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Abstract: Breast and gynecologic cancers are significant global threats to women’s health and those
living with the disease require lifelong physical, financial, and social support from their families,
healthcare providers, and society as a whole. Cancer vaccines offer a promising means of induc-
ing long-lasting immune response against the disease. Among various types of cancer vaccines
available, peptide vaccines offer an effective strategy to elicit specific anti-tumor immune responses.
Peptide vaccines have been developed based on tumor associated antigens (TAAs) and tumor specific
neoantigens which can also be of viral origin. Molecular alterations in HER2 and non-HER2 genes are
established to be involved in the pathogenesis of female-specific cancers and hence were exploited
for the development of peptide vaccines against these diseases, most of which are in the latter stages
of clinical trials. However, prophylactic vaccines for viral induced cancers, especially those against
Human Papillomavirus (HPV) infection are well established. This review discusses therapeutic and
prophylactic approaches for various types of female-specific cancers such as breast cancer and gyneco-
logic cancers with special emphasis on peptide vaccines. We also present a pipeline for the design and
evaluation of a multiepitope peptide vaccine that can be active against female-specific cancers.

Keywords: female-specific cancers; peptide vaccine; HER2; non-HER2; HPV vaccine; prophylactic
cancer vaccine; therapeutic cancer vaccine

1. Introduction

For many years, the gold standard in cancer treatment is conventional methods like ra-
diation therapy, chemotherapy, and surgery [1,2]. Consistent scientific effort has resulted in
the development of a number of alternative potential treatment strategies to circumvent the
therapeutic limitations of the current conventional methods [2–5]. Cancer cells are unique
in their ability to bypass the immune system for their survival [6]. Activating the immune
system to recognize and tackle tumors is a potentially effective therapeutic strategy against
cancer. Several immunotherapeutic modalities for cancer include monoclonal antibody
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therapy [7–9] immune checkpoint blockade (ICB) [10], chimeric antigen receptor (CAR)
T cell therapy [11], oncolytic viral therapy [12,13] natural killer (NK) cell therapy [14] and
cancer vaccines [13,15]. Even though various immunotherapeutic approaches are avail-
able, cancer vaccines offer a promising method of inducing long-term immune response
against cancer [16]. Among the various cancer vaccines available, peptide vaccines offer a
promising strategy to elicit specific anti-tumor immune responses. This review focuses on
immunotherapy, with special reference to peptide vaccines as therapeutic and prophylactic
agents for treating cancers in women.

2. Female-Specific Cancers

The influence of cancer and its outcome on women needs special attention since it
impacts the economic, emotional and social well-being of an individual extending to the
society. Moreover, the enormous global discrepancies in female cancer survival make
female-specific cancers a major public health concern [17]. A brief summary of the various
aspects of female- specific cancers is depicted in Table 1.
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Table 1. Various aspects of female-specific cancers.

Type of Cancer
Incidence

Rate *** [18]
(%)

Mortality
Rate *** [18]

(%)

Causative Factor/Agent
Treatment Strategy **

[19]

Post Treatment 5-Year Survival Rate. [20]

Pathogen Gene Mutation Localized
Disease * (%)

Regional
Spread * (%)

Distant
Metastasis * (%)

Breast Cancer 58.5 17.7

Human Papilloma virus
(HPV), Mouse Mammary

Tumour Virus(MMTV)
Epstein-Barr virus

(EBV) [21]

BRCA1, BRCA2, TP53,
PTEN, STK11, CDH1,

PALB2, CHECK2, ATM,
NBN, and NF1. [22,23]

Surgery, Radiation
therapy, Endocrine

therapy Chemotherapy,
Targeted therapy,
Immunotherapy.

99 86 30

Cervical Cancer 15.6 8.8

Sneathia, Pseudomonas,
Ureaplasma urealyticum,

Ureaplasma parvum,
Chlamydia trachomatis,
Trichomonas vaginalis,
Atopobium HPV [24]

EGFR, KRAS and
PIK3CA [25] CASP8,

TMS1/ASC [26]
ERBB3 [27]

Surgery, Chemotherapy,
Targeted therapy,
Immunotherapy.

92 59 17

Endometrial
Cancer 10.8 2.5

Porphyromonas,
Atopobium vaginae,

Pelomonas, Prevotella. [24]

PIK3CA, PIK3R1, PTEN,
KRAS, FGFR2, ARID1A

(BAF250a), and CTNNB1
(β-catenin), MLH1, TP53

(p53), PPP2R1A,
HER-2/ERBB2, PIK3CA,

and PTEN [24]

Surgery, Chemotherapy,
Targeted therapy,
Hormone therapy,
Radiation therapy

96 72 20

Ovarian Cancer 8.1 5.4 Proteobacteria/Firmicutes.,
HPV [24]

TP53, BARD1, CHEK2,
RAD51, and PALB2,

BRCA1 and BRCA2 [28]

Surgery, Chemotherapy,
Targeted therapy,
Immunotherapy

93 75 31

Vaginal cancer 0.46 0.21 Proteobacteria and
Firmicutes, HPV [24]

TP53, KRAS, RASA1,
KMT2D, and JAK2 [29]

Surgery, Chemotherapy,
Radiation therapy. 69 57 26

Vulvar cancer 1.2 0.45 HPV [30]

PIK3CA, FBXW7, HRAS,
FGFR3, STK11, AKT1,
SMAD4, FLT3, JAK3,

GNAQ, and PTEN [31]

Surgery, Chemotherapy,
Radiation therapy,

Targeted drug therapy,
Immunotherapy.

86 53 19

*** GLOBOCAN 2020 crude rate in percentage (https://gco.iarc.fr/today/home (accessed on 7 April 2023)).** Treatment strategies as per www.mayoclinic.org (accessed on 7 April 2023)
* Localized disease: The cancer is only in a specific part, without spreading to lymph nodes or nearby tissues. This includes stage I cancers, Regional spread: The cancer has spread to
nearby lymph nodes or tissues, but has not spread to distant organs. This includes mainly stage II, III and IVA cancers, Distant metastasis: The cancer has spread to distant parts of the
body such as the lungs, liver or bones. This includes stage IVB cancers. (https://www.cancer.org (accessed on 7 April 2023)).

https://gco.iarc.fr/today/home
www.mayoclinic.org
https://www.cancer.org
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3. Cancer Vaccines

Advances in bioengineering and material science have helped the development of
different types of cancer vaccines which can arrest tumor progression and prevent re-
currence [32]. An efficient cancer vaccine should ideally be able to reinforce the body’s
natural defenses against cancer by eliciting potent CD4+ and CD8+ T effector and mem-
ory response [12]. Cancer vaccines come in a variety of forms which include cell-based
vaccines/whole tumor cells [33,34], viral/bacterial-based vaccines [34–36], gene-based
vaccines [13,34,37], and protein/peptide vaccines [34,38].

Cancer vaccines stimulate both cellular and humoral immune response by utilizing
tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs), thus preventing
tumor growth and killing tumor cells [39]. Traditional vaccine preparations that target
TAAs are having low immunogenic capacity and risk of toxicity to normal cells [40]. TSAs or
neoantigens, on the other hand, are only expressed by cancer cells and elicit strong immune
responses because of the lack of immunological tolerance [41]. TSAs are highly specific and
are used in the production and design of personalized vaccines [40]. The possibilities of
various approaches in cancer vaccines with potential against female-specific cancers are
summarized in Figure 1.
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Figure 1. Different types of vaccines against female-specific cancers. TSAs (Tumor specific antigens)
and TAAs (Tumor associated antigens) are exploited for the development of various types of vaccines
such as Cell-based, Nucleic acid-based, Vector-based and Peptide/Protein-based vaccines.

