to the subchambers according to the
oxygen profile created to simulate IH [33]. The oxygen environment was monitored with
oxygen sensors inside the chambers. For the Hx profile, oxygen was set continuously at 50%
and remained constant until the end of the experiment. For the IH profile, oxygen was set
at 50% for 30 min, followed by three 1 min hypoxia (10% O2) episodes, each 10 min apart,
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for a total of eight clustered episodes/day consistent with the severe OIR model reported
by our lab [38–40,66]. The oxygen content in the media was continuously monitored using
an oxyvalidator with an oxygen sensor (BioSpherix) inserted directly into the media of a
sacrificial well with cells.

4.4. Tube Formation Assay

Becton Dickinson (BD)-BioCoat Angiogenesis System-EC tube formation 96-well plates
(BD Biosciences, Bedford, MA, USA) were used for migration assays according to the
manufacturer’s protocol. Cells from each group exposed for 72 h were harvested and
plated at 2 × 104 in 50 µL media in each well. Three plates were prepared, one for each
oxygen environment (Nx, hyperoxia, and IH). In each 96-well plate, 24 wells were used
for each treatment (saline, Avastin, Lo-Eylea, and Hi-Eylea). The plates were incubated
for 16–18 h at 37 ◦C and 5% CO2 atmosphere, after which the plates were labeled with BD
calcein AM fluorescent dye (BD Biosciences). The plates were imaged at 4× magnification
using an Olympus BX53 microscope, DP72 digital camera, and CellSens imaging software
(Olympus, Center Valley, PA, USA), attached to a Dell Precision T3500 computer (Dell,
Round Rock, TX, USA). The digital images were analyzed using the count and measure
tool of the CellSense imaging software. Morphometric parameters included the following:
(1) total number of tubes (only fully formed tubes with complete branching polygons
forming a central vacuole were counted); (2) tube length (determined as the length of each
connected side of the complete polygon; (3) number of branching points (the point where
the tubes three or more tubes converge; (4) thickness of the tube walls (thickness of the
connecting sides of the polygons; (5) area of the central vacuole; and (6) perimeter of the
central vacuole. Twenty-four images were analyzed per group to calculate mean values.

4.5. VEGF, sVEGFR-1 & IGF-I Assays

VEGF, sVEGFR-1, and IGF-I levels were determined in the media using commercially
available human ELISA kits purchased from R & D systems (Minneapolis, MN, USA),
according to the manufacturer’s protocols. Data were normalized by cell number.

4.6. GSH/GSSG Ratios

Levels of GSH/GSSG ratios were determined in the media using commercially avail-
able assay kits purchased from MilliporeSigma (St. Louis, MO, USA).

4.7. Immunofluorescence

Cells pooled from 6 wells per group were plated at the same time onto sterile 16-well
culture slides (Fisher Scientific, Pittsburgh, PA, USA) and exposed to similar conditions
as described above for the 24-well plates. At the end of each experimental time, 24 h,
48 h, and 72 h, the slides were washed, fixed in 4% paraformaldehyde, permeabilized,
and incubated with HIF1α (rabbit polyclonal IgG, 1:200, VEGF (rabbit polyclonal IgG,
1:200), VEGFR-1 (goat polyclonal IgG, 1:200), VEGFR-2 (rabbit polyclonal IgG, 1:200),
VEGFR-3 (rabbit polyclonal IgG, 1:200), NP (mouse monoclonal IgG, 1:200), Notch-1 (rabbit
polyclonal IgG, 1:200), Notch-4 (rabbit polyclonal IgG, 1:200), DLL-4 (rabbit polyclonal
IgG, 1:200), and Jagged-1 (rabbit monoclonal IgG, 1:200 primary antibodies purchased
from Invitrogen Thermo Fisher (Waltham, MA, USA), Antibodies Online (Limerick, PA,
USA), MyBioSource (San Diego, CA, USA), Novus Biologicals (Centennial, CO, USA) and
Santa Cruz Biotechnology (Dallas, TX, USA)). Alexa Fluor fluorescent secondary antibodies
(Life Technologies, Grand Island, NY, USA). Cells were imaged at 20× magnification using
an Olympus IX73 inverted microscope system and CellSens imaging software (Olympus,
Center Valley, PA, USA).

4.8. Lipid Peroxidation

Lipid peroxidation is the oxidative degradation of cellular lipids by reactive oxygen
species (ROS). Lipid peroxidation is the cause of free radical-mediated damage in cells,
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particularly retinal ECs. Lipid peroxidation was determined using commercially available
Image-iT lipid peroxidation kit for live cells purchased from ThermoFisher Sci (Waltham,
MA, USA), according to the manufacturer’s protocol. Upon oxidation in live cells, there is
a shift in the fluorescence emission peak from 590 nm (red) to 510 nm (green), providing a
ratiometric indication of lipid peroxidation. Cells were counterstained with DAPI (blue).
Images are combination of red, green, and blue stains.

4.9. Statistical Analysis

To determine differences among the Nx, Hx, and IH oxygen groups and differences
among the treatment groups, two-way ANOVA was used for normally distributed data
and Kruskal–Wallis test for non-normally distributed data, following Bartlett’s test for
normality. Post hoc analysis was performed using the Tukey or Student–Newman–Keuls
test. Significance was set at p < 0.05, and data are reported as mean ± SEM. All analyses
were two-tailed and performed using SPSS software version 16.0 (SPSS Inc., Chicago, IL,
USA) and GraphPad Prism software version 5.02 (GraphPad Inc., San Diego, CA, USA).

5. Conclusions

Major differences between the effects of Avastin and Eylea exist predominantly due to
differences in their VEGF binding dynamics, as well as the Notch signaling effects. The
mechanism of action of Avastin involved direct inhibition of VEGF, while Eylea induced
sVEGFR-1, which may act as a VEGF “trap”. While both doses of Eylea suppressed
angiogenesis compared to the control, there was a lack of a dose–response effect in the
suppression of tube formation capacity. Nevertheless, Eylea was more effective than Avastin
for suppression of Notch/Jagged-1 signaling, which is known to promote angiogenesis.
Collectively, although at first, high Eylea was not as robust as the low dose for suppression
of tube formation, it should be noted that high Eylea also suppressed tube formation
compared to controls. Due to its inherent functional nature as guidance cues for normal
vessel patterning, these data suggest that Eylea may promote normal vascular patterning
in a dose-dependent manner, which may involve the interaction of sVEGFR-1, IGF-I, and
Notch/DLL-4. The potency and long-term safety outcomes of Avastin remain a cause for
concern, particularly when used in the preterm neonate. Therefore, evidence from this
study suggests that lower doses of Avastin can effectively inhibit angiogenesis while at the
same time promoting normal vascular patterning. However, caution is needed since cells
in culture do not exactly replicate the in vivo environment. More preclinical dose-finding
studies are needed to determine the lowest Avastin dose that provides the maximum benefit
with minimal or no adverse outcomes.
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