Vaccines based on peptides have an advantage over other forms of therapy. Metastatic can-
cers that have spread to various parts of the body can be treated with peptide vaccines, and
they are nontoxic compared to other treatment strategies [42]. Unlike other immunother-
apeutic techniques like CAR T cell therapy which targets a cell surface antigen, pep-
tide vaccines are using multiple epitopes positioned outside or inside of tumor cells [43].
By developing a peptide vaccine devoid of B cell epitopes, the risk of hypersensitivity
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could be avoided, and highly heterogeneous tumors could be effectively targeted by
peptide-based vaccines [44]. Though the role of B cell epitopes in cancer vaccine design is
underappreciated, recent investigations reveal the significance of multiepitope vaccines en-
compassing B cell epitopes along with T helper and cytotoxic T lymphocyte (CTL) epitopes
in prophylaxis and therapy of cancer [45].

4. Peptide Vaccines

Peptide vaccines are composed of synthetic peptides which are highly immunogenic
and elicit desired and specific adaptive immune response [46]. They come in a variety
of forms, including multivalent long peptide vaccines, multi-peptide vaccines containing
CTL and T helper-epitopes, peptide cocktail vaccines, hybrid peptide vaccines, person-
alized peptide vaccines, and peptide-pulsed dendritic cell vaccines [47]. The efficacy of
peptide vaccines are widely studied against neurodegenerative diseases [48,49], infectious
diseases [50] like human immunodeficiency virus (HIV) [51,52], hepatitis C virus [53],
tuberculosis [54], foot and mouth disease [55], cancer [6], etc. The general aspects of
peptide vaccines in the context of cancer therapy are summarized in Figure 2.
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(C-X-C motif) ligand; E1—Epitope 1, E2—Epitope 2, E3—Epitope 3, IL—Interleukin; IFN—Interferon;
NK—Natural killer; TGF—Tumor growth factor; Th—helper T cells; TNF—Tumor necrosis factor.

The differential expression of TAAs and TSAs on normal cells and cancer cells are
made use of in designing peptide-based cancer vaccines [6,42,56]. Synthetic long peptides
(SLPs) consist of 25–35 amino acids that are derived from TAAs or TSAs from a major
type of peptide-based cancer vaccines [57,58]. Cancer vaccination trials with SLPs demon-
strated inhibition of growth of transplanted tumors in mice [59]. Survivin-based vaccine,
composed of a pool of three SLPs with eight CD4+ epitopes and six CD8+ epitopes, has
shown to activate both CD4+ and CD8+ immune responses in mouse models for colorectal
cancer. Fusion proteins made by combining Xcl1 with Ovalbumin SLP antigen and IgG1 Fc
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fragment were shown to elicit specific T cell response and sustained tumor control against
the poorly immunogenic B16-OVA melanoma tumor [60].

Short peptides composed of 8–10 amino acids utilize Class I major histocompatibility
complex (MHC) receptors and initiate CD8+ T cell response. Cancer neoepitope vaccine,
based on MHC1 restricted short peptide, Nes2LR was reported to induce functional CD8+
T cell responses and prevent tumor growth in murine renal carcinoma model [61]

Recombinant overlapping peptides (ROPs) developed as a design strategy for peptide
vaccines consist of a single-chain polypeptide with multiple epitopes. They can produce strong
immunogenic responses in CD4+ and CD8+ T cells [62]. Immunoinformatics approaches were
utilized to construct a multi-epitope peptide vaccine against breast cancer using immunogenic
regions of the BORIS cancer-testis antigen containing multiple CTL epitopes. The selected
regions were linked together by GPGPG linker followed by incorporation of T helper epitopes
and the toll-like receptor (TLR)-4/MD-2 agonist. The resulting vaccine was reverse translated
and then inserted into pcDNA3.1 to form the DNA vaccine [63]. Further investigations were
carried out which revealed that co immunization of the multiepitope peptide vaccine and
the resultant DNA vaccine significantly inhibited the growth of breast tumors, decreased
tumor weight, inhibited metastasis, and enhanced survival time in murine mammary
carcinoma [64].

5. Peptide Vaccines Developed for Female-Specific Cancers
5.1. Based on Genes Involved in Pathogenesis of Cancer

Accumulation of genetic and epigenetic alterations is well established to be involved in
the process of carcinogenesis. The molecular alterations involved in pathogenesis of cancer
include gene amplification, gene fusion, mutation and overexpression. Multiple studies have
investigated the association of breast and gynecologic malignancies with overexpression
and/or amplification of HER2 [65–73], as well as non-HER2 genes such as BRCA1/BRCA2,
CHEK2, PTEN, MUCI, Tp53, MAGE, etc. [23,74–80]. The alterations identified in these
genes are used successfully to design peptide vaccines with therapeutic efficiency against
female-specific cancers.

5.1.1. HER2 Based Peptide Vaccines for Female-Specific Cancers

HER2 is a receptor tyrosine kinase which is found to be involved in cell proliferation
and survival [72]. Several HER2 derived peptide vaccines have been designed and are in
the latter stages of clinical trials. B cell or T cell peptide-based vaccines, liposome-based
vaccines with B cell peptides, and mature dendritic cells (DCs) loaded with TAA/TSA are
a few of the diverse approaches employed [81].

HER2, a well-studied TAA is validated as a therapeutic target in breast cancer for the
development of therapeutic vaccines. The present status of development of vaccines for
breast cancer based on HER2 is summarized in Table 2.
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Table 2. HER2 based peptide vaccines for breast cancer HER2/neu-derived GP2 and GP2–P4.

Peptide Adjuvant Mode of
Administration

Therapeutic
Strategy Immune Response Phase of

Study
Phase of Clinical

Trial Study Sample Reference

Three peptides of HER2/neu-(i)
ECD; p42, p98 and p328 (ii)
ICD p776, p927 and p1166 (iii)
Peptides from both domains;
p369, p688 and p971

GM-CSF Intradermal Mixed vaccine HER-2/neu IgG specific
antibody responses ↑ Clinical trial Phase I

Stage III breast and ovarian
cancer
N = 38,
Sub group:

- breast cancer Stage III
(n = 13) or IV(n = 18),
ovarian (n = 5), or non
small cell lung cancer
(n = 2).

[82]

E75 peptide GM-CSF Intradermal Monotherapy
Clonal expansion of
E75-specific CD8+ T cells ↑
NPBC recurrence↓

Clinical trial Two-Stage
Safety Trial

Non-palpable breast cancer
(NPBC)
N = 53

[83]

GP2 peptide (HER2/neu,
654–662) GM-CSF Intradermal Monotherapy

in vivo and ex vitro
immune responses specific
to GP2 ↑

Clinical Trial Phase I

Disease free lymph
node-negative, (HLA)-A2+
breast cancer
N = 18

[84]

31 pooled peptide
Incomplete
Freund’s adjuvant
(Montanide ISA51)

Subcutaneous

In combination
with
chemotherapy,
hormonal therapy
and radiotherapy

CTL and/or IgG responses ↑ Clinical Trials Phase II

Triple-negative breast cancer
(TNBC)
N = 79
Sub group:

- mrTNBC group (n = 18),
HER2-negative group
(n = 41) and
HER2-positive group
(n = 18)

[85]

Triple peptide-MUC1
(159–167),CEA (605–613)
and ErbB2 (368–377)

Montanide ISA 51 Subcutaneous Multi peptide
vaccine

IFN-γ producing CD8+ T
cell response ↑ Clinical Trial Phase I/II

High-risk disease-free
ovarian and breast cancer
N = 14
Sub group:

- (ovarian n = 7 and
breast n= 7).

[86]
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Table 2. Cont.

Peptide Adjuvant Mode of
Administration

Therapeutic
Strategy Immune Response Phase of

Study
Phase of Clinical

Trial Study Sample Reference

9 MHC class I-restricted
peptides from MAGE-A1, −A3,
and -A10, CEA, NY-ESO-1,
and HER2

TLR3 agonist,
poly-ICLC and
peptide derived
from tetanus toxoid

Intramuscular and
intradermal Monotherapy Peptide specific CD8+ T

cell response ↑ Clinical Trial Pilot study

Breast cancer patients with
stage IB-IV resected.
N = 12
Sub group:

- (Estrogen receptor
positive disease,
n = 5 and HER2
amplifiedr n = 5)

[87]

AE37 and GP2 GM-CSF Intradermal Monotherapy
AE37 specific CD4+ T cell
response and GP2 specific
CD8+ T cell response ↑

Clinical Trial Phase II

Breast cancer with
disease-free node positive
and high-risk node negative
patients
N= 456

[88]

Mixed 19-peptide vaccine
derived from 11 different TAAs
including EGFR

Freund’s adjuvant
(Montanide
ISA-51VG; Seppic)

Subcutaneous Monotherapy Peptide specific Ig ↑ Clinical Trial Phase II

Advanced metastatic
triple-negative breast cancer
(mTNBC)
N = 14

[89]

HER2/neu-derived GP2
and GP2–P4 KLH Subcutaneous monotherapy

Humoral immune
response— IFN-γ, IL-2,
IL-4 and Th1 and Th2 ↑

Preclinical
study -

TUBO breast cancer model of
BALB/c mice,
overexpressing HER2/neu
oncogene.

[45]

HER2/neu-derived
peptide AE36 CpG-ODN Subcutaneous Monotherapy

Synthesis of cytokines ↑
CD8+ and CD4+ T cell
responses ↑

Preclinical
study - TUBO breast cancer model of

BALB/c mice [90]

AE37, AE36, E75 and GP2—immunogenic peptides from the HER2/neu; CpG-ODN—Oligodeoxynucleotides of cytosine and guanine; CTL—Cytotoxic T lymphocyte;
ECD—Extracellular domain; EGFR—Epidermal growth factor receptor; GM-CSF—Granulocyte macrophage colony stimulating factor; ICD—Intracellular domain; IFN-γ—Interferon
gamma; IgG—Immunoglobulin G; IL- Interleukins; KLH—keyhole limpet hemocyanin; MHC—Major histocompatibility complex; NPBC—Node-positive breast cancer; Poly-ICLC—
Polyinosinic-polycytidylic acid; TAAs—Tumor-associated antigens; Th—T helper cells; TLR—Toll-like receptor; TNBC—Triple-negative breast cancer; TUBO—cells lines cloned from a BALB/c
mouse mammary carcinoma. (‘N’ represents the size of the study sample and the ‘n’ represents the size of the subgroup within the main study group). ↑: increased; ↓: decreased.
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Systematic review and meta-analysis were carried out to investigate the outcomes of
HER2 based peptide vaccines in breast cancer. Both Chamani et al. [91] and You et al. [92]
have reported that E75 vaccine is effective and safe in breast cancer while You et al. reported
that GP2 vaccine elicited a strong immune response [92].

Overexpression, gene amplification and gene mutation of HER2 has been found to
occur in patients with gynecologic malignancies with possible therapeutic implications [93].
In one of the earlier studies, intradermal immunization with a peptide vaccine based on
HER2/neu combined with granulocyte macrophage colony stimulating factor (GM-CSF)
as an adjuvant induced CD4+ T helper-specific immunological response in patients with
breast and ovarian cancer. Patients produced HER2 specific T cell responses which could
migrate out of the peripheral circulation [94].

Autologous DCs pulsed with HER2/neu or MUC1-derived peptides can effectively in-
duce antigen-specific T cells in patients with advanced breast and ovarian cancer.
The immunizations were shown to be well tolerated with no side effects in a pilot study
involving 10 participants. MUC1 peptide specific T cells were found in patients vaccinated
with HER2/new-derived peptides [95]. The uptake of tumor cells by DCs that are involved
in cross-priming [96] and induction of other tumor antigen-specific CTLs could be the
possible mechanism for this observation.

HER2/neu-specific antibody immunity was assessed in 35 patients with breast and
ovarian cancer after immunization with HER2 based-peptides and successful immune
response was recorded in majority of the patients. Moreover, epitope spreading to p53 was
observed in 20% of the vaccinated patients [82].

Monthly vaccination of 6 breast/ovarian cancer patients having HER2/neu-overexpressing
tumors with HER2/neu-derived HLA-A2-peptide and GM-CSF as adjuvant, for six months
was found to induce interferon-gamma (IFN-γ) secreting CD8+ T lymphocytes targeting
HER2/neu. The minimal and transient nature of immune responses necessitated the need
for CD4+ T cell support to maintain immunization [97].

In a Phase 1 study, 9 participants with epithelial ovarian, fallopian tube, or primary
peritoneal carcinoma were administered with 5 class I MHC-restricted synthetic peptides
derived from multiple ovarian cancer-associated proteins, as well as a class II MHC-
restricted synthetic helper peptide derived from tetanus toxoid protein. All of the peptides
used were immunogenic, including HER2/neu 754–762 peptide which stimulated CD8+
T cell responses. Authors suggested that the low potency of immunogenicity in ovarian
cancers requires additional immunomodulation [98].

5.1.2. Non-HER2 Based Peptide Vaccines for Female-Specific Cancers

Genes other than HER2 are also established to have a role in the pathogenesis of
breast and gynecologic cancers. Mutations in MSH6, CHEK2, BRCA1, BRCA2, ATM,
PMS2, PALB2, and MSH2 were found to occur more frequently than in any other gene
in the analysis of breast and uterine cancer patients. The frequency of BRCA1, MLH1,
MSH2, MSH6, PMS2, and PTEN mutations was higher in breast and uterine cancer than in
breast cancer, whereas the frequency of ATM mutations was higher in breast and uterine
cancer than in uterine cancer alone [99]. In 90% of mucinous ovarian carcinomas, KRAS,
BRAF, and/or ERRB2 gene amplifications are present, demonstrating the therapeutic potency of
RAS/MEK pathway in this subtype [100]. Table 3 describes the state-of-the-art progress in the
development of peptide vaccines designed against non-HER2 genes for female-specific cancers.
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Table 3. Non-HER2 based peptide vaccines for female-specific cancers.

Peptide Adjuvant Mode of
Administration

Therapeutic
Strategy Immune Response Phase of

Study
Phase of Clinical

Trial Study Sample Reference

HER-2/neu-derived
E75/MUC1-derived M1.2
peptide

- Subcutaneous

Autologous DCs
pulsed with
HER-2/neu– or
MUC1-derived
peptides

CEA- and MAGE-3
peptide-specific T-cell response ↑
MUC1-specific T lymphocytes ↑
MAGE-3- and CEA- peptide
specific CD8+ T cell response ↑

Clinical trial Phase I/II

Metastatic breast cancer
expressing HLA-A2 and
HER-2/neu or MUC1
N = 7 breast cancer and
N = 3
ovarian cancers

[95]

MUC1 lipopeptide Lipid A Subcutaneous Monotherapy

MUC1-specific CTL response↑
T cells expressing intracellular
IFN-γ ↑
T cells reactive with
H-2Db/MUC1 tetramer ↑

Preclinical - MUC1 Transgenic mice [101]

p53- synthetic long peptide
(SLP) Montanide ISA51 Subcutaneous Monotherapy

IFN-γ producing T-cells ↑
p53-specific Th1 and Th2 CD4+
T-cell responses ↑
Th1 and Th2 cytokines ↑
Circulating p53-specific T-cells ↓

Clinical trial Phase II Epithelial ovarian cancer
N = 18 [102]

p53 SLP Montanide ISA51 Subcutaneous

Immunization
preceded by Cy-
clophosphamide
administration

p53-specific T cells ↑
Th1 and Th2 cytokines ↑
p53-specific IFN-γ-producing
T cells ↑

Clinical trial Phase II Epithelial ovarian cancer
N = 19

[103]

Overlapping long peptides
(OLP) from cancer-testis
antigen NY-ESO-1

Montanide-ISA-51
in
Poly-polyinosinic-
polycytidylic acid
(ICLC)

Subcutaneous Monotherapy
NY-ESO-1–specific antibody ↑
NY-ESO-1–specific CD8+ T cells ↑
NY-ESO-1–specific CD4+ T cells ↑

Clinical trial Phase I Advanced ovarian cancer
N = 11 [104]

p53-SLP® vaccine Montanide ISA51, Subcutaneous
Vaccination
followed by
chemotherapy

p53-specific IFN-γ ↑ Clinical trial Phase II Epithelial ovarian cancer
N = 17 [105]

p53 peptide Montanide and
GM-CSF

Subcutaneous
Intravenous

Peptide admixed
with Montanide
and GM-CSF
Peptide-pulsed
dendritic cells

p53 specific immune response ↑ Clinical trial Phase II

Ovarian cancer
N = 13 (Subcutaneous
administration)
N = 6 (Intravenous
administration)

[106]

Wilms’ tumor 1 (WT1)
peptide Montanide ISA 51 Intradermal Monotherapy

WT1 peptide-specific
delayed-type hypersensitivity
(DTH) reaction ↑

Clinical trial Phase II

Ovarian carcinoma N = 24
Cervical carcinoma N = 11
Uterine sarcoma
N = 5

[107]
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Table 3. Cont.

Peptide Adjuvant Mode of
Administration

Therapeutic
Strategy Immune Response Phase of

Study
Phase of Clinical

Trial Study Sample Reference

Cancer-testis (CT) peptide - Subcutaneous Combination with
5 CT peptides CT peptide- specific CTLs ↑ Clinical trial Phase I

HLA-A24-positive patients
with metastatic and
advanced breast cancer.
N = 9

[108]

Personalized peptide
vaccine (PPV)

Montanide
ISA51VG Subcutaneous

PPV monother-
apy/PPV in
combination with
chemotherapy

Peptide specific IgG responses ↑
Peptide specific CTL response ↑
Interleukin (IL)-6, C Reactive
Protein (CRP) and Serum
amyloid A (SAA) levels ↑

Clinical trial Phase II

Recurrent ovarian cancer
N = 42
Sub group:
(Platinum-sensitive n = 17
and platinum resistant
n = 25)

[109]

WT1 peptide/MUC1 long
peptide/ OK-432, Intradermal

Chemotherapy
followed by
DC-based
immunotherapy

WT1-specific CTL ↑ Clinical trial -

Recurrent ovarian cancer
(ROC)
N = 56
Sub-group: (Serous
cystadeno carcinoma n = 37,
Endometrioid
adenocarcinoma n = 6, clear
cell adenocarcinoma n = 5,
other cancers n = 4

[110]

Five HLA-A2402-restricted
epitope peptides from
KOC1, TTK, URLC10,
DEPDC1 and MPHOSPH1

Incomplete
Freund’s. Subcutaneous

Combination
therapy with Cy-
clophosphamide

T cell response ↑
Overall survival ↑ Clinical trial Phase I

Cervical cancer and other
solid tumors
N = 18
Subgroup: (cervical cancer
n = 1, other solid tumors n = 17)

[111]

Folate receptor alpha GM-CSF intradermal

Combination
therapy with
low-dose Cy-
clophosphamide

T cell response ↑ Clinical trial Phase 1

Stage II-III breast or stage
II-IV ovarian cancer
N = 22
Subgroup: (breast cancer
n = 8 ovarian cancer n = 14)

[112]

Qβ-MUC1 Incomplete
Freund’s adjuvant Subcutaneous Immunotherapy IgG antibodies ↑ Preclinical

study - MUC1.Tg mice [113]

RNF43 peptide pulsed DCs - Subcutaneous

Combination
therapy with
low-dose Cy-
clophosphamide

Serum IL-6 level ↑
IFNγ-producing, tumor-reactive
CD8+ T cells ↑
Treg Cells ↓

Clinical trial Phase I

Cervical cancer and other
solid tumors
N = 10
Subgroup: (cervical cancer
n = 1 other solid tumors n = 9).

[114]
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Table 3. Cont.

Peptide Adjuvant Mode of
Administration

Therapeutic
Strategy Immune Response Phase of

Study
Phase of Clinical

Trial Study Sample Reference

Peptides derived from
FOXM1, MELK, Holiday
Junction Recognition
protein VEGF receptors 1
and 2

Incomplete
Freund’s adjuvant - Immunotherapy FOXM1 and MELK specific T-cell

responses ↑ Clinical trial Phase I
Recurrent or persistent
cervical cancer
N = 21

[115]

DC vaccine pulsed with
personalized peptides
(PEP-DC) or with tumor
lysate (OC-DC)

- Intranodal

Carboplatin/
Paclitaxel adjuvant
chemotherapy;
Immunomodula-
tion with low dose
Cyclophosphamide

Proposed epitope spreading,
increase in pre-existing
NeoAgs-specific T cell clones
and immune response against
patient-specific antigens

Clinical trial Phase I/II
Advanced high-grade
ovarian serous carcinoma
N = 16

[116]

Folate-binding protein-
derived E39 peptide GM-CSF Intradermal Monotherapy Disease free survival↑ Clinical trial Phase I/IIa

Ovarian, endometria,
fallopian, or peritoneal
cancer
N = 51

[117]

MUC1 TLR7 agonists Intraperitoneal Monotherapy

Cytokine production ↑
CD3+/CD8+ T-cells ↑
Antibody titre ↑
Tumor weight ↓

Preclinical
study -

4T1 mouse breast cancer cells,
MCF-7 human breast cancer
cells, MB231 human breast
cancer cells
BALB/c mice

[118]

MHC class I restricted
neoantigen peptide-loaded
DC vaccine

- Intranodal Immunotherapy
Neoantigen-specific T cell
responses ↑
CA-125 levels ↓

Clinical trial -
Chemorefractory ovarian
cancer and malignant ascites
N = 1

[119]

HSP90 derived MHC class
II epitopes

Complete Freund’s
adjuvant Intravenous

Combined with
STING agonist
and/or anti
CTLA-4 antibody

HSP90-specific IgG responses ↑
Th1 immune response ↑
CD8+ T cells response ↑
T reg cells ↑

Preclinical
study - Breast cancer murine model [120]

CA-125—Cancer antigen 125; CEA—carcinoembryonic antigen peptide; CRP—C-reactive protein; CTLA-4—cytotoxic T lymphocyte-associated antigen-4; CTLs—cytotoxic T lymphocytes;
DC—Dendritic cell; DTH—Delayed type hypersensitivity; ER—Estrogen receptor; E75 and GP2—immunogenic peptides from the HER2/neu; GM-CSF—Granulocyte macrophage colony
stimulating factor; HER-2—human epidermal growth factor receptor 2; HLA—Human leukocyte antigen; HSP—Heat shock protein; IFNγ—Interferon gamma; Ig—Immunoglobulin;
IL—Interleukins; MAGE—Melanoma Antigen Gene; MUC1—Mucin short variant S1; OLP—Overlapping peptide; PEP-DC—DCs pulsed with up to ten peptides; RNF—Ring finger
protein; ROC—recurrent ovarian cancer; SLP—synthetic long peptide; STING—stimulator of interferon genes; Th—T helper cells; TLR—Toll-like receptor; wt p53—Wild type p53;
WT1—Wilms’ tumor 1. ↑: increased; ↓: decreased.
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5.2. Based on Viruses Involved in Pathogenesis of Female-Specific Cancers

Viruses are known to interact with host factors creating a tumor microenvironment
(TME) that facilitates tumorigenesis [121]. Viruses are a possible cause of 15% of all human
cancers, which is a sizable proportion of the worldwide cancer burden [122]. Human pa-
pilloma virus (HPV), Epstein-Barr virus (EBV), Mouse mammary tumor virus (MMTV)
and Bovine leukemia virus (BLV) are known to be involved in the pathogenesis of female-
specific cancers including breast and gynecologic cancers [123].

5.2.1. Human Papilloma Virus (HPV)

HPV is a double-stranded, circular DNA [124] and the most prevalent sexually trans-
mitted virus. High-risk HPV types (HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59) are
the leading causes of genital tract cancers, including cervical, vulvar, vaginal, penile, and
anal cancers, and a subset of head and neck cancers [125]. Subtypes 16, 18, and 33 are
associated with 29% of breast cancer. [126] Two viral proteins, E6 and E7, are critical in
initiating oncogenesis in infected cells, resulting in unregulated proliferation, unrestrained
telomerase activity, and ultimately, cervical cancer progression [127]. HPV oncoproteins E6
can inactivate tumor suppressor protein p53 and E7 can inactivate pRb [128] which leads
to the development of cancer.

The discovery of the etiologic involvement of HPV in the development and progression
of cancers, mainly cervical cancer, has led to intensive research on prophylactic strategies.
Currently available prophylactic vaccines exploit the ability of HPV capsid protein L1 to
form virus-like particles (VLP) which are similar to native virions [129]. They induce the
production of neutralizing antibodies that bind to viral particles and block their entry into
host cells and effectively prevent HPV infections [130]. VLPs lack a viral genome and
are neither infectious nor carcinogenic. In addition, they can provoke a robust humoral
immune response with high and persistent neutralizing antibodies [131].

Three prophylactic peptide vaccines are commercially available against HPV infection,
all of them based on L1 VLP. They are Gardasil®4, a quadrivalent vaccine [132], Cervarix™,
a bivalent vaccine [133] and Gardasil®9, a nonavalent vaccine [133]. These prophylactic
vaccines induce strong immune responses and produce high titer of antibodies [134].
HPV prophylactic vaccine is an ineffective treatment for an already infected person [135],
but they can protect up to 100% of females between the ages of 9 and 26 from cervical
cancer caused by HPV [136]. Table 4 enlists the currently available prophylactic peptide
vaccines that could offer protection against HPV infection.
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Table 4. HPV prophylactic peptide vaccines.

Commercial
Name of Vaccine

Vaccine Composition Effective against
Which Type of Cancer

Acts against Which
Strain

Dosage Current Status of the
VaccinePeptides Adjuvant Other Components

Gardasil HPV—6L1, 11L1, 16L1,
18 L1 [137]

Aluminum
(Amorphous Aluminum
Hydroxyphosphate
Sulfate), [137]

Sodium chloride,
L-histidine, polysorbate
80, sodium borate [137]

Cervical, vulval, vaginal,
and anal cancers and
their associated
precursor lesions (and a
subset of head and neck
cancers) Genital warts
and laryngeal
papillomas [138]

HPV types 6, 11, 16,
18 [139]

3 doses of 0.5-mL:
intramuscularly at 0,
2 months, 6 months [139]

Licensed, Merck and Co.
[137,140,141]

Cervarix HPV—16 L1, 18 L1. [142]

AlSO4 (aluminium salt
+ MPL (3-O-desacyl-4′-
monophosphoryl
lipid A) [142]

Sodium chloride
and sodium
dihydrogen phosphate
dihydrate [142]

Cervical, vulval,
vaginal, and anal
cancers and their
associated precursor
lesions (and a subset of
head and neck cancers)
[138]

HPV 16 and 18 [142]
3 doses of 0.5 mL,
intramuscular injections
at 0, 1, and 6 [138]

Licensed, GlaxoSmithKline
[140,141]

Gardasil 9
HPV—6 L1, 11 L1, 16
L1, 18 L1, 31 L1, 33 L1,
45 L1, 52 L1, 58 L1 [143]

Aluminum (provided as
AAHS), [143]

Sodium chloride,
L-histidine, polysorbate
80, sodium borate [143]

Cervical, vulvar, vaginal,
anal, oropharyngeal and
Genital warts (condyloma
acuminata) [143]

HPV-6, 11,16,18,31,
33,45,52, 58 [144]

2 or 3 doses
Intramuscularly,
depending on age at
initiation [144]

Licensed Merck and Co.
[140,141]

Cecolin HPV—16 L1 18 L1 [145] Aluminum
hydroxide [145]

Phosphate buffered
saline. [145]

Cervical cancer, CIN
grade I-III and
adenocarcinoma in situ
(AIS). [145]

HPV 16/18 [140]

2-dose Intramuscularly
for girls aged 9–14 years,
3-dose Intramuscularly
for young women [146]

Licensed in China. WHO
prequalification Status:
Current [141,144,147]

EG-HPV HPV—16 L1,18L1 [148]
CIA06 (Aluminum
hydroxide + dLOS
(CIA05) [148]

- Cervical cancer
[148,149]

HPV type 16 and
type 18 [148] 3 doses at 0, 1, 6 [148] Clinical phase I trial,

Eyegene Inc. Korea [149]

AAHS—Amorphous aluminum hydroxyphosphate sulfate; CIN—cervical squamous intraepithelial neoplasia; dLOS (CIA06)—A novel proprietary immune adjuvant;
EG-HPV—Combination of HPV 16 and 18 L1 VLP; HPV—Human papillomavirus; L1—Major capsid protein. Immunoinformatics and structural vaccinology approaches have led to the
designing of a prophylactic HPV vaccine for protection against cervical cancer. The vaccine construct consisted of two immunodominant epitopes from L2 proteins of HPV, flagellin
(TLR5 agonist), a short synthetic TLR4 agonist and T-helper agonists (PADRE and TpD) joined by appropriate linkers. The designed vaccine was suggested to elicit humoral and cellular
immune responses and offer protection against HPV [150]. Efficacy of the vaccine was further established by in vivo experiments which demonstrated induction of IgG, Th1 (IFN-γ, IL-2)
and Th2 (IL-4, IL-5, IL-10) type cytokines and elevated levels of IL-2 and IL-5 in vaccinated mice [151].
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The clinical success of therapeutic cancer vaccines is very low due to the immunosup-
pressive nature of the TME. So, administration of cancer vaccine as a prophylactic measure
in individuals at high risk of cancer or premalignant conditions will enhance the clinical
efficacy [152].

Therapeutic vaccines for HPV are of four major categories such as live vector-based
vaccines, peptide and protein-based vaccines, nucleic acid-based vaccines and whole cell
vaccines [153]. peptide-based antigens are being extensively explored in the design of
therapeutic vaccines against HPV infection.

In one of the initial studies, the impact of HPV16 E6 and E7 SLP vaccination on
antigen-specific T cell response in cervical cancer patients was studied by Welters M J P
et al. Patients were vaccinated with overlapping long peptides emulsified in Montanide
ISA-51. Both CD4+ and CD8+ T cell responses to HPV16 E6 and E7 were observed [154].

In another study, women with HPV16 positive grade 3 vulvar intraepithelial neoplasia
vaccinated with long peptides from the HPV16 viral oncoproteins E6 and E7 in incom-
plete Freund’s adjuvant showed strong interferon-γ–associated proliferative CD4+ T cell
response and a broad response of CD8+ interferon-γ T cells. Positive outcomes appear to be
linked to the activation of HPV16 specific immunity [155]. Studies indicated that mHSP110,
a chaperone immunoadjuvant, enhanced the immune response to peptide vaccine based
on HPV16 oncoprotein E7 derived CTL epitope E7 (49–57), inhibited tumor growth and
prolonged survival time in mouse models for cervical cancer [156].

Cornelis et al. have reported that 20 women with high-grade vulvar intraepithelial
neoplasia on receiving a synthetic peptide vaccine composed of 13 overlapping peptides
with incomplete Freund adjuvant (mineral oil-based, Montanide ISA-51). In 9 individ-
uals, the long-peptide vaccine completely regressed all lesions and eradicated HPV16.
Clinical response was strongly linked with vaccine-induced T cell response [157,158].

A single administration of HPV vaccine having CpG oligodeoxynucleotides as an
adjuvant and HPV16 E7 43–77 peptide as antigen was reported to elicit prophylactic and
therapeutic effects on cervical cancer in mice models. Injection of vaccine increased cellular
immunity mediated by CD4+ IFN-γ+ T cells and CD8+ IFN-γ+ T cells. Vaccine administra-
tion decreased numbers of immunosuppressive cells including regulatory T cells (Tregs)
and myeloid-derived suppressor cells (MDSCs) [159]. Further studies were carried out
with modified formulation of the vaccine in TC-1 grafted tumor. Subcutaneous injection
of mannose-modified DCs-targeting liposomes loaded with HPV16 E7 peptide and CpG
ODN vaccine stimulated powerful E7 specific CTL response and elevated the percentage
of CD4+ T cells, CD8+ T cells and IFN-γ producing cells. Expression of IL-12, IFN-γ,
TNF-α, and IL-2 were significantly increased, while those of IL-4 and TGF-β significantly
decreased [160].

HPV16 E6/E7 synthetic overlapping long peptide vaccine was investigated for its
therapeutic effect in high-grade cervical squamous intraepithelial lesions and was found
to increase HPV16 specific T cell immunity which lasted up to one year [161] HPV16 SLP
vaccination combined with Carboplatin and Paclitaxel chemotherapy was found to induce
robust T cell response in a mouse tumor model and in patients with advanced cervical
cancer [162]. Tri-therapy where HPV16 E7 SLP was administered, combined with Carbo-
platin/Paclitaxel followed by TLR9 agonist CpG resulted in regression of genital HPV16
tumors [163]. In 77 patients with advanced, recurrent, or metastatic cervical cancer un-
dergoing Carboplatin/Paclitaxel chemotherapy, administration of ISA101, an SLP vaccine
containing HPV E6/E7 showed type 1 T cell response and prolonged survival [164]. In a
Phase I/II clinical study, immune responses of ISA101 vaccine with or without Polyethylene
Glycol (PEG)ylated IFN-α as combination therapy with Carboplatin and Paclitaxel were
evaluated. Enhanced tumor-specific immunity was observed and addition of PEGylated
IFN-α enhanced the immune response [165].

A therapeutic vaccine for HPV called Pepcan (HPV16 E6 peptides combined with
Candida skin testing reagent called Candin) was administered intradermally in 31 patients
with high-grade squamous intraepithelial lesions and was reported to decrease the viral
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load in nine of the patients [166]. The Phase II clinical trial of Pepcan to the two treatment
arms- Pepcan and Candin, in 99 patients with cervical high grade squamous intra-epitheial
lesions was recently completed [167].

A bivalent therapeutic vaccine against HPV16/18 genotypes composed of a fusion
protein containing the extra domain A of human fibronectin and HPV16/18 E7 viral
antigens was developed by Arribillaga L et al. The vaccine induced E7-specific CTL
response and eradicated pre-existing tumors [168]. Promising results have arrived from
a Phase I clinical trial using the novel therapeutic vaccine, Hespecta (HPV E6 Peptide
conjugated to Amplivant®) which showed a T cell specific immune response [169].

HPV16 E5 has also been proven to be a promising target for cervical cancer therapy.
Administration of E5 peptide-based on epitopes predicted by immunoinformatics in com-
bination with CpG has induced strong cell-mediated immunity, decreased tumor volume
and increased survival time in mice models [170].

Administration of different immunodominant epitopes of HPV in combination was
found to elicit increased immune response. Studies report induction of Th1 immune
response and high Granzyme B secretion which indicates CTL activity in mice receiving E7
and E5 peptides together when compared to those receiving the peptides individually [171].

A multiepitope vaccine consisting of linked segments of E5, E6 and E7 peptides
(E765m) was developed and inserted into the major immune dominant region (MIR) of
hepatitis B virus core antigen (HBc) to form HBc-E765m chimeric virus-like particles
(cVLPs). E5-TC-1 tumor-bearing mice immunized with cVLPs elicited high E5-, E6- and
E7- specific CTLs, IgG antibody responses and increased levels of IFN-γ, IL-4 and IL-5.
Tumor growth was also suppressed, which indicated that the novel vaccine provides
a promising platform for immunotherapy in HPV16-associated cervical intraepithelial
neoplasia [172]. An SLP vaccine containing HPV16 E7 antigen in combination with TLR9
agonist CpG formulated in an oil-in-water emulsion was found to inhibit tumor growth
and induce robust CD8+ T cell response in TC-1 murine model [173].

Strategies using nanoparticles have been employed for the design of therapeutic pep-
tide vaccines against HPV infection. Tat-E7/pGM-CSF nanoparticles are a promising new
strategy for boosting the efficacy of peptide-based cervical cancer vaccinations. The HIV-1
Tat cell-penetrating peptide was fused with the HPV16 E7 CTL epitope and GM-CSF. In pro-
phylactic and therapeutic mouse models, the vaccination resulted in lower tumor growth
and improved long-term survival and higher frequency of CD8+ memory T cells [174].
In another study, Rahimian et al. used a double emulsion solvent evaporation technique
to create polymeric nanoparticles (NPs) based on hydrophilic polyester loaded with an
SLP derived from HPV16 E7 oncoprotein and a TLR3 ligand. There was a substantial
increase in HPV specific CD8+ T cells when the HPV SLP antigen encapsulated in nanopar-
ticles was administered. These biodegradable polymeric nanoparticles are an efficient
alternative for adjuvant in cancer vaccinations since they cause no adverse reactions on
administration [175].

A therapeutic HPV nanovaccine candidate was created by Zhang et al. using poly [D,
L-lactic-co-glycolic acid] (PLGA), to encapsulate HPV-16 E744–62. Adenosine triphosphate
(ATP) was added to the design as a novel adjuvant element. The PLGA encapsulation
improved antigen presentation to antigen presenting cells (APCs), triggered the immuno-
logical response, ATP induced DC maturation, and improved antigen recognition and
uptake by DCs [176]. Another novel liposomal nanoparticle based therapeutic peptide
vaccine PDS0101 composed of cationic lipid R-DOTAP and 6 HPV16 E6/E7 peptides was
developed. The ongoing clinical trial is evaluating the efficacy of this multipeptide vac-
cine when used in conjunction with chemotherapy and radiation therapy in 35 patients
with stage IB3-IVA cervical cancer [177]. Future directions for HPV therapeutic vaccine
development include the production of new potent adjuvants, novel antigen targets, and
an enrichment of preclinical models.
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5.2.2. Mouse Mammary Tumor Virus (MMTV)

MMTV is a beta retrovirus that causes mammary cancers in both wild and laboratory
mice [178] and has also been identified in 40% of human breast cancers [179]. It has been pro-
posed earlier that the zoonotic transmission of MMTV from the mice, Mus musculus domesticus
could account for the geographic differences in breast cancer incidence [180]. Stewart et al. has
recently reported evidence for correlation of spikes in breast cancer incidence in Australia and
New Zealand with mouse population outbreaks [181].

Ever since the involvement of MMTV with breast cancer was identified, investigations
have been carried out to recognize TAA that can serve as potential vaccine targets. In one
study using TgMMTV-neu mouse, three early-stage tumor antigens (PDHX, STK39, and
OTUD6B) were identified by serological analysis of cDNA expression libraries (SEREX)
screen that could serve as superior antigen targets for the inhibition of tumor growth [182].
MMTV-p14, the signal peptide of the MMTV envelope precursor, was found to be ex-
pressed on breast cancer cells. Protective vaccination using p14 with alum as an adjuvant
revealed enhanced immune response which demonstrates p14 as a target for prophylactic
vaccination in MMTV associated cancers [183]. Earlier, the feasibility of using MMTV-p14
for vaccination was demonstrated in Balb/c mice that harbor MMTV [184].

Proteins gp36 and gp52 which are part of the MMTV envelope were reported to be
present in primary cultures of human breast cancer [185]. Protective efficacies of vaccines
consisting of synthetic peptides based upon the primary sequence of gp52 were studied
in mice models. Vaccinating Balb/c mice with surface accessible peptide region EP-3 of
major viral envelope glycoprotein (gp52) of C3H-MuMTV was found to result in significant
decrease in frequency of early onset tumors [186].

5.2.3. Epstein-Barr Virus (EBV)

EBV is a DNA virus that belongs to the gamma Herpesviridae family [187]. The pres-
ence of the EBV genome was identified in a large subset of breast cancers by polymerase
chain reaction (PCR), Southern blot analysis and immunohistochemical detection of Epstein-
Barr nuclear antigen 2 (EBNA-2) [188]. Activation of HER2/HER3 signaling cascade is
known to be involved in the malignant transformation induced by EBV [189].

Statistical association of EBV infection with increased breast carcinoma was demon-
strated by meta-analysis [190]. Breast tumors showed viral products like EBNA-1, BZLF1,
BARF-1, BARF-0, BXLF-2 and BFRF-3 [187]. Epidemiological studies suggest that EBV
increases the risk for breast cancer and this association is stronger in Asian countries
than in European countries, though EBV infection is not involved in the progression of
breast cancer. Also, there is an association between EBV and breast cancer in areas where
nasopharyngeal carcinoma is endemic [191].

Studies conducted by Li W et al. on the immune response of mice to EBV latent
membrane protein 2 (LMP2) multi-epitope antigen demonstrated that priming with DNA
vaccine and boosting with peptide vaccine elicited a robust humoral immune response and
efficient CTL activity [192]. In vivo studies have reported that LMP-1 vaccines suppress
LMP-1 expressing tumor growth and metastasis in nasopharyngeal carcinoma animal
models [193]. Studies also suggest a correlation between expression of EBV LMP-1 and ag-
gressive ER-negative breast cancer [194]. This opens a possible avenue for the development
of LMP-1-based peptide vaccine as a therapeutic strategy against breast cancer.

The use of immunoinformatics approaches has resulted in the prediction of potential T
cell and B cell epitopes for nine antigenic EBV proteins. The integrative meta-analytical ap-
proach could model these epitopes as effective candidates for peptide vaccine development
towards the treatment of EBV associated cancers [195]. A computational meta-analysis
integrated with dynamics could predict a panel of epitopes including B cell epitopes and
cytotoxic T cell epitopes. These peptides were then docked against the MHC molecules
and the selected peptides were subjected to molecular dynamics simulation and stability
analysis. The validated peptides are suggested to aid in the development of vaccines that
could be effective against multiple diseases caused by EBV [196]. A multiepitope based
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polyvalent vaccine against EBV associated tumors was developed using immunoinformat-
ics approach. Molecular docking of the vaccine construct against TLRs revealed that it
could elicit humoral and cellular immune responses [197].

5.2.4. Bovine Leukemia Virus (BLV)

BLV is a delta retrovirus that most closely resembles human T cell lymphotropic virus
1 (HTLV-1) [198]. Association of breast cancer with exposure to BLV has been reported
by Buehring G C et al. [199]. Literature search reveals a few investigations that have
been carried out on development of peptide vaccines that could be effective against BLV
associated tumors.

In one of the initial studies, Kabeya H et al. had reported that recombinant baculovirus
(rgp51) and synthetic multiple antigenic peptides (MAP) of T helper, T cytotoxic, and B cell
epitopes of BLV gp51 protected sheep from BLV [200].

Inoculation of mannan-coated liposome encapsulating 20-mer synthetic peptide of
BLV envelope glycoprotein gp51 in BALB/c mice induced specific delayed-type hypersen-
sitivity, lymphocyte proliferative responses, and weak cytotoxic lymphocyte response [201].
Glycoprotein gp51-peptide epitope covalently linked to a mutant bacteriophage carrier
(mQβ) using two different linker strategies, isothiocyanate and dinitrophenyl adipate were
reported to elicit long-lasting neutralizing antibodies in mice [202].

A prophylactic multi-epitope vaccine against BLV was computationally developed for
breast cancer. The vaccine construct consisted of five antigenic CTL and four helper T lym-
phocyte (HTL) epitopes linked by AAY and GPGPG, respectively. β-defensin (TLR3 agonist)
was added as an adjuvant using EAAAK linker. Immune simulation study confirmed that the
designed vaccine could produce a higher response exhibited by helper T and cytotoxic T cell
during vaccination. Also, NK and DCs demonstrated elevated macrophage activity [203].

An in silico approach was used to predict the reliable B and T helper cell epitopes of BLV
that can be used for vaccine design. Immunogenic regions of linear and conformational epitopes
were selected and the tertiary structure of the final epitope was modeled. The structures of
both conformational epitopes were the same as that of the whole extracellular part of gp60 SU
(surface glycoprotein of BLV, the major target for the host immunity against the virus) [204].

6. A Pipeline for the Design and Evaluation of Peptide Vaccine in Female-Specific Cancers

One of the initial steps in the design of a peptide vaccine is the identification of appro-
priate epitopes with immunogenicity. Immunoinformatics approaches can be effectively
used for the prediction of epitopes in vaccine research. The multi-epitope vaccine construct
is an acceptable choice for future research [205]. Epitopes can also be designed based
on the sequence of TAA or TSA that are encoded by mutated cancer genes [42,206,207].
In the case of viral induced cancers, the viral antigens can serve as a guide for epitope-based
vaccine design [208–210]. After an epitope is predicted, a multi-epitope vaccine can be designed.
Then the allergenicity, antigenicity and physicochemical properties of the vaccine construct is
analyzed [211]. It is followed by preclinical or in vitro studies in cell lines and/or in animal
models/humanized animal models and various phases of clinical trials before the successful
development of a commercial vaccine. A flow chart illustrating a model pipeline for the design
and evaluation of peptide vaccine in female-specific cancers is shown in Figure 3.
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Figure 3. Study design for development of peptide vaccine. MD—Molecular dynamics, NP—Nanoparticle,
VLP—Virus like particles.
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7. Delivery Systems for Peptide Vaccines

When used alone as vaccines, peptides do not elicit robust in vivo immune responses
due to their rapid degradation at the injection site, lack of costimulatory effects and immune
signals essential for APC activation [42]. In early phase clinical trials of peptide-based vac-
cines, overlapping long peptides were used along with adjuvants to boost immune response.
For example, a vaccine made by combining HPV E6 and E7 peptides in Montanide ISA 51
adjuvant was well tolerated and induced the development of IFN-related T cell response in
advanced cervical cancer patients [212]. So adjuvants and/or delivery systems are required
to induce a satisfactory immune response and also protect the antigen from degradation
and deliver it to the targeted cells. Delivery systems are self-adjuvating and they aid in the
delivery of peptides to APCs to generate optimum T cell responses. Poly lactic-co-glycolic
acid (PLGA) [213] and liposomes [214] are two drug delivery methods that have been
studied for many years and have proven safety and efficacy for the treatment of cancer.
Nanoparticles are an effective antigen presentation and delivery system for stimulating an
optimal immune response [215]. The physical features of nanoparticles, such as size, shape,
and surface characteristics can be easily modified to induce immunological responses
against the associated antigen. Vaccines have been delivered via polymeric nanoparticles
such as nanogels [216], dendrimers [216], hydrogels [217], and micelles [218] that have been
conjugated with immune stimulants. Conjugation of peptides to inorganic nanoparticles
like gold nanoparticles increases the stability and reproducibility of the conjugate [219].
A recent study by Firdaus et al. shows that a completely specified, natural, hydrophobic
amino-acid-based polymer (Polyleucine) conjugated to peptide antigen works well for
vaccine delivery mechanism [220]. VLPs can efficiently act as vehicles of antigens to APCs,
where they are cross-presented in association with both MHC class I and class II molecules,
eliciting both humoral and cellular immune responses [221]. Recently, adenovirus-inspired
non-infectious VLP was shown to stimulate anti-tumor immune response in mouse modes
of melanoma [222] present shortcomings of peptide vaccines necessitate additional research
on more effective adjuvants, routes of administration, and novel delivery systems.

8. Limitations and Adverse Effects of Peptide Vaccines

Peptide vaccines provide a number of benefits, including simplicity of synthesis,
low production costs, adaptability to antigens, and high specificity. However, they also
have a number of drawbacks, including MHC constraints, poor immunogenic potency,
and the necessity for an adjuvant. Even though stability and immunogenicity of peptide
vaccines can be improved by conjugating them with adjuvants, the unwanted immune
response elicited by the adjuvant is a challenge. The extent and diversity of MHC alleles
in various populations and races also pose a barrier that a specific peptide may not in-
duce much cell-mediated immunity in individuals with diverse MHC class I molecules.
Since the vaccine must match the HLA in patients, a peptide vaccine for the entire hu-
man population cannot be designed due to the presence of HLA polymorphisms [223].
Even though peptides present on MHC-II molecules that are recognized by helper T cells
could considerably improve efficacy, it is extremely difficult to predict the immunogenicity
of MHC-II-restricted peptides due to their greater diversity and complexity than MHC-I-
restricted peptides [224]. Short peptides may induce T cell tolerance since they can directly
bind to MHC on non-professional APCs [225]. Also, the constrained conformation of
short peptides will prevent them from folding into the three-dimensional structure that is
required for proper immunogenicity [226,227]. Although algorithms for predicting T cell
epitopes are widely employed, their accuracy and sensitivity are somewhat limited due
to the fact that the spatial configuration of T cell epitopes changes when antigens bind to
cell surface receptors. Consequently, false-positive and false-negative immune responses
are possible [228]. Tumor-specific CD4+ T cell responses often target self-derived epitopes.
This will hinder the immune system from realizing its entire potential in fighting against
cancer, presenting another important challenge in peptide vaccine development [229].
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9. Future Prospects

The increasing incidence of female-specific cancers across the globe remains a great
challenge that needs to be addressed with therapeutic and prophylactic approaches. In the
case of viral-induced female-specific cancers, the development of novel prophylactic vac-
cines is all the more important. Even though vaccinations against HPV are widely used,
prophylactic strategies against retroviruses causing female-specific cancers, such as MMTV
and BLV are not even in the nascent stages of development. The major concern regarding
retroviruses is that they stably integrate into the host genome, enter long-term latency in
some cells, and evade immune response making vaccination difficult [230].

Peptide-based vaccination approaches have several advantages over other forms of
therapies in eliciting appropriate anti-tumor immune responses. This should be addressed
in conjunction with the fact that the anticancer immune response of peptide vaccines can
be attenuated by factors such as the complexity, continuous evolution of the TME and the
influence of neoantigen-specific T cell immunity [231]. Also, due to their rapid degradation
at the injection site, lack of costimulation, and lack of signals needed for APC activation,
peptide vaccines may not induce robust immune reactions in vivo [232]. Thus more studies
are warranted on the development of potent adjuvants or immunostimulators and efficient
delivery systems that are capable of producing effective T cell responses.

The identification of optimal antigen targets, streamlining immunization regimens
and exploring novel biomarkers that could predict the efficacy of vaccine response are all
major domains that deserve additional attention in the near future [42]. Empirical research
on the design and effectiveness of combining peptide-based cancer vaccination with other
forms of existing therapy is also the need of the hour.

The concept of multi-epitope-based peptide vaccines is quite interesting for both ther-
apeutic and prophylactic purposes. Advances in artificial intelligence should be effectively
exploited for the development of new algorithms for the prediction of peptide-binding
epitopes which would aid in the design of neoantigen-based cancer vaccines. Personalized
peptide-based cancer vaccines, emerging as a promising strategy for eliciting a diversified
antitumor immune response that is appropriate and useful to individual cancer patients,
which is currently an expensive and time-consuming affair, also need more attention.
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Nomenclature

AAHS Amorphous aluminum hydroxyphosphate sulfate
AE37, AE36, E75 and GP2 Immunogenic peptides from the HER2/neu
APC Antigen presenting cells
B16-OVA B16 Ovalbumin
BLV Bovine leukemia virus
BORIS Brother of Regulator of Imprinted Sites
BRCA1/BRCA2 Breast Cancer gene
CA-125 Cancer antigen 125
CAR T cell Chimeric antigen receptor T cell
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CCL-Chemokine (C-C motif) ligand
CEA Carcinoembryonic antigen
CHEK2 Checkpoint kinase 2
CIN Cervical squamous intraepithelial neoplasia
CpG-ODN Oligodeoxynucleotides of cytosine and guanine
CRP C-reactive protein
CTL Cytotoxic T lymphocyte
CTLA-4 Cytotoxic T lymphocyte-associated antigen-4
cVLPs Chimeric virus-like particles
CXCL Chemokine (C-X-C motif) ligand
DCs Dendritic cells
dLOS (CIA06) A novel proprietary immune adjuvant
DTH Delayed type hypersensitivity
E1, E2, E3 Epitope 1, 2, 3
EBNA-2 Epstein-Barr nuclear antigen 2
EBV Epstein-Barr virus.
ECD Extracellular domain
EGFR Epidermal growth factor receptor
ER Estrogen receptor;
ErbB2 Erythroblastic oncogene B
FR Folate receptor
GM-CSF Granulocyte-macrophage colony-stimulating factor
HBc Hepatitis B virus core antigen
HER 2 Human epidermal growth factor receptor 2
HIV Human immunodeficiency virus
HLA Human leukocyte antigens
HPV Human Papillomavirus
HSP Heat shock protein;
HTL Helper T lymphocyte
HTLV-1 Human T cell lymphotropic virus 1
ICB Immune checkpoint blockade
ICD Intracellular domain
IFN Interferon
IgG Immunoglobulin G
IL Interleukin
KLH- Keyhole limpet hemocyanin
LMP2 Latent membrane protein 2
MAGE Melanoma Antigen Gene
MAP Multiple antigenic peptides
MD Molecular dynamics
MDSCs Myeloid-derived suppressor cells
MHC Major histocompatibility complex
MIR Major immune dominant region
MMTV Mouse Mammary Tumour Virus
MUC1 Mucin1
NK Natural killer cell
NP Nanoparticle
NPBC Non-palpable breast cancer
NPS Nelipepimut-S
OLP Overlapping peptide
PCR Polymerase chain reaction
PEG Polyethylene Glycolylated
PEP-DC DCs pulsed with up to ten peptides
Poly-ICLC Polyinosinic-polycytidylic acid
PLGA Poly lactic-co-glycolic acid
PTEN Phosphatase and TENsin homolog
RNF Ring finger protein; ROC-recurrent ovarian cancer
ROPs Recombinant overlapping peptides
SEREX Serological analysis of cDNA expression libraries
SLP Synthetic long peptide
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SSA Serum amyloid A
STING Stimulator of interferon genes
TAAs Tumor associated antigens
TCR T-cell receptor
TGF Tumor growth factor
Th helper T cells
TLR Toll-like receptor
TNBC Triple-negative breast cancer
TNF Tumor necrosis factor
TME Tumor microenvironment
Tp53 Tumor protein 53
TSAs Tumor-specific antigens
TUBO Cell lines cloned from a BALB/c mouse mammary carcinoma
VLP Virus like particles.
wt p53 Wild type p53
WT1 Wilms’ tumor 1
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